电池系统和电动车的制作方法

文档序号:14568307发布日期:2018-06-01 20:51阅读:186来源:国知局
电池系统和电动车的制作方法

本申请要求2016年9月7日提交的标题为电动车部件(ELECTRIC VEHICLE COMPONENTS)的第62/384,298号美国临时申请的全文的优先权。

技术领域

本实用新型总体上涉及一种电池系统,具体地,该电池系统用于电动车。



背景技术:

本部分旨在向读者介绍可能涉及下文描述和/或要求保护的本实用新型的各个方面的技术的各个方面。相信这样的讨论将有助于给读者提供背景信息来促进更好地理解本实用新型的各个方面。因此,应当理解的是,这些陈述应以上述目的来阅读,而不是作为对现有技术的承认。

随着社会越来越关注碳排放和可持续/可再生能源,电动车越来越受欢迎。电动车使用存储在一个或多个电池中的电力进行操作。在操作期间,所存储的电能被可控地释放以驱动电动机。电动机将电能转换成机械能,从而推动车辆。电动车用称为接触器的开关控制来自电池的电力潮流。这些接触器通常被放置在车辆上的各个位置处,从而增大了制造复杂性(即,增加了部件和布线的数量)。



技术实现要素:

下文讨论的实施例包括一种用于电动车的电池系统。该电池系统将快速充电系统(例如,直流充电系统)和车载充电器系统(例如,交流转直流充电系统)集成至单个电池壳体中(例如,单件、一体式)。通过将快速充电器系统和车载充电器系统二者集成至单个壳体中,该电池系统减少了用于电动车的壳体、部件(例如,连接器)和布线的数量。通过降低制造复杂性(例如,减少部件、组件的数量),可以较低成本制造电动车。

根据本公开的一个方面,公开了一种电池系统,包括:电池壳体,所述电池壳体包括:第一电池壳体构件;第二电池壳体构件,其中所述第一电池壳体构件和第二电池壳体构件耦连在一起以形成所述电池壳体;快速充电器系统,所述快速充电器系统包括:所述电池壳体内的第一快速充电器接触器,其中所述第一快速充电器接触器耦连至正极端子;所述电池壳体内的第二快速充电器接触器,其中所述第二快速充电器接触器耦连至负极端子;以及快速充电器连接器,所述快速充电器连接器耦连至所述第一快速充电器接触器和所述第二快速充电器接触器,其中所述快速充电器连接器配置成将所述快速充电器系统耦连至高电压直流源以对至少一个电池单元充电。

在实施例中,所述电池系统包括第一电池接触器和第二电池接触器,其中所述第一电池接触器和第二电池接触器配置成控制流出所述至少一个电池单元的电力潮流。

在实施例中,所述第一电池壳体构件包括第一连接器壳体部分,且其中所述第一电池壳体构件和所述第一连接器壳体部分是单件式。

在实施例中,所述第二电池壳体构件包括第二连接器壳体部分,且其中所述第二电池壳体构件和所述第二连接器壳体部分是单件式。

在实施例中,所述第一电池壳体构件和第二电池壳体构件在耦连在一起时形成连接器壳体。

在实施例中,所述第一连接器壳体部分通过凸缘耦连至所述第一电池壳体构件的剩余部分。

在实施例中,所述电池系统包括耦连至所述连接器壳体的降压变压器连接器,其中所述降压变压器连接器配置成耦连至降压变压器。

在实施例中,所述电池系统包括耦连至所述连接器壳体的第一逆变器连接器。

在实施例中,所述电池系统包括耦连至所述连接器壳体的第二逆变器连接器。

在实施例中,所述电池系统包括所述电池壳体内的所述电池单元。

根据本公开的另一方面,公开了一种电动车,包括:电池系统,所述电池系统包括:电池壳体,所述电池壳体包括:第一电池壳体构件;第二电池壳体构件,其中所述第一电池壳体构件和第二电池壳体构件耦连在一起以形成所述电池壳体;快速充电器系统,所述快速充电器系统包括:所述电池壳体内的第一快速充电器接触器,其中所述第一快速充电器接触器耦连至正极端子;所述电池壳体内的第二快速充电器接触器,其中所述第二快速充电器接触器耦连至负极端子;以及快速充电器连接器,所述快速充电器连接器耦连至所述第一快速充电器接触器和所述第二快速充电器接触器,其中所述快速充电器连接器配置成将所述快速充电器系统耦连至高电压直流源以对至少一个电池单元充电。

在实施例中,所述电动车包括第一电池接触器和第二电池接触器,其中所述第一电池接触器和第二电池接触器配置成控制流出所述至少一个电池单元的电力潮流。

在实施例中,所述第一电池壳体构件包括第一连接器壳体部分,且其中所述第一电池壳体构件和所述第一连接器壳体部分是单件式。

在实施例中,所述第二电池壳体构件包括第二连接器壳体部分,且其中所述第二电池壳体构件和所述第二连接器壳体部分是单件式。

在实施例中,所述第一电池壳体构件和第二电池壳体构件在耦连在一起时形成连接器壳体。

在实施例中,所述第一连接器壳体部分通过凸缘耦连至所述第一电池壳体构件的剩余部分。

在实施例中,所述电动车包括耦连至所述连接器壳体的降压变压器连接器,其中所述降压变压器连接器配置成耦连至降压变压器。

在实施例中,所述电动车包括耦连至所述连接器壳体的第一逆变器连接器。

在实施例中,所述电动车包括耦连至所述连接器壳体的第二逆变器连接器。

在实施例中,所述电动车包括所述电池壳体内的所述电池单元。

附图说明

当参考附图阅读以下具体实施方式时,将更好地理解本实用新型的各种特征、方面和优点,其中相同的符号在所有附图中均表示相同的部分,其中:

图1是具有集成动力系系统和集成电池系统的电动车的实施例的透视图;

图2是电动车电池系统的实施例的透视图;

图3是电动车电池系统的实施例的侧视图;

图4是图2的线4-4内的电动车电池系统的实施例的剖视图;

图5是图2的线5-5内的电动车电池系统的实施例的剖视图;

图6是电动车电池系统的实施例的示意图;且

图7是具有集成动力系系统的电动车的实施例的示意图。

具体实施方式

下文将描述本实用新型的一个或多个具体实施例。这些实施例仅仅是本实用新型的示例。另外,为了努力尝试提供对这些示例性实施例的简明描述,本说明书中可能没有描述实际实施方案的全部特征。应当明白的是,在任何这样的实际实施方案的开发中,如同在任何工程或设计项目中,必须做出许多实施方案所特有的决定以实现开发者的具体目的,诸如符合系统相关和业务相关约束,其在不同的实施方案之间可能是不同的。另外,应当明白的是,此开发工作可能是复杂且耗时的,但是对于受益于本实用新型公开的一般技术人员而言,它们将是设计、制作和制造的常规工作。

图1是电动车2的透视图。电动车2包括具有前部动力系6和后部动力系8的集成动力系系统4。在操作中,前部动力系6驱动前轮,而后部动力系8驱动后轮。动力系系统4是以电池系统10供电,该电池系统对集成动力系系统4中的电动机供电。如下文将详细地解释,集成动力系系统4和电池系统10减少了电动车2中的部件数量、降低了布线复杂性等。因此,车辆2的设计可降低制造复杂性(例如,减少部件、组件的数量)以及制造成本。

图2是电动车电池系统10的实施例的透视图,该电动车电池系统减少了电动车中的部件数量、降低了布线复杂性等。具体地,车辆2包括电池系统10内的接触器和连接器,其通常放置在不同的壳体中并且在车辆2的不同位置处。电池系统10包括具有第一电池壳体构件14和第二电池壳体构件16的壳体12。第一电池壳体构件14和第二电池壳体构件16可以以包括螺纹紧固件、焊接等各种方式耦连在一起以形成壳体12。电池壳体12容置各种部件,包括电池单元18(例如,1、2、3、4、5、10、15个或更多个电池单元)、接触器20、连接器22、电线、传感器等,其一起工作以将电池单元18中存储的电能连接至各种车辆系统(例如,交流压缩机、电动机、加热系统)以及对电池单元18再充电以供未来使用。

电池壳体12可包括可一体地成型至壳体12中的经专门设计的区段/部分。这些区段/部分可形成用于壳体12内的各种电气部件的子壳体/隔室。通过将这些子壳体/隔室成型至电池壳体12中,电池系统10通过减少电气部件(例如,用于连接壳体中的电气部件的连接器)所需的壳体的数量、降低布线复杂性以及减少布线量等来降低制造复杂性。如所说明,壳体12包括一体式壳体/隔室24、26。这些壳体/隔室24、26在电池系统10的相应端部28、30处。通过将壳体/隔室24、26定位在壳体12的相应端部28、30处,壳体12可促进将电池系统10连接至电动车2上的各种系统。然而,在某些实施例中,壳体/隔室24、26可定位在壳体12上的其它位置处(例如,中心、侧面)。

这些壳体/隔室24、26使得快速充电系统32(例如,直流充电系统)和车载充电系统34(例如,交流转直流充电系统)能够集成至电池系统10中。因此,快速充电系统32和车载充电器系统34不需要单独的外壳、附加连接器和复杂的布线。

图3是电动车电池系统10的实施例的侧视图。如所说明,壳体/隔室24、26一体地成型至第一电池壳体构件14中或耦连至该第一电池壳体构件。例如,第一连接器壳体24可形成有第一连接器壳体部分40和第二连接器壳体部分42。如所说明,第一电池壳体构件14和第一连接器壳体部分40是单件的(例如,一体的)。在某些实施例中,第一电池壳体构件14和第一连接器壳体部分40与一体式凸缘44耦连在一起以形成间隙46。间隙46可减少电磁干扰以及保护连接器壳体中的部件免受电池单元18的影响。第二连接器壳体42和第二电池壳体构件16同样是单件的,这减少了制造附加壳体以将部件存储在连接器壳体24中的需要。

如上文所解释,在相对端部30上,电池系统10包括第二连接器壳体26。在某些实施例中,第二连接器壳体26可与第一电池壳体构件14成型为单件,或可为单独成型件,其耦连至第一电池壳体构件14以形成第二连接器壳体26。

图4是图2的线4-4内的电动车电池系统10的实施例的剖视图。如所说明,第一连接器壳体24包括将电池系统10电联接至车辆2的各种连接器22。从左侧开始,第一连接器是车载充电器连接器60(例如,电压高达1200V的车载充电器连接器)。车载充电器连接器60形成充电器系统62的部分,其将交流源(例如,车主家中的交流插座)中的电力转换成用于对电池单元18充电的直流。除了车载充电器连接器60之外,充电器系统62还包括将交流转换为直流的连接器64(例如,接触器),该连接器进而耦连至电池单元18。由于电池壳体12中包括连接器64,电池系统10可减少车辆2上的连接器的数量,因为电池系统10不联接至容纳连接器64的单独壳体。除了更少的连接器22之外,将充电器系统62放置在电池壳体12中减少了布线的量和单独壳体的生产。

用于快速充电器系统68的快速充电器连接器66在车载充电器连接器60旁边。在操作中,快速充电器系统68使得电池系统10能够从快速充电站接收直流电。因为快速充电站向车辆2输出大量的电力,所以连接器66可具有额定功率(电压高达1200V)来处理电力。另外,为了控制快速充电站中的电力流动,快速充电器系统可包括第一快速充电器接触器70和第二快速充电器接触器72。第一快速充电器接触器70耦连至正极端子,而第二快速充电器接触器72耦连至负极端子。第一快速充电器接触器70和第二快速充电器接触器72进而电联接至电池单元18。类似于上述讨论,由于电池壳体12中包括快速充电器系统68,电池系统10可减少车辆2上的连接器的数量,因为电池系统10不耦连至容纳接触器70、72的单独壳体。除了更少的连接器之外,将快速充电器系统68放置在电池系统10中减少了布线的量和单独壳体的生产。

连接器壳体24还可包括将电池系统10连接至一个或多个转换器的附加高电压连接器74和76(例如,电动机连接器),该转换器将由电池单元18产生的直流转换为交流以供集成动力系系统4(即,电动车电动机)使用。变压器连接器78在高电压连接器74和76旁边,该变压器连接器耦连至变压器80,该变压器将由电池单元18产生的电压逐步降低。由此,变压器连接器78能够将低压电传输至车载电子器件。在某些实施例中,变压器80在连接器壳体24内,这可进一步减少布线、单独壳体的生产以及车辆2上的连接器的数量。

为了监测电池系统10,电池系统10可包括一个或多个传感器82。传感器82可监测:电流、电压、温度等。为了将传感器82耦连至车辆的计算机,连接器壳体24包括一个或多个传感器连接器84。传感器连接器84使得传感器82能够将信号传输至车辆的计算机,该车辆计算机使用这些信号来监测和/或控制电动车2的各种系统。

图5是图2的线5-5内的电动车电池系统10的实施例的剖视图。如上文所解释,第二连接器壳体26可与第一电池壳体构件14成型为一体(例如,单件),这可促进制造(例如,更少的部件、更少的组件)。在某些实施例中,第二连接器壳体26可单独成型,然后用紧固件(例如,螺纹紧固件)耦连至第一电池壳体构件14。

如所说明,第二连接器壳体26包括将电池系统10电联接至车辆2的各种连接器22。例如,第二连接器壳体26可包括将电池系统10耦连至集成动力系4的高电压连接器100(例如,电动机连接器)。第二连接器壳体26还包括压缩机连接器102和加热器连接器104。压缩机连接器102使得电池系统10能够对电动机提供驱动冷却剂压缩机的电力。冷却剂压缩机进而与气候控制系统一起工作以冷却车厢。加热器连接器104还对气候控制系统供电,而不是冷却加热器连接器104使得气候控制系统能够加热车厢。例如,加热器连接器104可耦连至用电池系统10中的电力生成热量的电阻加热器。

如上文所解释,电池系统10可包括一个或多个传感器82。传感器82可监测电流、电压、温度等。传感器82用一个或多个传感器连接器84耦连至车辆的计算机。传感器连接器84使得传感器82能够将信号传输至车辆的计算机,该车辆的计算机使用这些信号来监测和/或控制电动车2的各种系统。如所说明,第二连接器壳体26也包括传感器连接器84。

在操作期间,电池系统10由于内部电阻而生成热量。为了维持电池系统10的温度,电池系统10可在壳体12内包括一个或多个导管和/或通道。这些导管和/或通道使得温度受控流体能够流过电池。壳体12通过流体入口106和流体出口108提供通向这些导管和/或通道的入口。流体入口106和/或出口108可耦连至第一电池壳体构件14或第二电池壳体构件16。在某些实施例中,流体入口106或流体出口108可耦连至第一电池壳体构件14,而另一个耦连至第二电池壳体构件16。

图6是电动车电池系统10的实施例的示意图。电池系统10包括第一主接触器120和第二主接触器122,其控制电力至电池单元18和电力从电池单元18的流动。为了监测电流,电池系统10可包括一个或多个传感器84(例如,电压传感器、电流传感器、霍尔效应传感器、温度传感器)。这些传感器84耦连至接收和处理信号的车辆计算机126。计算机126包括处理器128和存储器130。在操作中,处理器128使用存储在存储器130上的指令来处理信号和控制各种接触器20。

如上文所解释,电池系统10包括形成快速充电器系统68的部分的附加接触器70和72。这些接触器70、72集成至电池系统10中以促进制造和降低复杂性。更具体地,电池壳体12中包括这些接触器减少了壳体、连接器、布线等的数量。类似地,车载充电器系统62可集成至电池壳体12中以促进从交流源对电池充电。车载充电器系统62包括连接器64,其将交流电转换成用于对电池单元18充电的直流电。电池系统10还可包括用于对各种车辆系统(例如,HVAC、计算机)供电的一个或多个低功率连接器(例如,连接器78、连接器102和连接器104)。一个或多个变压器80耦连至这些连接器中的某些或所有连接器,这些变压器减少了电池单元18中供这些不同车辆系统使用的电力。电池系统10使用接触器120和122以及一个或多个继电器132来控制对这些不同连接器的供电。继电器132类似地由计算机126控制。电池系统10中的其它连接器22包括高电压连接器(例如,连接器74、连接器76、连接器100),其将电池系统10中的电力传递至集成动力系系统4,该集成动力系系统使用大量电力来移动车辆2。总之,将这些部件集成至电池系统10中可降低制造复杂性(例如,减少布线、壳体、连接器)。

图7是具有集成动力系系统4的电动车2的实施例的示意仰视图。如上文所解释,集成动力系系统4包括前部动力系6和后部动力系8。前部动力系6和后部动力系8对相应的前轮150和后轮152供能。然而,这些集成动力系将多个部件结合至单个壳体中,而不是包括用于各种部件的多个壳体。例如,后部集成动力系6可将电动机、齿轮减速器、通信线路、冷却系统等结合至单个壳体中,而不是对每个电动机进行单独的容置、布线、冷却等。因此,集成动力系系统4能够减少电动车2中的部件数量、降低布线复杂性等。通过降低制造复杂性(例如,减少部件、组件的数量),可以以较低成本制造车辆2。

如所说明,后部动力系8可包括容置第一电动机156和第二电动机158的单个壳体154。电动机156、158耦连至包括第一齿轮减速器162和第二齿轮减速器164的变速器160。第一齿轮减速器162和第二齿轮减速器164进而耦连至相应的后轮,以增加相应电动机156、158中的转矩。壳体154还可包括第一逆变器166和第二逆变器168,其将电池系统10中的直流(DC)转换成用于每个电动机156、158的交流(A/C)。由于后部集成动力系8中包括两个电动机,车辆2能够向后轮152提供转矩矢量化。转矩矢量化是改变个别车轮(例如,后轮152)的转矩的能力。例如,在驾驶车辆2的同时能够调整每个后轮152的转矩以针对改变的道路状况和相关联的牵引力(例如,一个车轮遇到道路上的光滑部分)进行调整。这为驾驶员提供了更积极响应的驾驶。

前部集成动力系6可类似地构造有容置电动机172、逆变器174和变速器176的单个壳体。变速器可包括将单个电动机172中的电力传递至前轮150的第三齿轮减速器178和第四齿轮减速器180。在某些实施例中,前部集成动力系6可类似于前部集成动力系6构造。即,前部集成动力系6可包括两个电动机和两个逆变器以在单个壳体内对前轮150提供转矩矢量化。

在某些实施例中,集成动力系系统4包括能量接口单元182。能量接口单元182将直流/直流转换器184和车载计算机186组合至单个壳体中,然后将该壳体耦连至后部集成动力系8的壳体154。

虽然本文描述了各种部件的若干实施例和布置,但是应当理解的是,各种实施例中描述的各种部件和/或部件的组合可进行修改、重新布置、改变、调整等。例如,可对所描述的任何实施例中的部件的布置进行调整或重新布置,和/或各种所描述的部件可在目前未描述或采用这些部件的任何实施例中被采用。因而,应当认识到,各种实施例不限于本文所述的具体布置和/或部件结构。

另外,应当理解的是,本文公开的特征和元件的任何可行的组合也被认为是要公开的。另外,在任何时间某特征在本实用新型公开的实施例中均未被讨论,本领域技术人员特此注意到,本实用新型的某些实施例可隐式地和明确地排除此种特征,由此为“放弃”式限制提供支持。

在描述了若干实施例之后,本领域技术人员将认识到,在不脱离本实用新型的精神的情况下,可使用各种修改、替代构造和等同物。另外,为了避免不必要地混淆本实用新型,未描述许多众所周知的程序和元件。因此,以上描述不应被认为是限制本实用新型的范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1