光输出功率自感知发光器件的制作方法

文档序号:21260449发布日期:2020-06-26 22:24阅读:439来源:国知局
光输出功率自感知发光器件的制作方法

本发明大体涉及半导体发光技术并且,更具体地,涉及一种在操作时具有光输出功率自感知的发光器件,诸如iii族氮化物紫外发光二极管。



背景技术:

由于具有杀菌作用,深紫外(duv)辐射(200-280nm)能够解决人类面临的众多挑战问题,例如,清洁水的日益缺乏、抗生素的过度使用、以及病原体的抗药性等。将用环保的固态duv光源,诸如基于algan的发光二极管(led),来替代含有有毒化学汞的传统duv光源。

与可见光不同,uv发射不会被人类裸眼察觉。出于至少以下原因,非常需要对芯片级的uv输出功率进行直接目视读取。第一,对病原体的成功消毒必定要求足够的duv辐照剂量,duv辐照剂量因不同的病原体而不同。由于剂量是uv辐照度和辐照持续时间的乘积,所以实时监测uv辐射功率或者辐照水平以进行可靠的消毒处理是很重要的。第二,随着光源老化,uv光源(包括基于algan的uvled)通常会遇到输出功率衰减。在uv光源的使用期限内,针对各种应用,需要保持预设的恒定的输出功率。

通常,可以使用单独的光电探测器来测量光源功率并且,利用反馈电路,可以维持恒定的输出功率,例如,根据us4,190,795所给出的教导。甚至更好的是,可以将光电探测器(pd)和led集成在一个芯片中,制成单片式光耦合器以便监测led的输出功率,如美国专利申请公布案us20130299841以及美国专利us5,753,928和us9,685,577所公开的。这些专利和专利申请的内容以引用的方式全部并入本文。

本发明提供了一种发光器件和模块,无需结合外部光电探测器,可感知自身的光学光输出功率。



技术实现要素:

本申请提供了一种具有片上光功率读取的发光器件,诸如发光三极管(let)。所述let含有n型半导体结构、发光有源区和p型半导体结构。第一和第二p接触(阳极)形成于p型半导体结构上,且共用n接触形成于n型半导体结构上。相对于共用n接触,第一p接触和第二p接触分别界定了发光结构和光探测结构。中央带连接第一和第二p接触。中央带可包括两个部分。第一部分是桥区,其中,p型半导体结构基本保持完整且直接连接到第一和第二p接触(换言之,位于桥区中的p型半导体结构的部分未被移除)。第二部分是n接触区,其中,移除了p型半导体结构和发光有源区,以便使n型半导体结构的部分暴露且使n接触的部分形成于所暴露的n型半导体结构上。在操作时,空穴和电子分别通过第一p接触和共阴极注入到发光结构中以生成光;而由第二p接触和共用n接触界定的光探测结构接收了所生成光的部分且产生流过连接于第二p接触与共用n接触之间的负载电阻的光电流(即负载电阻与光探测结构电并联)。负载电阻上所测得的电压降配置成与let的发光结构的光输出功率基本线性相关。

本申请提供了一种发光器件,其包括:

n型algan结构,p型algan结构,以及夹设于n型algan结构与p型algan结构之间的发光有源区;

第一p接触,形成于p型algan结构上以界定发光结构;

第二p接触,形成于p型algan结构上以界定光探测结构;以及,

n接触,形成于n型algan结构上,以充当发光结构和光探测结构的共阴极;

其中,在第一与第二p接触之间存在桥区,且位于桥区中的p型algan结构未被移除。

本申请还提供了一种发光器件,其包括:

n型algan结构,p型algan结构,以及夹设于n型algan结构与p型algan结构之间的发光有源区;

第一p接触,形成于p型algan结构上以界定发光结构;

第二p接触,形成于p型algan结构上以界定光探测结构;以及,

n接触,形成于n型algan结构上,以充当发光结构和光探测结构的共阴极;

其中,在第一与第二p接触之间存在n接触区,移除n接触区中的p型algan结构和发光有源区以暴露n型algan结构,n接触的部分形成于所暴露的n型algan结构上,且介电层形成于n接触的部分上。

附图说明

附图提供对本申请的进一步的理解,并且构成本申请的一部分,这些附图示出了本申请的实施例,并且与说明书一起来解释本申请的原理。在所有附图中,相同的附图标记表示相同的元件,层可表示相同功能关联的一组层。

图1a根据本发明的实施例示出了duv发光三极管(let)的示意性分层结构;

图1b示出了图1a中的let达到自感知到自身光输出功率(lop)的等效电路图,其通过测量连接于let的光探测阳极与共阴极之间的负载电阻(rl)的电压降来实现;

图1c示出了根据本发明的实施例的duv发光三极管(let)的示意性分层结构;

图2a-2g示出了根据本发明的实施例的不同duvlet的平面图;

图3绘制了vpd与lop、vpd与vf(let的正向偏置电压)的皮尔逊相关系数;

图4绘制了光探测阳极(vpd)的电压与let的光输出功率的关系,该let根据图1a制得,其中,不同的负载电压(rl)连接于光探测阳极与共阴极之间;

图5a示出了根据本发明的另一实施例的一个duvlet的平面图;

图5b图示了沿图5a中所示的duvlet的aa’切口的横截面图;

图6a示出了根据本发明的另一实施例的一个duvlet的平面图;

图6b图示了沿图6a中所示的duvlet的aa’切口的横截面图。

具体实施方式

贯穿本说明书,公开了用于氮化物发光器件的实施例。这些教导还可以扩展至由其他材料所制成的发光器件。术语“iii族氮化物”通常是指具有从元素周期表iiia族中选择的具有阳离子的金属氮化物。也就是说,iii氮化物包括aln、gan、inn及其三元(algan、ingan、inaln)和四元(alingan)合金。在本说明书中,如果iii族元素中的一个元素极小使得其存在不会影响由这种材料制成的层的预期功能,则为了简化起见,可以将四元减至三元。例如,如果四元alingan中的in组分极小,小于1%,那么该alingan四元可以被简化为三元algan。同理,如果iii族元素中的一个元素极小,那么可以将三元简化为二元。例如,如果三元ingan中的in组分极小,小于1%,那么该ingan三元可以被简化为二元gan。iii族氮化物还可以包括少量的诸如tin、zrn、hfn的过渡金属氮化物,其摩尔分数不大于10%。例如,iii族氮化物或者氮化物可以包括alxinygazti(1-x-y-z)n、alxinygazzr(1-x-y-z)n、alxinygazhf(1-x-y-z)n,其中,(1-x-y-z)≤10%。

众所周知,诸如发光二极管(led)和激光二极管的发光器件,通常采用层压结构,该层压结构含有多量子阱(mqw)发光有源区、用于将电子注入到有源区中的n型半导体结构,以及在有源区的另一侧上用于将空穴注入到有源区中的p型半导体结构。

本发明的实施例提供了具有两个阳极和一个共阴极的发光器件或发光三极管(let)。let含有发光二极管(led)和光探测二极管(ldd),且led与ldd共用一个共阴极。ldd输出光电压vpd,该光电压可与led的光输出功率(lop)呈线性关系。在let中,led和ldd彼此相邻地形成在器件芯片的同一衬底上,且将从led发射的光的部分通过器件芯片的衬底、n型结构、有源区和p型结构传输到ldd。led和ldd具有各自的阳极但共用一个共阴极,形成于器件的n型结构上。两个阳极可例如通过绝缘区彼此电隔离,该绝缘区经由离子注入到p型结构、有源区和两个阳极之间的n型结构的部分中而形成。根据本发明的另一方面,let的两个阳极可通过较大电阻来电连接,该电阻通过两个阳极中间的p型结构形成。let的led和ldd恰好具有同一外延结构和金属接触结构。let可为任何常规led或激光二极管外延结构。

可选地,多个led和/或多个ldd可例如经由上文所描述的工艺形成于同一芯片上。例如,一个led和多个ldd、或者多个led和一个ldd、或者多个led和多个ldd可形成于一个芯片上。led中的每一个和ldd中的每一个共用一个共阴极(n电极)同时具有各自的阳极(p电极)。led和ldd还可通过离子注入而彼此电隔离,或者还可通过较大电阻电连接,该电阻通过二者之间的p型结构形成。

在以下中,已采用基于algan的duvlet作为示例作出描述,本领域的技术人员将了解,下文所描述的原理和结构可应用于其它发光器件(诸如激光二极管)且可应用于其它波长led。

图1a中示出了根据本发明的实施例的具有光功率读取的duvlet的示意性分层结构。该结构包括uv透明衬底10。衬底10可选自蓝宝石、aln、sic等。形成于衬底10上的是模板20,该模板可由厚的aln或者高al含量的algan层制成,例如具有0.3–4.0μm的厚度和介于60-100%的范围内的al组分。即使图1a中未示出,但诸如al组分级algan层或者一组aln/algan超晶格的应变管理结构可形成在模板20上。在模板20上方形成厚的n型algan结构30以用于电子供应和n型欧姆接触形成。结构30可以是在常规led中采用的任何n型algan结构。可选地,结构30可包括:厚的n型n-algan层31(例如,具有2.0-5.0μm,诸如3.0μm的厚度,n=2.0×1018–5.0×1018cm-3),其用于电流扩展;重度n型掺杂n+-algan层33(例如,具有0.2-0.5μm,诸如0.30μm的厚度,n=8×1018-2×1019cm-3),其用于mqw有源区极化场屏蔽;以及轻度n型掺杂n--algan层35(例如,具有0.1-0.5μm,诸如0.15μm的厚度,n=2.5×1017-2×1018cm-3),其用以减少电流阻塞并准备将电流均匀注入到后续的albga1-bn/alwga1-wnmqw有源区40中。层33被夹设在层31与35之间,其中层35面向mqw有源区40。mqw有源区40可以是在常规led中采用的任何有源区。在一个实施例中,mqw有源区40由多次交替堆叠(例如3-8次)的n-albga1-bn势垒和alwga1-wn阱形成。单个势垒的厚度在6.0–16.0nm的范围内,且单个阱的厚度为1.0–5.0nm。mqw有源区40的总厚度可小于200nm,例如为75nm、100nm或者150nm。n-albga1-bn势垒和alwga1-wn阱可分别具有在0.3-1.0和0.0-0.85的范围内的al组分,势垒和势阱的al组分差为至少0.15(b-w≥0.15)以确保势垒-势阱带隙宽度差(δeg)为至少400mev,以保证量子限域效应。在mqw有源区40之后是p型algan结构50,其通常是在常规led中采用的任何分层p型结构。可选地,p型algan结构50与mqw有源区40接触的部分是空穴注入和电子阻挡层(ebl)51,其可为p-algan层或者p-algan超晶格结构,或者p-algan多层结构。在ebl51之后可为空穴扩展结构523,包括p型mg掺杂algan或者gan沟道层52和p型aln势垒53。势垒53和沟道层52在沟道层52中形成用于横向电流扩展的二维空穴气。沟道层52中的al组分可较小或者没有,例如,沟道层52的al组分可在0到0.1(10%)或者0到0.05(5%)的范围内。并且势垒53和沟道层52的厚度分别可为1-3nm和0.5-1.5nm。进一步地,势垒53和沟道层52可多次交替形成,例如1-8次或者3-7次,但始终使沟道层52的一层接触ebl51并且使沟道层52的另一层接触空穴供给和p接触层59。换言之,如果存在m层势垒53,则将存在m+1层沟道层52,其中,m是整数且可在1-8的范围内。algan结构50的总厚度可小于300nm,例如为50nm、70nm或者110nm。空穴供给和p接触层59可重度掺杂有mg,其浓度高于1020cm-3,例如,从1.0×1020cm-3到1.0×1021cm-3,或者从2.0×1020cm-3到6.0×1020cm-3。空穴供给和p接触层59可由p型inn、ingan、gan、algan或aln制成,具有在0.52-10nm范围内的厚度。

对于电注入而言,n接触62形成于n+-algan层33上充当共阴极,且p接触63和65形成于空穴供给和p接触层59上,分别充当let的led1和ldd2的阳极。led1指基本上由p接触63覆盖的结构,且ldd2指基本上由p接触65覆盖的结构。在p接触63与65之间,存在连接p接触63和65的中央带(median)630(参照图2a-2g、5a、6a)。中央带630可包括两个部分,第一部分是桥区(bridgezone)635,其中,p型algan结构50基本上保持完整且直接地连接到p接触63和65(换言之,位于桥区635中的p型algan结构50的部分未被移除),第二部分是n接触区640,其中,移除了p型algan结构50和mqw有源区40,以便使n型algan结构30的部分暴露且使n接触62的部分形成于所暴露的n型algan结构30上。在一个实施例中,例如图1a和2a中所示的实施例,其中,图1a示出了沿图2a的aa’切口的横截面图,没有uv反射层形成于桥区635中的空穴供给和p接触层59上。在另一实施例中,例如图1c和2b中所示的实施例,其中,图1c示出了沿图2b的aa’切口的横截面图,可具有形成于桥区635上的uv反射层6351。层6351可为由单sio2、caf2、mgf2、al、rh等层制成的uv反射单层或者由sio2、caf2、mgf2、al、rh等制成的uv反射多层结构。当层6351为单uv反射金属层时,例如,金属al或rh层,或者ni-mg合金形成于空穴供给和p接触层59上以反射uv光时,层6351不提供与p接触63和65的电连接(参照图1c、2b)。由uv反射金属制成的层6351可连接到p接触63或者65中的每一个,但不能同时连接二者。这意味着p接触63和65通过桥区635彼此间隔开,该桥区的横向距离在图1a中标记为l。大体上,中央带630可在n接触区640中的n接触62上和在桥区635中的p型algan结构50上填充介电材料(可选地为uv透明的,诸如二氧化硅等)。

如图1a中所示出,led1的发光结构基本上由p接触63所界定,且ldd2的发光结构基本上由p接触65所界定。这种情况是可实现的,因为用于duvled/let中的p型algan结构50的薄层电阻极大(>105ω/□,甚至>107ω/□),所以存在超出p接触的可忽略的电流扩展长度。如果p型algan结构50的薄层电阻小,诸如小于105ω/□,则可将离子注入施加到桥区635,以使桥区的薄层电阻足够高,诸如大于105、106或107ω/□。用于电绝缘的离子注入可经由高能量高剂量h+、he+和ar+注入来实现。由p接触63覆盖的区域与由p接触65覆盖的区域之间的比率可根据let的所需性能来确定且通常可在5-50,例如7-20,的范围内。

图1b示出了图1a中所示的在操作时的let的等效电路。如所见,let的led1和ldd2共用一个共阴极,且其阳极经由桥区电阻rb连接,该桥区电阻由p型algan结构50的薄层电阻和桥区635的几何形状确定。负载电阻rl在ldd2的共阴极与阳极之间并联连接到ldd2。当let处于操作中时,由led1发射的光可经由衬底10、模板20、n型algan结构30、mqw有源区40和p型algan结构50传输到ldd2。ldd2接收到了光发射且生成了流过分流负载电阻rl的光电流。let的光输出功率(lop)的自感知可经由测量rl上的电压降(vpd)来实现。vpd可根据等式1来计算:

其中,vf、iph分别是led1的正向偏置电压和ldd2的光电流。等式1在rb>rl时有效,以使远小于ldd2的开启阈值电压。值得注意的是,在开启阈值之前,ldd2拥有无限大的电阻。事实上,在开启阈值电压之前的led可具有大于1gω的电阻。理想led结构(例如ldd2)是整流器件,在开启阈值电压之前可具有无限大的电阻(因此无电流流动)。当远小于ldd2的开启阈值电压时,等效电路中的ldd2可视为具有极大输入阻抗的电流源,且等式1保持。如果大于ldd2的开启阈值电压,则ldd2的电阻大大降低,因此,等式1不再保持。同样,根据等式1,在rb十分大(接近无穷大)时,vpd与iph呈线性关系,继而与led1的光输出功率(lop)呈线性关系。

以下实施例示出了如何设计桥区635并选择负载电阻rl以使vpd与let(诸如图1a中所示出的let)中的led1的lop基本上呈线性关系。出于这个目的,图2a-2g中所示出的是根据本发明的实施例的七个不同duvlet的平面图。沿图2a的aa’切口的横截面图可如图1a所示。在图2a-2f中所示出的实施例中,桥区635具有宽度为w和长度为l的大致矩形形状,其中,l是p接触63与65的相对边缘之间的距离,w是完全落在p接触63和65的相对边缘彼此面向的区域中的宽度。用于矩形桥区635的桥区电阻rb根据等式2来计算。

其中,ρp、tp和rp-sh分别是p型algan结构50的电阻率、厚度和薄层电阻。用于duvled/let中的p型algan结构50的薄层电阻通常很大,大于105ω/□,或者甚至大于107ω/□。对于给定的led外延晶片(epi-wafer)而言,rb的设计可通过根据等式2选择桥区635的宽度w和长度l来确定。桥区635的宽度w可介于零(例如图2e中的w)到led1的发光台面的宽度(例如图2a中的w)的范围内,例如10–1000、50-500或者100-300μm。换言之,宽度w可为面向p接触63的p接触65的宽度的0-100%,诸如10%、30%、50%或者70%。当w=0时,如通过图2e所给出的实施例中所示出,ldd2和led1经由rb=∞连接(即,移除了p型algan结构50和mqw有源区40且n接触62形成于整个中央带630中)。桥区635的长度l可在数十微米到数百微米的范围内,例如50-200或者100-150微米。因此,桥区rb可在数兆欧姆(mω)到无穷大的范围内,例如1-500、20-450或者50-100mω。

在一些实施例中,桥区635可具有其它形状,诸如弯曲、螺旋或者如图2g中所示出的波浪状的形状。rb可通过调节桥区635的形状来调节。

如果p型algan结构50的薄层电阻小,例如小于105ω/□(例如在104ω/□-105ω/□的范围内),在更长波长led,诸如可见光led或者红外led,的情况下,则桥区635的长度l可明显更大,例如比其宽度w大2-3个数量级,如图2g中的实施例所示出。或者通过选择等于零的宽度w来使用设计,如图2e中所示。

如所见,图2a和2b中所示出的let中的p接触65具有矩形形状且具有与p接触63的宽度基本相同的宽度。p接触63具有类似于两个连接的“t”的对称形状,其中,“t”的两个臂部向下且向内弯曲。图2d和2e中所示出的let中的p接触65具有圆角矩形形状且具有小于(例如一半)p接触63宽度的宽度。图2f中所示出的let中的p接触65具有矩形形状且具有与p接触63的宽度基本相同的宽度。p接触63为梳状,其梳齿指向远离n接触65。图2g中所示的let中的p接触65和p接触63具有类似于图2a中的形状。

在图2a-2g中所示出的实施例的let的平面图中,n接触62加中央带630可完全环绕p接触63。在一些实施例中,n接触62可完全环绕p接触63和p接触65两者。

可选地,中央带630可进一步包括为绝缘区的第三部分,其中,移除了p型algan结构50,可移除或者可不移除mqw有源区40,但没有n接触形成于绝缘区中。绝缘区填充有介电材料。

uv反射层6351可形成于桥区635上,且电绝缘提供于uv反射层与p接触63之间、或者在uv反射层与p接触65之间、或者在uv反射层、p接触63以及p接触65之间,如图1c和2b中所示。uv反射层可由金属铝,或铑,或镍镁合金制成。

以下实施例描述了如何选择负载电阻rl以确保vpd与lop呈线性关系或者接近于线性关系。大体上,根据等式1,vpd随iph(因此随lop)和vf线性增加。合适的负载电阻rl可满足这些条件:1)vpd足够大以使用简单万用表直接测量;2)vpd与lop呈较强线性关系;以及3)vpd与vf的相关性小得多。出于这些目的,测试不同负载电阻以寻找vpd与lop和vpd与vf的皮尔逊相关系数。两组数据(x={xi}、y={yi})的皮尔逊相关系数根据等式3定义为r。

其中,xi、yi是用i索引的单个样本点,是两个数据组的平均值。相关系数的范围从-1到1。值1意味着线性等式完美地描述了x与y之间的关系,其中,所有数据点位于一条线上,在该线上y随着x增大而增大。值-1意味着所有数据点位于一条线上,在该线上y随着x增大而减小。值0意味着变量之间没有线性相关性。

图3中绘制的是duvlet的具有在不同负载电阻rl情况下vpd–lop和vpd–vf的皮尔逊相关系数,duvlet的平面图在图2f中图示。值得注意的是,负载电阻与相关系数之间的关系可受let的桥区635影响,尤其受p型algan结构50的薄层电阻和桥区635的宽度和长度的影响。对于图3和图4中所示的数据,桥区635的宽度和长度分别是10和200微米。p型algan50的薄层电阻估计为107ω/□,因此桥区电阻rb根据等式2计算为200mω。let的外延结构如下,包括:c面蓝宝石衬底10、2.5μm厚的aln模板20、2.3μm厚的n型n-al0.56ga0.44n层31(掺杂有si,[si]=n=3.5×1018cm-3)、0.25μmn+-algan层33(n=8.2×1018cm-3)、0.15μmn--algan层35(n=5.0×1017cm-3)、由5对12nm厚al0.55ga0.45n势垒/4nm厚al0.4ga0.6n势阱制成的mqw有源区40、由4对6nm厚al0.75ga0.25n势垒/4nm厚al0.6ga0.4n势阱制成的mg掺杂([mg]=2.5×1019cm-3)的超晶格(sl)ebl51、包括5对0.5nm厚gan沟道层52/1.0nm厚aln势垒53的mg掺杂([mg]=8.0×1019cm-3)的空穴扩展结构523,以及由1.3nm厚掺杂有[mg]=2.5×1020cm-3的aln制成的空穴供给和p接触层59。

如所见,对于范围在0.5mω到10gω的rl,vpd–lop具有极佳线性相关,r在0.970到0.999的范围内。vpd–vf的皮尔逊相关系数在rl大于30mω时接近0.9,但该皮尔逊相关系数随着rl减小而迅速减小,在rl=0.5mω时降至0.5。原则上,vpd–vf的皮尔逊相关系数在rl很小时可接近零,然而,这将产生很小的vpd,使得使用普通公众所获得的简单万用表不易测量。因此,在一些实施例中,选择负载电阻rl以确保vpd–vf皮尔逊相关系数小于0.8(在图3中rl在此时约为6mω)且vpd–lop皮尔逊相关系数大于0.95。为了满足这些皮尔逊相关系数要求,值得注意的是,大的rb通常允许大的rl上限。根据本发明,负载电阻rl可选地在0.1-10.0mω的范围内。本发明人已在实验上观察到,桥区635的存在增强了从led1到ldd2的光耦合,以使得可获得更强的vpd以便于测量。

针对图3中所测量的同一duvlet,对于不同的负载电阻rl,将作为lop的函数的一些测量的vpd数据绘制于图4中。如所见,针对rl=0.5mω,vpd数据与lop数据呈线性关系,皮尔逊系数等于0.999(仍与vf弱相关,因其vpd–vf皮尔逊相关系数为0.5)。在rl=0.5mω的情况下针对范围在2.83mw到43.99mw的lop所测量的vpd值在0.27到3.75v的范围内,易于用简单万用表获得。

根据图2a-2g中所示出的实施例的let都具有共用n接触62,其形成于由n-algan结构30(可选地由n+-algan层33)界定出的大体的二维平面中。且p接触63位于由p-algan结构50界定出的垂直放置的平面中,与n接触62不相交。

在其它实施例中,n接触62可形成于由n-algan结构30界定的平面上,且具有从平面垂直延伸以与p接触63相交的部分。图5a和6a中示出了两个这种的let实施例,其根据图5b和6b中所示的aa’切口截取相应横截面图。横截面图示出了n接触62的至少一部分,形成交叉柱623,在基本垂直于p型algan结构50和发光有源区mqw40之间的界面(interface)的方向上越过p接触63的一部分。介电层70形成于交叉柱623周围以及n接触62与其下方的p接触63之间,以使n接触62与p接触63绝缘。如图5b所示,交叉柱623为n接触62的部分且从n-algan结构30向上延伸从而越过p接触63。与交叉柱623的上端相连接的是n接触62的平坦水平部分621,也通过介电层70与下方的p接触63分离。p接触63的暴露部分可具有高于介电层70上表面的上表面,且可与n接触62的平坦水平部分621的上表面共平面。

图6a和6b中示出了另一let,其与图5a和5b的let的不同之处在于p接触63的额外p接触层631形成于n接触62的平坦水平部分621上。p接触层631经由交叉柱633连接到p接触63的下方p接触层632(其形成于p型algan结构50上)。以上的p接触的不同部分经由介电层70与n接触62绝缘。

图5-6中所示出的三维n接触62的应用扩大了let中的led1的发光结构。

尽管使用示例性实施例对本申请进行了描述,然而应理解,本申请的范围不限于所公开的实施例。相反,本申请旨在涵盖本领域技术人员在没有创造性劳动或无需过度试验就能得到的各种改进和类似结构或等同物。因此,权利要求的范围应符合最广泛的解释,以便涵盖所有这些改进和类似结构或等同物。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1