电抗器的制作方法

文档序号:25038317发布日期:2021-05-11 17:11阅读:166来源:国知局
电抗器的制作方法

本公开涉及电抗器。

本申请主张基于2018年10月25日的日本国申请的特愿2018-200775的优先权,并援引所述日本国申请所记载的全部记载内容。



背景技术:

例如,专利文献1公开了一种电抗器,具备线圈和磁性芯,利用于混合动力汽车的转换器的构成部件等,该线圈具有卷绕绕组而成的一对卷绕部,该磁性芯形成闭磁路。电抗器具备的磁性芯可以分为在各卷绕部的内部配置的内侧芯部和在卷绕部的外部配置的外侧芯部。线圈与磁性芯由通过注塑成形形成的树脂罩(树脂部)而一体化。

现有技术文献

专利文献

专利文献1:日本特开2014-003125号公报



技术实现要素:

本公开的电抗器具备:具有并列的第一卷绕部及第二卷绕部的线圈;及形成环状的闭磁路的磁性芯,

所述磁性芯具备第一内侧芯部、第二内侧芯部、第一外侧芯部及第二外侧芯部,

所述第一内侧芯部配置在所述第一卷绕部的内部,

所述第二内侧芯部配置在所述第二卷绕部的内部,

所述第一外侧芯部将所述第一内侧芯部的一端与所述第二内侧芯部的一端相连,

所述第二外侧芯部将所述第一内侧芯部的另一端与所述第二内侧芯部的另一端相连,其中,

所述电抗器具备:

内侧树脂部,填充于所述第一卷绕部和所述第二卷绕部的内部;及

外侧树脂部,与所述内侧树脂部相连,覆盖所述第一外侧芯部和所述第二外侧芯部的至少一部分,

所述第一外侧芯部具备:

与所述线圈相对的第一内表面;

与所述第一内表面相反侧的第一外表面;及

从所述第一外表面突出的外突出部,

在从所述第一外表面侧观察时,所述外突出部的外周轮廓线处于所述第一外表面的外周轮廓线的内侧,

所述外突出部的端面从所述外侧树脂部露出,与所述外侧树脂部的表面共面。

附图说明

图1是实施方式1的电抗器的概略立体图。

图2是图1的电抗器的概略水平剖视图。

图3是图1的电抗器具备的第一外侧芯部的从其外表面侧观察的概略立体图。

图4是图1的电抗器具备的第一外侧芯部的从其内表面侧观察的概略立体图。

图5是图1的电抗器具备的第一外侧芯部和第一保持构件的概略图。

图6是具备与图5不同的结构的第一外侧芯部和第一保持构件的概略图。

图7是说明图1的电抗器的制造方法的一例的说明图。

具体实施方式

·本公开要解决的课题

设置于设置对象的电抗器与外部设备电连接。此时,将电抗器的线圈的绕组端部连接于外部设备。因此,在将电抗器设置于设置对象的规定位置时,优选使设置对象中的绕组端部的位置高精度地决定。然而,在专利文献1的结构中,由于线圈或磁性芯的尺寸误差、树脂罩的尺寸误差等,有时未使电抗器中的绕组端部的位置高精度地决定。如果将这样的电抗器设置于设置对象,则未在设置对象中的所希望的位置配置绕组端部而电抗器与外部设备的连接比较麻烦。

本公开目的之一在于提供一种电抗器,即使是将线圈与磁性芯通过树脂部进行一体化的结构也能够高精度地决定线圈的绕组端部的位置。

·本公开的效果

根据上述结构,能够高精度地决定电抗器中的线圈的绕组端部的位置。

·本公开的实施方式的说明

首先,列举本公开的实施方式并进行说明。

<1>实施方式的电抗器中,

所述电抗器具备:具有并列的第一卷绕部及第二卷绕部的线圈;形成环状的闭磁路的磁性芯,

所述磁性芯具备第一内侧芯部、第二内侧芯部、第一外侧芯部及第二外侧芯部,

所述第一内侧芯部配置在所述第一卷绕部的内部,

所述第二内侧芯部配置在所述第二卷绕部的内部,

所述第一外侧芯部将所述第一内侧芯部的一端与所述第二内侧芯部的一端相连,

所述第二外侧芯部将所述第一内侧芯部的另一端与所述第二内侧芯部的另一端相连,其中,

所述电抗器具备:

内侧树脂部,填充于所述第一卷绕部和所述第二卷绕部的内部;及

外侧树脂部,与所述内侧树脂部相连,覆盖所述第一外侧芯部和所述第二外侧芯部的至少一部分,

所述第一外侧芯部具备:

与所述线圈相对的第一内表面;

与所述第一内表面相反侧的第一外表面;及

从所述第一外表面突出的外突出部,

在从所述第一外表面侧观察时,所述外突出部的外周轮廓线处于所述第一外表面的外周轮廓线的内侧,

所述外突出部的端面从所述外侧树脂部露出,与所述外侧树脂部的表面共面。

具备外突出部的电抗器以外突出部的端面为基准而设置于设置对象,由此容易与外部设备连接。外突出部的端面从外侧树脂部露出,因此高精度地决定从外突出部的端面至绕组端部的距离。这是因为外侧树脂部的成形时的厚度的不均使上述距离的精度下降的情况不再存在的缘故。因此,如果以外突出部的端面为基准而将电抗器设置于设置对象的规定位置,则能够将电抗器的绕组端部高精度地配置于设置对象中的所希望的位置。其结果,容易将设置于设置对象的外部设备与电抗器1(主动修改:删掉)的绕组端部连接。

外突出部的外周轮廓线处于第一外表面的外周轮廓线的内侧,由此,覆盖第一外表面的外侧树脂部未由外突出部沿上下左右截断而成为连结的状态。因此,能够通过外侧树脂部将第一外侧芯部可靠地固定于线圈。

外突出部从外侧树脂部露出,由此能够提高磁性芯的散热性,即电抗器的散热性。

<2>作为实施方式的电抗器的一方式,可列举如下的方式:

所述第二外侧芯部具备:

与所述线圈相对的第二内表面;及

与所述第二内表面的相反端侧的第二外表面,

所述第二外表面由所述外侧树脂部覆盖,在覆盖所述第二外表面的部分具有所述外侧树脂部的浇口痕。

为了使第一外侧芯部的外突出部从外侧树脂部露出,优选在使外突出部的端面触抵于模具的内周面的状态下从第二外侧芯部侧进行树脂成形。在该情况下,在外侧树脂部中的将第二外侧芯部的第二外表面覆盖的部分形成浇口痕。浇口痕是对应于树脂成形时的模具的树脂填充孔而形成的部分,通过目视能够确认。如果从第二外侧芯部侧进行树脂成形,则第二外侧芯部的第二外表面在整体上由外侧树脂部覆盖。其结果,通过外侧树脂部能够将第二外侧芯部可靠地固定于线圈。

<3>作为实施方式的电抗器的一方式,可以列举如下的方式:

所述线圈具备:在所述第一卷绕部的轴向的一端侧从所述第一卷绕部引出的第一绕组端部;及在与所述第一绕组端部相同侧从所述第二卷绕部引出的第二绕组端部,

所述第一外侧芯部设置于配置所述第一绕组端部及所述第二绕组端部的一侧。

第一外侧芯部设置在接近绕组端部的位置,由此能提高以第一外侧芯部的外突出部的端面为基准的绕组端部的位置精度。这是因为,即使构成电抗器的各构件存在尺寸误差,只要外突出部处于接近绕组端部的位置,就难以受到尺寸误差的影响。

<4>作为实施方式的电抗器的一方式,可以列举如下的方式:

所述外突出部从所述第一外表面的突出长度为0.1mm以上且2.0mm以下。

在实施方式的电抗器中,外突出部的端面与外侧树脂部的表面共面。因此,外突出部的突出高度可认为与覆盖第一外表面的外侧树脂部的厚度相等。外突出部的突出长度为0.1mm以上的情况是指覆盖第一外表面的外侧树脂部的厚度为0.1mm以上的情况。如已述那样,覆盖第一外表面的外侧树脂部未被外突出部上下左右地截断。因此,如果外侧树脂部的厚度为0.1mm以上,则能充分得到将第一外侧芯部可靠地固定这样的外侧树脂部的效果。另一方面,如果外突出部的突出长度为2.0mm以下,则磁性芯的x轴方向的长度不会过长。因此,能够抑制电抗器不必要地大型化的情况。

<5>作为实施方式的电抗器的一方式,可以列举如下的方式:

所述电抗器具备:

第一保持构件,介于所述线圈的端面与所述第一外侧芯部之间,保持所述线圈和所述第一外侧芯部;及

第二保持构件,介于所述线圈的端面与所述第二外侧芯部之间,保持所述线圈和所述第二外侧芯部,

所述内侧树脂部与所述外侧树脂部在所述第一保持构件及所述第二保持构件的内部相连。

通过设置保持构件,能够将线圈和磁性芯可靠地固定。而且,在使用保持构件保持线圈和磁性芯的状态下进行树脂成形,由此能够避免该树脂扩及到卷绕部的外侧的情况(参照后述的实施方式所示的电抗器的制造方法)。如果树脂未扩及到卷绕部的外部,则卷绕部裸露并露出于外部,因此能够促进从卷绕部的散热。而且,在卷绕部的外部没有树脂,因此能够抑制电抗器的大型化。

<6>作为实施方式的电抗器的一方式,可以列举如下的方式:

所述电抗器具备内突出部,该内突出部设置于所述第一内表面,向所述第一卷绕部与所述第二卷绕部之间突出。

通过在第一外侧芯部设置内突出部,能够抑制遍及一对内侧芯部间的漏磁通不经由第一外侧芯部而透过卷绕部的情况。这样的漏磁通容易在内侧芯部与外侧芯部的接缝的附近产生。更具体而言,从一方的内侧芯部朝向外侧芯部的磁通的一部分不是朝向外侧芯部而是朝向另一方的内侧芯部泄漏。此时,如果在外侧芯部存在磁性体的内突出部,则漏磁通容易朝向内突出部。通过将漏磁通向内突出部引导,能够抑制漏磁通透过卷绕部的情况,因此能够抑制电抗器的磁特性的下降。

通过设置上述内突出部,不用扩大一对卷绕部的间隔或使磁性芯大型化而能够改善电抗器的磁特性。而且,上述内突出部朝向第一卷绕部与第二卷绕部之间突出,因此即使在外侧芯部设置内突出部,也不会出现电抗器的外形变大的情况。因此,根据上述电抗器的结构,不使电抗器大型化而能够改善电抗器的磁特性。

<7>作为实施方式的电抗器的一方式,可以列举如下的方式:

所述第一内侧芯部及所述第二内侧芯部的相对导磁率为5以上且50以下,与比所述第一内侧芯部及所述第二内侧芯部的相对导磁率高(主动修改:比所述第一外侧芯部及所述第二外侧芯部的相对导磁率低)。

通过使外侧芯部的相对导磁率比内侧芯部的相对导磁率高,能够减少在内侧芯部与外侧芯部之间的漏磁通。特别是通过增大内侧芯部与外侧芯部的相对导磁率之差,能够更可靠地减少在内侧芯部与外侧芯部之间的漏磁通。通过上述的差,能够相当大程度地减少上述漏磁通。而且,在上述方式中,内侧芯部的相对导磁率低,因此能够抑制磁性芯整体的相对导磁率变得过高的情况,能够形成无间隙结构的磁性芯。

<8>作为上述<7>的电抗器的一方式,可以列举如下的方式:

所述第一外侧芯部及所述第二外侧芯部的相对导磁率为50以上且500以下。

通过使两外侧芯部的相对导磁率为上述范围,能够形成小型且难以磁饱和的电抗器。

<9>作为上述<7>或<8>的电抗器的一方式,可以列举如下的方式:

所述第一内侧芯部及所述第二内侧芯部由包含软磁性粉末和树脂的复合材料的成形体构成。

复合材料的成形体通过调整软磁性粉末的量而容易减小其相对导磁率。因此,如果为复合材料的成形体,则容易制作出相对导磁率满足上述<7>的范围的内侧芯部。

<10>作为上述<7>~<9>中任一电抗器的一方式,可以列举如下的方式:

所述第一外侧芯部及所述第二外侧芯部由软磁性粉末的压粉成形体构成。

如果为压粉成形体,则能够高精度地制作外侧芯部。而且,如果为致密地包含软磁性粉末的压粉成形体,则容易制作相对导磁率满足上述<7>的条件或上述<8>的范围的外侧芯部。

<11>作为上述<7>~<9>中任一电抗器的一方式,可以列举如下的方式:

所述外侧芯部由包含软磁性粉末和树脂的复合材料的成形体构成。

如果为复合材料,则即使是具备外突出部的复杂形状的外侧芯部也能够容易制作。

·本公开的实施方式的详细内容

以下,基于附图,说明本公开的电抗器的实施方式。图中的同一符号表示同一名称物。需要说明的是,本发明并非限定为实施方式所示的结构,而是由要求保护的范围公开,意在包含与要求保护的范围等同的意思及范围内的全部变更。

<实施方式1>

在实施方式1中,基于图1~图7说明电抗器1的结构。图1所示的电抗器1通过将线圈2、磁性芯3、保持构件4c、4d组合而构成。电抗器1还具备:在线圈2所具备的第一卷绕部2a和第二卷绕部2b的内部配置的内侧树脂部5(参照图2);将构成磁性芯3的外侧芯部3c、3d(参照图2)的至少一部分覆盖的外侧树脂部6。作为该电抗器1的特征之一,可列举在外侧芯部3c形成有外突出部39的情况。以下,详细说明电抗器1具备的各结构。

《线圈》

如图1所示,本实施方式的线圈2具备:并列的第一卷绕部2a及第二卷绕部2b;将两卷绕部2a、2b连结的连结部2r。各卷绕部2a、2b相互以相同的匝数、相同的卷绕方向形成为中空筒状,以各轴向成为平行的方式并列。在本例中,由一根绕线2w制造线圈2。

也可以与本例不同,第一卷绕部2a与第二卷绕部2b的匝数可以不同,大小也可以不同。而且,也可以将利用不同的绕线2w制作的卷绕部2a、2b连结来制造线圈2。

本实施方式的各卷绕部2a、2b形成为方筒状。方筒状的卷绕部2a、2b是指其端面形状为四边形形状(包括正方形形状)的将角修圆的形状的卷绕部。当然,卷绕部2a、2b也可以形成为圆筒状。圆筒状的卷绕部是指其端面形状为闭曲面形状(椭圆形状、正圆形状或跑道形状等)的卷绕部。

包含卷绕部2a、2b的线圈2可以由包覆线而构成,该包覆线在由铜、铝、镁或其合金这样的导电性材料构成的扁线或圆线等导体的外周具备由绝缘性材料构成的绝缘包覆层。在本实施方式中,绕组2w是导体由铜制的扁线构成且绝缘包覆层由漆皮(代表性地为聚酰胺酰亚胺)构成的包覆扁线。通过将该包覆扁线进行扁立卷绕而形成各卷绕部2a、2b。

线圈2具备与未图示的端子构件连接的第一绕组端部2a和第二绕组端部2b。第一绕组端部2a在第一卷绕部2a的轴向的一端侧(连结部2r的相反侧)从第一卷绕部2a引出。第二绕组端部2b在第二卷绕部2b的轴向的一端侧从第二卷绕部2b引出。在绕组端部2a、2b,漆皮等绝缘包覆层被剥下。经由与绕组端部2a、2b连接的端子构件,连接向线圈2进行电力供给的电源等外部装置。

在此,以线圈2为基准来规定电抗器1的方向。首先,将沿着线圈2的卷绕部2a、2b的轴向的方向设为x轴方向。将与该x轴方向正交且沿着卷绕部2a、2b的并列方向的方向设为y轴方向。并且,将与x轴方向和y轴方向这两方交叉的方向设为z轴方向。此外,规定以下所示的方向。

·x1方向…x轴方向中的朝向绕组端部2a、2b的方向

·x2方向…x轴方向中的朝向连结部2r的方向

·y1方向…y轴方向中的朝向第一卷绕部2a的方向

·y2方向…y轴方向中的朝向第二卷绕部2b的方向

·z1方向…z轴方向中的朝向配置连结部2r一侧的方向

·z2方向…z轴方向中的朝向z1方向的相反的方向

《磁性芯》

如图2所示,磁性芯3具备第一内侧芯部3a、第二内侧芯部3b、第一外侧芯部3c及第二外侧芯部3d。第一内侧芯部3a配置在第一卷绕部2a的内部。第二内侧芯部3b配置在第二卷绕部2b的内部。第一外侧芯部3c将第一内侧芯部3a的一端(x1方向的端部)与第二内侧芯部3b的一端相连。第二外侧芯部3d将第一内侧芯部3a的另一端(x2方向的端部)与第二内侧芯部3b的另一端相连。通过上述芯部3a、3b、3c、3d相连成环状而形成闭磁路。

[内侧芯部]

内侧芯部3a(3b)是沿着线圈2的卷绕部2a(2b)的轴向,即x轴方向的部分。在本例中,磁性芯3中的沿着卷绕部2a、2b的轴向的部分的两端部从卷绕部2a、2b的端面突出(参照内侧芯部3a、3b的端面300的位置)。该突出的部分也是内侧芯部3a、3b的一部分。

内侧芯部3a(3b)的形状只要是沿着卷绕部2a(2b)的内部形状的形状即可,没有特别限定。本例的内侧芯部3a(3b)为大致长方体状。内侧芯部3a(3b)可以是将多个分割芯与间隙板连结而成的结构,但是如本例那样设为一个构件时,电抗器1的组装变得容易,因此优选。

[外侧芯部]

外侧芯部3c(3d)是磁性芯3中的配置于卷绕部2a、2b的外部的部分。外侧芯部3c(3d)的形状只要是将一对内侧芯部3a(3b)的端部相连的形状即可,没有特别限定。本例的外侧芯部3c(3d)为大致长方体状(参照图3、4)。

第一外侧芯部3c具有:与线圈2的卷绕部2a、2b的端面相对的内表面310(在本例中称为第一内表面);与第一内表面310相反侧的外表面319(在本例中称为第一外表面)。而且,第二外侧芯部3d具有:与线圈2的卷绕部2a、2b的端面相对的内表面320(在本例中称为第二内表面);与第二内表面320相反侧的外表面329(在本例中称为第二外表面)。如图2所示,第一内表面310(第二内表面320)与内侧芯部3a、3b的端面300接触或经由粘结剂而实质性地接触。

本例的第一外侧芯部3c具备成为磁路的主要的通路的主体部30、设置于该主体部30的内突出部31及外突出部39。另一方面,本例的第二外侧芯部3d既不具有内突出部31,也不具有外突出部39。与本例不同,可以是第二外侧芯部3d具备内突出部31。

[[内突出部]]

如图2所示,内突出部31设置于第一外侧芯部3c的第一内表面310,朝向第一卷绕部2a与第二卷绕部2b之间突出。即,内突出部31朝向x2方向突出。本例的内突出部31一体设置于主体部30。

通过在第一外侧芯部3c设置内突出部31,能够抑制不经由第一外侧芯部3c而遍及两内侧芯部3a、3b之间的漏磁通透过卷绕部2a、2b的情况。例如,在产生从第一内侧芯部3a不经由第一外侧芯部3c而朝向第二内侧芯部3b的漏磁通的情况下,能够使该漏磁通朝向内突出部31。这是因为磁通将要通过相对导磁率高的部分的缘故。其结果是,能够抑制漏磁通透过卷绕部2b的情况,因此能够抑制电抗器1的磁特性的下降。

内突出部31朝向两卷绕部2a、2b突出,但是不具有介于两卷绕部2a、2b之间的程度的大小。从第一内表面310起的内突出部31的突出长度优选设为0.1mm以上且2.0mm以下,只要内突出部31的突出长度为0.1mm以上,就能充分得到上述的内突出部31的效果。而且,如果内突出部31的突出长度为2.0mm以下,则内突出部31不会成为其他的构件(例如卷绕部2a、2b)的配置的干扰。更优选的内突出部31的突出长度为1.0mm以上且2.0mm以下。

如图4所示,本例的内突出部31是沿z轴方向延伸的突条。该内突出部31的z轴方向的长度优选为内侧芯部3a、3b(图2)的z轴方向的长度以上。即,内突出部31的z1方向的端部优选处于与内侧芯部3a、3b(图2)的z1方向的端部相同的位置或者比内侧芯部3a、3b的z1方向的端部靠z1方向侧的位置处。同样,内突出部31的z2方向的端部优选处于与内侧芯部3a、3b的z2方向的端部相同的位置或者比内侧芯部3a、3b的z2方向的端部靠z2方向侧的位置处。通过设为这样的结构,无论在z轴方向上的哪个位置产生漏磁通,都能够将该漏磁通向内突出部31引导。在本例中,内突出部31的z1方向的端面与第一外侧芯部3c的z1方向的端面共面,内突出部31的z2方向的端面与第一外侧芯部3c的z2方向的端面共面。

与z轴方向正交的内突出部31的截面形状没有特别限定。例如,该截面可列举形成为从内突出部31的根部侧(x1方向侧)至前端侧(x2方向侧)而宽度相同的矩形。在本例中,该截面设为内表面一侧(根部侧)变宽的山型。截面山型的内突出部31朝向两卷绕部2a、2b之间容易配置。内突出部31的前端变细,因此内突出部31难以妨碍与第一外侧芯部3c接近的构件的配置。

在此,内突出部31可以与主体部30分体。例如,可以将与主体部30分开制作的内突出部31粘结于主体部30的第一内表面310。此外,可以将内突出部31一体成形于后述的第一保持构件4c(图1、2)。在该情况下,内突出部31与第一内表面310接触或稍分离。关于将内突出部31一体化于第一保持构件4c的结构,在第一保持构件4c的说明中详细叙述。

[[外突出部]]

外突出部39从第一外表面319突出。外突出部39一体设置于主体部30。外突出部39的x1方向的端面成为平坦面。该平坦面与后述的外侧树脂部6的表面共面,从外侧树脂部6露出于外部。由于外突出部39未从外侧树脂部6突出,因此在操作电抗器1时,外突出部39难以损伤。

通过外突出部39,能够增大第一外侧芯部3c的磁路截面积。因此,能提高磁性芯3的磁特性。而且,外突出部39从外侧树脂部6露出,由此提高磁性芯3的散热性,即电抗器1的散热性。

外突出部39比第一外表面319的外周轮廓线小。因此,在从第一外表面319侧观察外突出部39时,外突出部39的外周轮廓线处于第一外表面319的轮廓线的内侧(特别是参照图3)。因此,如图1所示,将第一外侧芯部3c覆盖的外侧树脂部6成为无论是沿y轴方向还是沿z轴方向都未截断而相连的状态。外侧树脂部6具有与后述的内侧树脂部5一起将构成电抗器1的各构件一体化的作用。如果将第一外侧芯部3c的第一外表面319覆盖的外侧树脂部6无论沿y轴方向还是沿z轴方向都未截断而相连,则通过外侧树脂部6能够将第一外侧芯部3c可靠地固定。

外突出部39从第一外表面319起的突出长度优选为0.1mm以上且2.0mm以下。外突出部39的端面与外侧树脂部6的表面共面,因此外突出部39的突出高度可认为与覆盖第一外表面319的外侧树脂部6的厚度相等。即,外突出部39的突出长度为0.1mm以上这样的情况是指覆盖第一外表面319的外侧树脂部6的厚度为0.1mm以上的情况。如已述那样,将第一外表面319覆盖的外侧树脂部6无论沿y轴方向还是沿z轴方向都未被截断。因此,如果外侧树脂部6的厚度为0.1mm以上,则能充分得到将第一外侧芯部3c可靠地固定这样的外侧树脂部6的效果。另一方面,如果外突出部39的突出长度为2.0mm以下,则磁性芯3的x轴方向的长度不会变得过长。因此,能够抑制电抗器1不必要地大型化的情况。更优选的外突出部39的突出长度为1.0mm以上且2.0mm以下。

具备上述外突出部39的电抗器1以外突出部39的端面为基准而设置于设置对象,由此与外部设备容易连接。外突出部39设置于与绕组端部2a、2b接近的第一外侧芯部3c,因此即使电抗器1的各构件存在尺寸误差,也容易高精度地决定从外突出部39的端面至绕组端部2a、2b的距离。而且,外突出部39的端面从外侧树脂部6露出,因此也不存在外侧树脂部6的厚度的不均使上述距离的精度下降的情况。因此,如果以外突出部39的端面为基准而将电抗器1设置于设置对象的规定位置,则能够在设置对象的所希望的位置高精度地配置电抗器1的绕组端部2a、2b。其结果是,容易将设置于设置对象的外部设备与电抗器1的绕组端部2a、2b连接。

[磁特性、材质等]

内侧芯部3a、3b的相对导磁率为5以上且50以下,外侧芯部3c、3d的相对导磁率优选比内侧芯部3a、3b的相对导磁率高。内侧芯部3a、3b的相对导磁率还可以设为10以上且45以下、15以上且40以下、20以上且35以下。另一方面,外侧芯部3c、3d的相对导磁率优选为50以上且500以下。外侧芯部3c、3d的相对导磁率可以设为80以上、100以上、150以上、180以上。通过使外侧芯部3c、3d的相对导磁率比内侧芯部3a、3b的相对导磁率高,能够减少内侧芯部3a、3b与第一外侧芯部3c之间的漏磁通以及内侧芯部3a、3b与第二外侧芯部3d之间的漏磁通。特别是通过增大内侧芯部3a、3b与外侧芯部3c、3d的相对导磁率之差,例如使外侧芯部3c、3d的相对导磁率为内侧芯部3a、3b的相对导磁率的2倍以上,能够进一步减少漏磁通。而且,由于内侧芯部3a、3b的相对导磁率比外侧芯部3c、3d的相对导磁率低,因此能够抑制磁性芯3整体的相对导磁率变得过高的情况。其结果是,能够成为无间隙结构的磁性芯3。

内侧芯部3a、3b和外侧芯部3c、3d能够由对包含软磁性粉末的原料粉末进行加压成形而成的压粉成形体、或者软磁性粉末与树脂的复合材料的成形体构成。压粉成形体的软磁性粉末是由铁等铁族金属或其合金(fe-si合金、fe-ni合金等)等构成的软磁性粒子的集合体。在软磁性粒子的表面可以形成由磷酸盐等构成的绝缘包覆层。原料粉末当然可以也包含润滑材料等。

复合材料的成形体能够通过将软磁性粉末与未固化的树脂的混合物向模具填充并使树脂固化来制造。对于复合材料的软磁性粉末,可以使用与在压粉成形体中使用的软磁性粉末相同的软磁性粉末。另一方面,作为复合材料包含的树脂,可列举热固化性树脂、热塑性树脂、常温固化性树脂、低温固化性树脂等。热固化性树脂可列举例如不饱和聚酯树脂、环氧树脂、聚氨酯树脂、硅酮树脂等。热塑性树脂可列举聚苯硫醚(pps)树脂、聚四氟乙烯(ptfe)树脂、液晶聚合物(lcp)、尼龙6或尼龙66这样的聚酰胺(pa)树脂、聚对苯二甲酸丁二醇酯(pbt)树脂、丙烯腈-丁二烯-苯乙烯(abs)树脂等。此外,也可以利用不饱和聚酯中混合有碳酸钙或玻璃纤维的bmc(bulkmoldingcompound:块状模塑料)、混炼型硅橡胶、混炼型聚氨酯橡胶等。上述的复合材料如果除了软磁性粉末及树脂之外还含有氧化铝或硅石等非磁性且非金属粉末(填料),则能进一步提高散热性。非磁性且非金属粉末的含有量可列举为0.2质量%以上且20质量%以下,进而0.3质量%以上且15质量%以下,0.5质量%以上且10质量%以下。

复合材料中的软磁性粉末的含有量可列举为30体积%以上且80体积%以下。从饱和磁通密度、散热性的提高的观点出发,磁性粉末的含有量进一步地可以设为50体积%以上、60体积%以上、70体积%以上。从制造过程中的流动性的提高的观点出发,优选将磁性粉末的含有量设为75体积%以下。在复合材料的成形体中,如果将软磁性粉末的填充率调整得低,则容易减小其相对导磁率。因此,复合材料的成形体适合于相对导磁率满足5以上且50以下的内侧芯部3a、3b的制作。在本例中,通过复合材料的形成体构成内侧芯部3a、3b,并将其相对导磁率设为20。

压粉成形体与复合材料的成形体相比容易提高软磁性粉末的含有量(例如超过80体积%,进而为85体积%以上),容易得到饱和磁通密度、相对导磁率更高的芯片。因此,压粉成形体适合于相对导磁率为50以上且500以下的外侧芯部3c、3d的制作。在本例中,通过压粉成形体构成外侧芯部3c、3d,其相对导磁率为200。当然,外侧芯部3c、3d可以由复合材料的成形体构成。如果是复合材料的成形体,则能够容易制作具有内突出部31和外突出部39的复杂形状的第一外侧芯部3c。

《保持构件》

图1所示的本例的电抗器1还具备第一保持构件4c和第二保持构件4d。如图2所示,第一保持构件4c是介于线圈2的卷绕部2a、2b的x1方向的端面与磁性芯3的第一外侧芯部3c的第一内表面310之间并对它们进行保持的构件。第二保持构件4d是介于线圈2的卷绕部2a、2b的x2方向的端面与磁性芯3的第二外侧芯部3d的第二内表面320之间并对它们进行保持的构件。保持构件4c、4d代表性地由聚苯硫醚树脂等绝缘材料构成。保持构件4c、4d作为线圈2与磁性芯3之间的绝缘构件、内侧芯部3a、3b、外侧芯部3c、3d相对于卷绕部2a、2b的定位构件发挥功能。

以下,参照图5,说明保持构件4c、4d的一例。在图5中,说明第一保持构件4c的结构。在图5中,示出在z轴方向的中央切断了第一保持构件4c的状态。第一外侧芯部3c以未被切断的状态示出。

如图5所示,第一保持构件4c具备一对贯通孔40、40、一对线圈收纳部41、41、芯收纳部42、分隔部43。贯通孔40沿第一保持构件4c的厚度方向贯通。如图2所示,在贯通孔40插通内侧芯部3a、3b。线圈收纳部41形成于第一保持构件4c的x2方向侧的面。向线圈收纳部41嵌入各卷绕部2a、2b(图1)的端面及其附近。芯收纳部42是在第一保持构件4c的x1方向侧的面上形成的凹陷。向芯收纳部42嵌入第一外侧芯部3c的第一内表面310及其附近(一并参照图2)。分隔部43介于第一卷绕部2a与第二卷绕部2b之间。通过分隔部43确保两卷绕部2a、2b间的绝缘。这些结构在第二保持构件4d也具备。如图1所示,第二保持构件4d还具备收纳线圈2的连结部2r的切口部45。

第一保持构件4c还具备突起收纳部44。突起收纳部44设置在与第一外侧芯部3c的内突出部31对应的位置。突起收纳部44的内周面形状具备与内突出部31的外周面形状对应的形状。因此,如粗线箭头所示,在向第一保持构件4c嵌入了第一外侧芯部3c时,内突出部31被收纳于突起收纳部44。其结果是,使第一外侧芯部3c相对于第一保持构件4c的位置决定,因此相对于卷绕部2a、2b将内突出部31配置在适当的位置。

如图6所示,也可以将预先由复合材料成形的内突出部31一体化于第一保持构件4c。在图6所示的例子中,向第一保持构件4c嵌入成形内突出部31。如果是图6的结构,则在向第一保持构件4c嵌入第一外侧芯部3c时,能够抑制内突出部31的损伤。在向第一保持构件4c嵌入了第一外侧芯部3c时,内突出部31与第一内表面310接触或稍分离。即使内突出部31从第一内表面310分离,内突出部31也看作为第一外侧芯部3c的一部分。

《内侧树脂部》

如图2所示,内侧树脂部5配置在卷绕部2a、2b的内部。处于第一卷绕部2a的内部的内侧树脂部5将第一卷绕部2a的内周面与第一内侧芯部3a的外周面接合。处于第二卷绕部2b的内部的内侧树脂部5将第二卷绕部2b的内周面与第二内侧芯部3b的外周面接合。内侧树脂部5未跨卷绕部2a(2b)的内周面与外周面之间而留在卷绕部2a(2b)的内部。即,如图1所示,卷绕部2a、2b的外周面未被树脂覆盖而向外部露出。

内侧树脂部5可以利用例如环氧树脂、酚醛树脂、硅酮树脂、聚氨酯树脂等热固化性树脂、pps树脂、pa树脂、聚酰亚胺树脂、氟树脂等热塑性树脂、常温固化性树脂、或低温固化性树脂。可以使这些树脂含有氧化铝或硅石等陶瓷填料,使内侧树脂部5的散热性提高。

《外侧树脂部》

如图1、2所示,外侧树脂部6以覆盖外侧芯部3c(3d)的从保持构件4c(4d)露出的部分的方式配置。通过外侧树脂部6,将外侧芯部3c(3d)固定于保持构件4c(4d),并保护外侧芯部3c、3d免于受到外部环境的影响。本例的外侧树脂部6与内侧树脂部5相连。即,外侧树脂部6和内侧树脂部5是由相同树脂一次形成的结构。通过两树脂部5、6,将线圈2、磁性芯3、保持构件4c、4d一体化。因此,本例的电抗器1可以以图1所示的状态搭载于车辆等。

本例的外侧树脂部6仅设置于保持构件4c(4d)中的配置外侧芯部3c(3d)的一侧,未到达卷绕部2a、2b的外周面。鉴于进行外侧芯部3c、3d的固定和保护这样的外侧树脂部6的功能,外侧树脂部6的形成范围为图示的程度就足够。通过限定外侧树脂部6的形成范围,具有能够减少树脂的使用量这样的优点、通过外侧树脂部6能够抑制电抗器1不必要地大型化这样的优点。

外突出部39的x1方向的端面从覆盖第一外侧芯部3c的外周的外侧树脂部6露出。外突出部39的x1方向的端面与外侧树脂部6的x1方向的端面共面。该外侧树脂部6以包围外突出部39的方式覆盖第一外表面319整体。外侧树脂部6无论沿y轴方向还是沿z轴方向都未被截断,因此能提高基于外侧树脂部6的第一外侧芯部3c的固定强度。

在将第二外侧芯部3d的外周覆盖的外侧树脂部6形成有浇口痕60和孔部61。这些是外侧树脂部6与内侧树脂部5通过树脂成形而形成的残余物。浇口痕60由图7所示的树脂成形的模具7的树脂填充孔70(浇口)形成。孔部61由决定图7的模具7的内的磁性芯3的位置的支承材料71形成。

《使用形态》

本例的电抗器1能够利用于在混合动力机动车或电动机动车、燃料电池机动车这样的电动车辆上搭载的双方向dc-dc转换器等电力转换装置的构成构件。本例的电抗器1能够以浸渍于液体制冷剂的状态使用。液体制冷剂没有特别限定,但是在混合动力汽车中利用电抗器1的情况下,可以将atf(automatictransmissionfluid:自动变速箱油)等作为液体制冷剂利用。此外,也可以将fluorinert(注册商标)等氟系非活性液体、hcfc-123或hfc-134a等氟利昂系制冷剂、甲醇或乙醇等醇系制冷剂、丙酮等酮系制冷剂等作为液体制冷剂利用。在本例的电抗器1中,由于卷绕部2a、2b向外部露出,因此在利用液体制冷剂等冷却介质对电抗器1进行冷却的情况下,使卷绕部2a、2b与冷却介质直接接触,因此本例的电抗器1在散热性上优异。

本例的电抗器1可以将z2方向的面作为设置面。电抗器1中的设置面是与冷却基体等设置对象接触的面。此外,可以将电抗器1中的y1方向的面、y2方向的面、x1方向的面或x2方向的面设为与设置对象接触的设置面。

《效果》

在本例的电抗器1中,以外突出部39为基准而高精度地决定电抗器1中的绕组端部2a、2b的位置。因此,以外突出部39为基准而将电抗器1设置于设置对象,由此能够在设置对象中的所希望的位置高精度地配置绕组端部2a、2b。其结果是,容易将电抗器1的绕组端部2a、2b连接于外部设备,因此能够容易制作包含电抗器1的转换器等。

《电抗器的制造方法》

接下来,基于图7,说明用于制造实施方式1的电抗器1的电抗器的制造方法的一例。电抗器的制造方法大致包括如下的工序。

·将线圈2、磁性芯3、保持构件4c、4d组合的工序(工序i)

·向卷绕部的内部填充树脂的工序(工序ii)

·使树脂固化的工序(工序iii)

[工序i]

在该工序中,将线圈2、磁性芯3、保持构件4c、4d组合。例如,在卷绕部2a、2b的内部配置内侧芯部3a、3b,制作使一对保持构件4c、4d分别与卷绕部2a、2b的一端面和另一端面抵接的第一组合物。然后,制作将该第一组合物通过一对外侧芯部3c、3d夹入的第二组合物。内侧芯部3a、3b的端面300与第一外侧芯部3c的第一内表面310之间、及内侧芯部3a、3b的端面300与第二外侧芯部3d的第二内表面320之间可以通过粘结剂等接合。

[工序ii]

在工序ii中,向第二组合物中的卷绕部2a、2b的内部填充树脂。在本例中,将第二组合物配置在模具7内,进行向模具7内注入树脂的注塑成形。模具7内的第二组合物沿x1方向被按压。具体而言,第二外侧芯部3d的第二外表面329由支承材料71、71按压。其结果是,第二组成物的外突出部39的端面与模具7的内周面抵接。

树脂的注入从模具7的两个树脂填充孔70进行。树脂填充孔70设置在与第二外侧芯部3d的第二外表面329对应的位置。经由树脂填充孔70填充到模具7内的树脂覆盖第二外侧芯部3d的外周整体,并经由第二保持构件4d的贯通孔40向卷绕部2a、2b的内部流入。流入到卷绕部2a、2b的内部的树脂经由第一保持构件4c的贯通孔40到达第一外侧芯部3c。此时,第一外侧芯部3c的外突出部39的端面与模具7的内周面接触,因此该端面未被树脂覆盖而向外部露出。

[工序iii]

在工序iii中,通过热处理等使树脂固化。固化的树脂中的处于卷绕部2a、2b的内部的树脂如图2所示成为内侧树脂部5,将外侧芯部3c、3d覆盖的树脂成为外侧树脂部6。内侧树脂部5与外侧树脂部6在保持构件4c、4d的内部相连。

[效果]

根据以上说明的电抗器的制造方法,能够制造图1所示的电抗器1。而且,在本例的电抗器的制造方法中,将内侧树脂部5与外侧树脂部6形成为一体,填充树脂的工序和使树脂固化的工序各一次即可,因此能够生产性良好地制造电抗器1。

另外,根据本例的电抗器的制造方法,能高精度地决定电抗器1中的绕组端部2a、2b(图1)的位置。如图7所示,使外突出部39的端面与模具7的内周面抵接而形成树脂部5、6。因此,以外突出部39的端面为设置的基准,绕组端部2a、2b的位置高精度地决定。如果以外突出部39的端面为基准而将电抗器1设置于设置对象,则能够在设置对象中的所希望的位置高精度地配置绕组端部2a、2b。其结果是,容易将该绕组端部2a、2b与外部设备连接。

《试验例》

对于实施方式1所示的具有内突出部31的电抗器1和不具有内突出部31的参考品的电抗器,通过模拟测定了电感和合计损失。两电抗器的内侧芯部3a、3b的相对导磁率为20,外侧芯部3c、3d的相对导磁率为200。而且,实施方式1的电抗器1的内突出部31的突出长度为1.2mm。电感及合计损失的模拟使用了市售的软件(例,株式会社jsol制jmag-designer)。

对于各样品的电抗器,通过模拟求出了100a或200a以下的电流流动时的电感(μh)。以下列记其结果。

·实施方式1的电抗器…86μh(100a),45.6μh(200a)

·参考品的电抗器…85.5μh(100a),45.3μh(200a)

如上所述,无论是在100a的通电条件下还是在200a的通电条件下,实施方式1的电抗器1的电感比参考品的电抗器的电感高。其电感的上升率在100a的通电条件下为0.6%,在200a的通电条件下为0.7%。即,可知,通电电流越大,则实施方式1的电抗器1的电感与参考品的电抗器的电感之差处于越增大的倾向。

关于各试料的电抗器,通过模拟求出了直流电流50a、输入电压300v、输出电压300v、以频率20khz驱动时的直流铜损、铁损、交流铜损。设为将上述直流铜损、铁损、交流铜损合计的合计损失(w)。以下,列记其结果。

·实施方式1的电抗器…83.9w

·参考品的电抗器…84.9w

如上所述,实施方式1的电抗器1的合计损失比参考品的电抗器的损失低。该损失的减少率为约1.2%。

根据上述模拟的结果可知,即使是极小的内突出部31,对电抗器1的磁特性的改善也有效。

符号说明

1电抗器

2线圈2w绕组

2a第一卷绕部2b第二卷绕部2r连结部

2a第一绕组端部2b第二绕组端部

3磁性芯

3a第一内侧芯部3b第二内侧芯部

3c第一外侧芯部3d第二外侧芯部

30主体部31内突出部39外突出部

300端面

310第一内表面319第一外表面

320第二内表面329第二外表面

4c第一保持构件4d第二保持构件

40贯通孔41线圈收纳部42芯收纳部

43分隔部44突起收纳部45切口部

5内侧树脂部

6外侧树脂部

60浇口痕61孔部

7模具

70树脂填充孔71支承材料

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1