具有掺杂的外延区域的半导体器件及其制造方法_2

文档序号:9709956阅读:来源:国知局

501、502均包括形成在凹陷的源极和漏极界面240、250上的外延层610、620,其中所述凹陷的源极和漏极界面240、250包括它们的{111}面241、251和{010}面242、252。
[0030]源极区域501包括源极外延-尖端区域611,源极外延-尖端区域611包括由间隔体
420、栅极电介质310和{111}、{010}面241、242所围绕的外延层610的部分。漏极区域包括漏极外延-尖端区域621,漏极外延-尖端区域621包括由间隔体440、栅极电介质310和{111}、{010}面251、252所围绕的外延层610的部分。相对近地靠近沟道区域形成源极和漏极外延-尖端区域611、621在沟道区域上引发了更大的流体静应力,从而增大了电子迀移率,这导致了更高的驱动电流。
[0031 ]在本发明的实施例中,外延层610、620包括掺杂有磷的硅。在一个实施例中,外延层610、620包括具有大约8E19cm—3至3E21cm—3的磷浓度的硅。在具体实施例中,外延层610、620包括具有2E21 cm—3的磷浓度的硅。外延层610、620中的高磷浓度水平减小了寄生电阻,特别是自对准多晶硅化物与源极/漏极区域501、502之间的接触电阻中的寄生电阻。
[0032]图1、2和3示出了在平面晶体管中应用外延区域以增加沟道区域处的电子迀移率或减小源极/漏极区域处的接触电阻。能够理解,外延区域不限于平面晶体管,而是能够制造在诸如但不限于三栅极晶体管的其它器件上。图4示出了三栅极器件的透视图,所述三栅极器件包括具有半导体主体或鳍260(用虚线表示)的衬底200。栅极电极340形成在鳍260的三个表面上以形成三个栅极。硬掩模410形成在栅极电极340的顶部上。栅极间隔体460、470形成在栅极电极340的相对的侧壁上。源极区域包括形成在凹陷的源极界面266和鳍260侧壁上的外延区域531。帽层541沉积在外延区域531上。
[0033]图5A-5F示出了形成如关于图1所讨论的半导体器件的方法。半导体器件的制造从提供如图5A中所示的衬底200开始。栅极电介质310形成在衬底200的期望的沟道区域上。在一个实施例中,栅极电介质310由任何公知的方法形成,诸如但不限于物理气相沉积(PVD)、化学气相沉积(CVD)或原子层沉积(ALD)。
[0034]栅极电极320形成在栅极电介质310上。在本发明的实施例中,栅极电极320是牺牲栅极电极,其随后在替换栅极工艺中由实际栅极电极替换。硬掩模410形成在栅极电极320的顶部上。在本发明的实施例中,使用PVD或CVD来沉积栅极电极320和硬掩模410,并且随后使用公知的光刻和蚀刻技术来对栅极电极320和硬掩模410进行构图。
[0035]然后,间隔体420、440形成在栅极电极320的相对的侧壁上。间隔体420、440包括形成在衬底200的顶表面上的侧壁421、441以及底表面422、442。在一个实施例中,通过使用公知技术来形成间隔体420、440,所述公知技术诸如在包括栅极电极320的整个衬底200上沉积间隔体材料层,并且随后各向异性地蚀刻间隔体材料层以形成栅极电极320的侧壁上的间隔体420、440。
[0036]接下来,源极区域和漏极区域形成在衬底200上。在本发明的实施例中,源极和漏极区域的制造从使用诸如但不限于干法蚀刻或湿法蚀刻的公知蚀刻技术来使衬底200的部分凹陷开始。在本发明的实施例中,利用包括对衬底200基本上是选择性的蚀刻剂化学试剂(chemistry)的湿法蚀刻来使衬底200凹陷,以便形成如图5B中所示的凹陷的源极界面220和凹陷的漏极界面230。
[0037]在一个实施例中,湿法蚀刻底切间隔体420、440,并且在间隔体420的底表面422与凹陷的源极界面220之间形成源极外延-尖端空腔271,在间隔体440的底表面与凹陷的漏极界面230之间形成漏极外延-尖端空腔272。结果,源极外延-尖端空腔271和漏极外延-尖端空腔272暴露了间隔体420、440的底表面422、442。在一个实施例中,源极外延-尖端空腔271和漏极外延-尖端空腔272也暴露了栅极电介质310的部分。结果,凹陷的源极界面220的部分在间隔体420下方和栅极电极320的部分下方横向延伸。类似地,凹陷的漏极界面230的部分在间隔体440下方和栅极电极320的部分下方横向延伸。
[0038]能够理解,能够控制湿法蚀刻(例如,通过调节蚀刻持续时间),使得源极和漏极外延-尖端空腔271、272不暴露栅极电介质310。举例来说,凹陷的源极界面220仅在间隔体420下方横向延伸,且凹陷的漏极界面230仅在间隔体440下方横向延伸。
[0039]在本发明的实施例中,凹陷的源极和漏极界面220、230限定了半导体器件的沟道区域。沟道区域指代位于栅极电介质310的正下方且位于凹陷的源极和漏极界面220、230之间的衬底200的部分。
[0040]接下来,通过将衬底200交替地暴露于第一前驱物和第二前驱物,而在凹陷的源极和漏极界面220、230中的每个上沉积外延区域。在图5C中,外延区域的制造从将整个衬底200暴露于第一前驱物以便在凹陷的源极和漏极界面220、230上沉积外延膜511、512开始。在衬底200由单晶硅制成的情况下,凹陷的源极和漏极界面220、230为允许在其上外延生长外延膜511、512的单晶表面。而另一方面,硬掩模410、间隔体420、440以及栅极电介质310是非晶表面。结果,非晶层513沉积在硬掩膜410的顶表面、间隔体420、440的侧壁421、441和底表面422、442以及栅极电介质310的底表面的部分上。
[0041]在本发明的实施例中,第一前驱物包括含有硅的化合物、含有碳的化合物以及掺杂剂。在一个实施例中,含有硅的化合物包括但不限于硅烷和卤化硅烷。这种含有硅的化合物包括硅烷(SiH4)、乙硅烷(Si2H6)、丙硅烷(Si3H8)、二氯甲硅烷(SiH2Cl2)以及五氯硅烷。
[0042]在一个实施例中,含有碳的化合物包括但不限于有机硅烷。例如,含有碳的化合物包括一甲基硅烷(CH3_SiH3)。在一个实施例中,将含有碳的化合物与氢气(H2)或氩混合。例如,将一甲基硅烷(CH3-SiH3)与氢气(H2)或氩混合,其中CH3-SiH3的浓度范围是0.5%至20%。
[0043]在本发明的实施例中,掺杂剂是η型掺杂剂,诸如但不限于磷或砷。在一个实施例中,使用没有任何氢气或诸如NsSAr的惰性气体的稀释的磷化氢(ΡΗ3),将磷掺杂剂结合到外延膜中。在另一实施例中,磷化氢气体混合有氢气,例如作为氢气(?)中3 %的磷化氢(ΡΗ3)的混合物。
[0044]在一个实施例中,用载气将第一前驱物输送并释放到衬底200上。在一个实施例中,载气包括但不限于氢气(Η2)或任何诸如氮气(Ν2)、氩和氦的惰性气体或其任何组合。
[0045]在本发明的实施例中,在大约500至700摄氏度的温度和大约5至300托的压力下,将衬底200暴露于第一前驱物,且持续时间为大约3至60秒。在具体实施例中,在600摄氏度的温度和30托的压力下,将衬底200暴露于第一前驱物,且持续时间为15秒。
[0046]在一个实施例中,生长外延膜511、512,以具有大约6至100埃的厚度。在具体实施例中,生长外延膜511、512,以具有50埃的厚度。在第一前驱物使用磷掺杂剂的情况下,所沉积的外延膜511、512是含有掺杂有磷的硅和碳的晶体膜(S卩,掺杂原位碳和磷的硅层)。非晶层513包含掺杂有磷的硅和碳。
[0047]在将衬底200暴露于第一前驱物之前,能够在衬底200上执行可选的表面预处理,以促进外延生长并减少表面缺陷。在本发明的实施例中,表面预处理包括在衬底200上执行的氢烘烤处理(图5Β中),以便清洁凹陷的源极和漏极界面220、230。氢烘烤处理释放出氧并且使表面重建,使得外延膜511、512能够容易地成核而不形成缺陷。在一个实施例中,在大约700至1050摄氏度下执行氢烘烤处理,持续时间大约为10至120秒。在本发明的实施例中,将氯化氢(HC1)添加至氢烘烤处理。氯化氢(HC1)能够去除凹陷的源极和漏极界面220、230的大约1至3层单分子层,使得它们没有氧、碳氢化合物以及其它任何污染物。在一个实施例中,在大约700至900摄氏度的较低温度下执行带有氯化氢(HC1)的氢烘烤处理,持续时间为大约10至120秒。或者,氯气(Cl2)、锗烷(GeH4)或磷化氢(ΡΗ3)能够用作氯化氢(HC1)的添加的或替代的化学化合物。
[0048]在替代实施例中,表面预处理利用了蚀刻步骤来清洁凹陷的源极和漏极界面220、230。在一个实施例中,蚀刻步骤使用了蚀刻剂气体,诸如但不限于氢气(Η2)、无水盐酸(HC1)或锗烷(GeH4)和氢气(Η2)的混合物。在另一实施例中,表面预处理使用了蚀刻步骤和氢烘烤处理的组合。
[0049]在将衬底200暴露于第二前驱物之前,能够执行清洗工艺,以便从衬底200去除第一前驱物和其它副产物。在一个实施例中,清洗工艺注入诸如但不限于氮气(Ν2)、氦或氩的惰性气体,以便去除任何未反应的第一前驱物或副产物。
[005
当前第2页1 2 3 4 5 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1