一种gtr-ktp晶体的制备方法

文档序号:8072488阅读:420来源:国知局
一种gtr-ktp晶体的制备方法
【专利摘要】本发明涉及一种GTR-KTP晶体的制备方法,先制备KH2PO4晶体料,然后在超环境下分段加热形成均匀稳定的高温溶液,采用顶端与提拉相结合的方法生长的GTR-KTP晶体,本发明制备的KTP晶体,降低了KTP晶体的吸收系数,能有效的抵抗灰迹产生,使KTP晶体的倍频转换效率得到显著增强。在测试的1000秒时间内,是用100mw、532nm绿光照射GTR-KTP晶体,系统吸收基本保持稳定,显示了其良好的抗灰迹效果。
【专利说明】—种GTR-KTP晶体的制备方法
【技术领域】
[0001]本发明涉及一种GTR-KTP 晶体(Gray Track Resistance KTP,简称 GTR-KTP)特别涉及一种GTR-KTP晶体的制备方法,属于非线性晶体材料领域。
【背景技术】
[0002]磷酸钛氧钾(KTiOPO4简称KTP)晶体是国际上公认的综合性能优越的非线性光学晶体。它具有倍频系数大,转换效率高,温度稳定性好,激光抗损伤阈值高,机械加工性能良好和化学性能稳定等优点,被公认为是固态激光器1064-532nm最佳的倍频材料,并得到了广泛而重要的应用。但普通KTP也并非十全十美,在大功率密度长期作用下,会产生肉眼可见的所谓“灰迹效应(gray track effect)”。灰迹一旦形成,会吸收大量的传播光速光能,导致晶体发热、倍频效率降低、激光器输出功率下降,噪音加强等一系列后果,继续运转甚至会引起KTP晶体不可恢复的损伤。如果能避免“灰迹”的产生,在大功率绿光激光器使用KTP晶体作为倍频材料,则可简化激光器构造,降低成本,对提高产品的稳定性和可靠性,将有很大意义。

【发明内容】

[0003]为解决现有技术存在的问题,克服晶体生长中遇到的困难,本发明提供一种GTR-KTP晶体的制备方法。
[0004]本发明采取的技术方案为:
[0005]一种GTR-KTP晶体的制备方法,包括步骤如下:
[0006](I)将KH2PO4用蒸馏水溶解,用超细膜过滤装置过滤,通过低温溶液法生长出高纯KH2PO4晶体料;
[0007](2)将步骤(I)得的KH2PO4材料与K2C03、TiO2按质量比8:1:1的比例混合后,搅拌均匀放入钼金坩埚中,炉体内无杂质气氛升温到1000°c将原料熔化反应,反应时间18-24h,升温至1100°C烧料24-36hh,然后恒温1100°C搅拌36-48h,形成均匀稳定的高温溶液;
[0008](3)采用顶端与提拉相结合的方法生长的GTR-KTP晶体:将高温溶液晶体在转动、提拉中降温,起始温度910±20°C,分前期和后期,前期的降温速度、提拉速率均小于后期的,整个生长周期降温200±20°C,周期长70-90天,晶体转动速率40-50rpm。
[0009]上述步骤(I)中KH2PO4用蒸馏水溶解的质量浓度范围为50-60%,所述的低温溶液法为用吊晶法准确测量饱和点温度,采用溶液降温法在规格为高32cm直径34cm的育晶缸生长KDP晶体,采用日本生产的FP21型控温仪,控温精度为0.1 °C,。采用尺寸为6*6*2mm的优质点状籽晶,用尼龙线将其固定在擎晶杆上。晶体生长温度区间为48-59°C,降温速度为0.2-3°C /d,溶液PH值在4.5左右的情况下生长2-10天长出晶体料。
[0010]步骤(2)所述的炉体内无杂质气氛为炉体内炉膛用钼金覆盖形成超环境。
[0011]步骤(3)所述的前期降温0.5°C-1°C /天,提拉速率0.1mm-0.2mm/天,时间30-35天;后期降温2°C-3°C /天,提拉速率0.3mm-0.5mm/天,时间40-55天。所述的转动方式为:正转90s、反转90s、停转15s,循环,前后期转动方式相同。
[0012]上述方法制备的抗灰迹晶体,KTiOPO4和K6P4O13的质量比为40%。
[0013]本发明的有益效果:
[0014](I)利用炉体内炉膛用钼金覆盖,形成超环境,避免外部杂质气氛污染,采用高精度双温区控温提高了晶体生长温场的稳定性及对生长温度曲线的控制能力;
[0015](2)采用KH2PO4晶体料提高了原料的纯度,同时控制原料比例和反应度,适当提高了溶剂浓度,优化了晶体生长过程中晶格排列,改善的晶体内部质量,降低了晶体电导率和吸收系数,提高了晶体的光学均匀性和抗损伤阈值;
[0016](3)采用顶端与提拉相结合的方法生长的GTR-KTP晶体,缓慢降温速度,提高转晶速度,设计合理的降温程序,进入溶液的生长部分加工成类晶锥形,加快晶体前期生长;加宽杆晶X方向尺寸,利于加厚 晶体a面,提闻晶体的利用率。
[0017]本发明制备的KTP晶体,降低了 KTP晶体的吸收系数,能有效的抵抗灰迹产生,使KTP晶体的倍频转换效率得到显著增强。在测试的1000秒时间内,是用100mw、532nm绿光照射GTR-KTP晶体,系统吸收基本保持稳定,显示了其良好的抗灰迹效果。
【专利附图】

【附图说明】
[0018]图1为本发明制得晶体形貌图;
[0019]图2为本发明GTR-KTP晶体抗灰迹吸收性能图;
[0020]图3为炉体内无杂质气氛的超环境原理示意图;
[0021]图4为炉体内无杂质气氛的超环境结构示意图;
[0022]其中,1.炉体,2.钼金坩埚,3.内炉管,4.转晶杆,5.电子提拉机,6.提拉控制盒,
7.支架,8.双温区,9.密闭气氛,10.生长炉,11.原料提纯,12.钼金坩埚,13.渗质技术,
14.定向提拉。
【具体实施方式】
[0023]本发明使用的体内无杂质气氛的超环境结构如图3所示:
[0024]超环境结构,包括生长炉,生长炉内炉膛用钼金箔覆盖,生长炉的炉体加热装置采用上下双段控温,两段控温区用铁铬铝电炉丝分别缠绕,并各自连接高精度FP21控温仪表控制温度。内炉管垂直放置于炉体正中部,外套外炉管再用保温玻璃纤维棉填装炉体。炉体通过内炉管炉丝通电加热,钼铑热偶顶端插入炉体内炉管外壁,末端通过补偿导线与FP21仪表连接,用FP21仪表精确控制调整生长温度,钼金坩埚在炉管40-46cm深处,底部为耐火材料填充,钼金坩埚通过转晶杆连接电子提拉机,通过晶体提拉控制盒和电子提拉机实现晶转和提拉。
[0025]生长炉放置于密闭超净的实验室内,首先降低空气灰尘等杂质对原料和溶液造成污染。生长炉内炉膛用钼金箔覆盖,防止炉体保温材料脱落,石英管改成钼金管,石英杆用钼金包裹,避免石英管和石英杆受原料腐蚀,从而有效降低了外来杂质对溶液的污染。炉体加热装置采用上下双段控温,用铁铬铝电炉丝分别缠绕,各自连接高精度FP21控温仪表控制温度,大大提高炉体控温的精确性,有效提高了晶体生长温场的稳定性及对生长温度曲线的控制能力。
[0026]实施例1
[0027]原料KH2PO4先用蒸馏水溶解,质量浓度为55%,用超细膜过滤装置过滤,通过低温溶液法生长出高纯KH2PO4晶体料,降低原料杂质离子含量。
[0028]打制直径IOcm高14cm的钼金坩埚容器,将原料KH2PO4, K2CO3, TiO2按质量配比8:1:1混合后,搅拌均匀放入钼金坩埚中,升温到1000°C将原料熔化反应,溶液液高约9cm,升温至1100°C烧料24h,然后恒温搅拌48h,形成均匀稳定的高温溶液。
[0029]反应生成K6助溶剂及KTP的化学方程式:
[0030]K6 助溶剂:4KH2P04+K2C03—K6P4013+4H20 f +CO2 ?
[0031]KTP: ΚΗ2Ρ04+Τ i O2- KT i 0Ρ04+Η20 ?
[0032]KTiOPO4和K6P4O13的质量比为40%,本专利适当提高了溶剂浓度,优化了晶体生长过程中晶格排列,改善的晶体 内部质量,降低了晶体电导率和吸收系数,提高了晶体的光学均勻性和抗损伤阈值。
[0033]采用顶端与提拉相结合的方法生长的GTR-KTP晶体,缓慢降温速度,提高转晶速度。起始生长温度910°C左右,降温约200°C。根据晶体的降温析出特点,绘制相应的降温曲线,设计合理的降温程序,前期较慢,中后期较快。
[0034]选取优质晶体切割Z方向籽晶,籽晶尺寸为4(y)*6 (X) *6 (z) mm的柱形,对每颗籽晶严格定向,利于晶体对称性;进入溶液的生长部分加工成类晶锥形,加快晶体前期生长;加宽杆晶X方向尺寸,利于加厚晶体a面,提闻晶体的利用率。
[0035]采用该方法生长周期80天左右,前期降温0.50C /天,提拉速率0.1mm/天;后期降温3°C /天,提拉速率0.3mm/天,整个生长周期降温约200°C。晶体转动速率40rpm,成功生长出重约200g的高质量GTR-KTP单晶,所加工8X8X7.5mm3倍频晶体器件进行吸收、抗灰迹性能测试及倍频性能测试。经测试表明,该技术生长的GTR-KTP晶体相位匹配角度、倍频转化效率、损伤阈值比普通方法生长的KTP晶体增强显著。
[0036]如图2所示,在测试的1000秒时间内,是用100mw、532nm绿光照射GTR-KTP晶体,系统吸收基本保持稳定,显示了其良好的抗灰迹效果。
[0037]实施例2
[0038]原料KH2PO4先用蒸馏水溶解,质量浓度50%,用超细膜过滤装置过滤,通过低温溶液法生长出高纯KH2PO4晶体料,降低原料杂质离子含量。
[0039]打制直径IOcm高14cm的钼金坩埚容器,将原料KH2P04、K2CO3, TiO2按质量配比8:1:1混合后,搅拌均匀放入钼金坩埚中,升温到1000°C将原料熔化反应,溶液液高约9cm,升温至1100°C烧料24h,然后恒温搅拌48h,形成均匀稳定的高温溶液。
[0040]反应生成K6助溶剂及KTP的化学方程式:
[0041]K6 助溶剂:4KH2P04+K2C03—K6P4013+4H20 ? +CO2 ?
[0042]KTP: ΚΗ2Ρ04+Τ i O2- KT i 0Ρ04+Η20 ?
[0043]KTiOPO4和K6P4O13的质量比为40%,本专利适当提高了溶剂浓度,优化了晶体生长过程中晶格排列,改善的晶体内部质量,降低了晶体电导率和吸收系数,提高了晶体的光学均勻性和抗损伤阈值。
[0044]采用顶端与提拉相结合的方法生长的GTR-KTP晶体,缓慢降温速度,提高转晶速度。起始生长温度910°C左右,降温约200°C。根据晶体的降温析出特点,绘制相应的降温曲线,设计合理的降温程序,前期较慢,中后期较快。
[0045]选取优质晶体切割Z方向籽晶,籽晶尺寸为4(y)*6 (x) *6 (z) mm的柱形,对每颗籽晶严格定向,利于晶体对称性;进入溶液的生长部分加工成类晶锥形,加快晶体前期生长;加宽杆晶X方向尺寸,利于加厚晶体a面,提闻晶体的利用率。
[0046]采用该方法生长周期80天左右,前期降温1°C /天,提拉速率0.2mm/天;后期降温2°C /天,提拉速率0.4mm/天,整个生长周期降温约200°C。晶体转动速率50rpm,成功生长出重约200g的高质量GTR-KTP单晶,所加工8 X 8 X 7.5mm3倍频晶体器件进行吸收、抗灰迹性能测试及倍频性能测试。经测试表明,该技术生长的GTR-KTP晶体相位匹配角度、倍频转化效率、损伤阈值比普通方法生长的KTP晶体增强显著。
[0047]实施例3
[0048]原料KH2PO4先用蒸馏水溶解,质量浓度60%,用超细膜过滤装置过滤,通过低温溶液法生长出高纯KH2PO4晶体料,降低原料杂质离子含量。
[0049]打制直径IOcm高14cm的钼金坩埚容器,将原料KH2PO4, K2CO3, TiO2按质量配比8:1:1混合后,搅拌均匀放入钼金坩埚中,升温到1000°C将原料熔化反应,溶液液高约9cm,升温至1100°C烧料24h,然后恒温搅拌48h,形成均匀稳定的高温溶液。
[0050]反应生成K6助溶剂及KTP的化学方程式:
[0051]K6 助溶剂:4KH2P04+K2C03—K6P4013+4H20 i +CO2 ?
[0052]KTP: ΚΗ2Ρ04+Τ i O2- KT i 0Ρ04+Η20 ?
[0053]KTiOPO4和K6P4O13的质量比为40%,本专利适当提高了溶剂浓度,优化了晶体生长过程中晶格排列,改善的晶体内部质量,降低了晶体电导率和吸收系数,提高了晶体的光学均勻性和抗损伤阈值。
[0054]采用顶端与提拉相结合的方法生长的GTR-KTP晶体,缓慢降温速度,提高转晶速度。起始生长温度910°C左右,降温约200°C。根据晶体的降温析出特点,绘制相应的降温曲线,设计合理的降温程序,前期较慢,中后期较快。
[0055]选取优质晶体切割Z方向籽晶,籽晶尺寸为4(y)*6 (X) *6 (z) mm的柱形,对每颗籽晶严格定向,利于晶体对称性;进入溶液的生长部分加工成类晶锥形,加快晶体前期生长;加宽杆晶X方向尺寸,利于加厚晶体a面,提闻晶体的利用率。
[0056]采用该方法生长周期80天左右,前期降温0.8V /天,提拉速率0.1mm/天;后期降温2.5°C /天,提拉速率0.4mm/天,整个生长周期降温约200°C。晶体转动速率45rpm,成功生长出重约200g的高质量GTR-KTP单晶,所加工8X8X7.5mm3倍频晶体器件进行吸收、抗灰迹性能测试及倍频性能测试。经测试表明,该技术生长的GTR-KTP晶体相位匹配角度、倍频转化效率、损伤阈值比普通方法生长的KTP晶体增强显著。
【权利要求】
1.一种GTR-KTP晶体的制备方法,其特征是,包括步骤如下: (1)将KH2PO4用蒸馏水溶解,用超细膜过滤装置过滤,通过低温溶液法生长出高纯KH2PO4晶体料; (2)将步骤(I)得的KH2PO4材料与K2C03、Ti02按质量比8:1:1的比例混合后,搅拌均匀放入钼金坩埚中,炉体内无杂质气氛升温到1000°C将原料熔化反应,反应时间18-24h,升温至1100°C烧料24-36hh,然后恒温1100°C搅拌36-48h,形成均匀稳定的高温溶液; (3)采用顶端与提拉相结合的方法生长的GTR-KTP晶体:将高温溶液晶体在转动、提拉中降温,起始温度910±20°C,分前期和后期,前期的降温速度、提拉速率均小于后期的,整个生长周期降温200±20°C,周期长70-90天,晶体转动速率40-50rpm。
2.根据权利要求1所述的一种GTR-KTP晶体的制备方法,其特征是,步骤(I)中KH2PO4用蒸馏水溶解的质量浓度范围为50-60%。
3.根据权利要求1所述的一种GTR-KTP晶体的制备方法,其特征是,步骤(2)所述的炉体内无杂质气氛为炉体内炉膛用钼金覆盖形成超环境。
4.根据权利要求1所述的一种GTR-KTP晶体的制备方法,其特征是,步骤(3)所述的前期降温0.5°C-1°C /天,提拉速率0.1mm-0.2mm/天,时间30-35天;后期降温2°C-3°C /天,提拉速率0.3mm-0.5mm/天,时间40-55天。
5.根据权利要求1所述的一种GTR-KTP晶体的制备方法,其特征是,所述的转动方式为:正转90s、反转90s、停转15s,循环,前后期转动方式相同。
6.权利要求1所述的方法制备的抗灰迹晶体。
7.根据权利要求6所述的抗灰迹晶体,其特征是,KTiOPO4和K6P4O13的质量比为40%。
【文档编号】C30B29/22GK103451731SQ201310389390
【公开日】2013年12月18日 申请日期:2013年8月30日 优先权日:2013年8月30日
【发明者】乔永军, 冯彧, 翟仲军, 李 杰, 逄洪雷, 李勇, 董胜明 申请人:山东华特知新材料有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1