从含有戊糖的底物制备乳酸的制作方法

文档序号:426010阅读:373来源:国知局
专利名称:从含有戊糖的底物制备乳酸的制作方法
技术领域
本发明涉及从含有戊糖,特别是含有木糖的底物生产乳酸。
背景技术
乳酸及其称为乳酸盐的盐,是可购得产品,用于各种领域中,包括医药、生物可降解聚合物和食品加工。通常,从葡萄糖、淀粉、液化淀粉或蔗糖商业生产乳酸。目前,这些底物是乳酸生产成本价格的重要组成部分。木质纤维生物质提供了作为乳酸生物生产底物的具有价格吸引力的可替换物,因为其容易获得,没有竞争食品价值,且没有淀粉或蔗糖贵。理论上,微生物能够将生物质中含有的糖发酵成乳酸。然而,数种障碍干扰了微生物有效利用这种原料来生产乳酸。木质纤维底物主要由纤维素、半纤维素和木质素组成。虽然数种微生物可以有效地发酵纤维素中的葡萄糖组分,已经证实转化生物质的半纤维素部分中含有的戊糖更难。半纤维素中含量最多的戊糖包括D-木糖和L-阿拉伯糖。木糖和阿拉伯糖的发酵仍然是植物来源生物质经济转化的主要障碍。
许多异质乳酸和兼性异质乳酸细菌能发酵戊糖。这些生物体发酵这些糖所用的代谢途径是简单的戊糖,如D-木糖(醛糖)进入细胞,在那里其异构成木酮糖(酮糖),并随后消耗1个ATP来磷酸化生成木酮糖-5-磷酸盐,然后通过磷酸酮酶(EC4.1.2.9)裂解成甘油醛-3-磷酸盐和乙酰-磷酸盐。该代谢途径称为磷酸酮酶途径(Lengeler,J.W.;G.Drews;H.G.Schlegel,Biology of prokaryotes(原核生物学),1999,Thieme Verlag,Stuttgart,德国)。磷酸酮酶反应中产生的甘油醛-3-磷酸盐在Emden-Meyerhof途径中转化成丙酮酸并产生2ATP和1NADH2(Lengeler,J.W.;G.Drews;H.G.Schlegel,Biology of prokaryotes(原核生物学),1999,Thieme Verlag,Stuttgart,德国)。最终丙酮酸通过NADH2还原成乳酸。磷酸酮酶反应中产生的乙酰-磷酸盐通过乙酸激酶(EC2.7.2.1)转化成乙酸盐并产生1ATP。在戊糖发酵过程中,形成和消耗1NADH2;每摩尔戊糖净产生2个ATP。混合乳酸发酵细菌利用相似途径来发酵己糖。己糖,如葡萄糖首先磷酸化成葡萄糖-6-磷酸盐,氧化生成6-磷酸葡萄糖酸盐,且最终氧化脱羧生成核酮糖-5-磷酸盐和二氧化碳。核酮糖-5-磷酸盐的差向异构作用生成木酮糖-5-磷酸盐,其进入磷酸酮酶途径。和戊糖发酵相反,混合发酵乳酸细菌的己糖发酵产生过量的还原力(3NADH2),其用于将乙酰-磷酸盐还原成乙醇和将丙酮酸还原成乳酸。在该途径中没有从乙酰-磷酸盐生成乙酸,因此己糖发酵产生的ATP是戊糖发酵产生的一半;每发酵一摩尔己糖产生1ATP。上述戊糖发酵的代谢途径中,磷酸酮酶起着决定性的作用,因为该酶将戊糖的C5骨架分裂成C3部分,后者最终转化成乳酸和C2部分,C2最终成为乙酸。对于乳酸的生产,可以理解为将其调整为有利于最大乳酸盐生产,乙酸的发酵是不经济的。然而,少量报道表明一些乳杆菌属(Lactobacillus)种,如乳杆菌种MONT4几乎专门发酵特定的戊糖而生成乳酸(BarreP.,Identification of thermobacteria and homofermentative,thermophilic pentose utilizing Lactobacillus from hightemperature fermenting grape must(来自高温发酵葡萄汁的热细菌和同型发酵、利用戊糖的嗜热乳杆菌的鉴定),J.Appl.Bacteriol.1978,44,125-129)。乳杆菌种MONT4中,戊糖不通过涉及磷酸酮酶的途径异化,而是通过涉及转醛醇酶(EC 2.2.1.2)和转酮醇酶(EC 2.2.1.1)的代谢途径(US 5,798,237)。该途径称为转醛醇酶/转酮醇途径。
然而,该途径要由戊糖得到较高的乳酸盐产量需由生物体的价值而获得。虽然磷酸酮酶途径的ATP产量是每摩尔戊糖2个,而转醛醇酶/转酮醇酶途径是每3摩尔戊糖5ATP。这较低的ATP产量是为什么戊糖发酵纯乳酸模式的乳酸细菌相对少的原因之一。从工业观点看,在此相关的是乳杆菌种MONT4不能发酵木糖。目前,用来自戊糖乳细菌(Lactobacillus pentosus)的木糖异构酶和木酮糖激酶基因遗传改造乳杆菌种MONT4来给予该生物体发酵木糖的能力。这描述于US5,798,237。
尽管微生物,如乳杆菌种是乳酸的生产者,特定的特性使这些生物体较不适于乳酸的工业化生产乳杆菌种需要发酵培养基中有相当量的有机氮,以及生长促进物质,这使得培养基变得更贵,且当使用简单发酵培养基时纯化乳酸更难。此外,许多乳杆菌种,包括乳杆菌种MONT4,产生的乳酸光学异构纯度低(参见Barre P.,Identificationof thermobacteria and homofermentative,thermophilic pentoseutilizing Lactobacillus from high temperature fermenting grapemust(来自高温发酵葡萄汁的热细菌和同型发酵、利用戊糖的嗜热乳杆菌的鉴定),J.Appl.Bacteriol.1978,44,125-129)。本发明目的之一是提供无这些缺陷的方法。
现在我们发现一些天然的中度嗜热芽孢杆菌属(Bacillus)菌种能够厌氧地发酵戊糖,尤其是木糖,主要生成对映体纯的乳酸和/或乳酸盐。所述戊糖的转化实际上只产生C3化合物,即,所述转化通过同型发酵途径进行,该C3化合物可以转化成乳酸和/或乳酸盐。中度嗜热芽孢杆菌种是能够在30-65℃生长的细菌菌株。进一步的价值是所述发酵是厌氧进行的。在厌氧发酵的情况中,可以容易地以工业规模进行该过程,因为不需要氧供给,例如通过大规模的搅拌设备。在此的实例是凝结芽孢杆菌(Bacillus coagulans)和史氏芽孢杆菌(Bacillus smithii)及其遗传修饰的乳酸生产种。这些类型的微生物的营养需求比乳杆菌低。这些类型的微生物另外的优势是较高的生长温度(乳杆菌种生长温度至多为50℃)使其更容易避免工业规模发酵系统的侵染。因此,本发明涉及制备乳酸的方法,其中通过厌氧发酵的中度嗜热芽孢杆菌种纯乳酸发酵含有戊糖的底物。
根据发酵生成乳酸和/或乳酸盐的底物的成本和供给来选择底物。通常低价供给的戊糖来自半纤维素。通过用蒸汽和/或酸或碱处理从半纤维素原料中释放出木糖、阿拉伯糖和其它戊糖。该处理过程中也分离出较小量的其它糖,如葡萄糖,也通过中度嗜热芽孢杆菌发酵生成乳酸和/或乳酸盐。
木质纤维底物包括纤维素、半纤维素和木质素。通过蒸汽和/或弱酸或碱处理可以使这些类型的底物可水解。当底物包括纤维素原料时,纤维素可以同时或分开水解成糖,并发酵成乳酸。通常由于半纤维素比纤维素更易于水解成糖,优选首先预水解半纤维素原料,分离出可溶性戊糖,然后水解纤维素。水解可以是酶促进行的(纤维素酶用于纤维素,而半纤维素酶用于半纤维素)或通过酸处理化学进行。使用中度嗜热芽孢杆菌可以将戊糖和己糖两者同时或分别发酵成乳酸和/或乳酸盐。如果期望这样,可以通过不同的微生物将己糖发酵成乳酸和/或乳酸盐,即在混合培养物中使用如酵母、真菌或其它已知乳酸生产生细菌,如乳杆菌种和不同于戊糖发酵所用菌的芽孢杆菌种。
形成乳酸和/或乳酸盐的发酵条件本身是已知的,描述于WO01/27064,WO99/19290,和WO98/15517中。因此,温度为0至80℃,而pH(随着乳酸形成而降低)为3至8。通常pH低于5是理想的,随着乳酸部分形成,然后以其游离酸形式替代盐形式而存在。而且,在低pH时受到其它微生物污染的危险较小。许多已知类型设备中的任一种都可以用于根据本发明的发酵中。
可以以生物纯培养物使用根据本发明的微生物或于混合培养物中与其它乳酸生产微生物一起使用。通常生物纯培养物更易于优化,但是混合培养物能够利用另外的底物。也可以将酶加入发酵容器中来帮助底物降解或提高乳酸生产。例如,可以加入纤维素酶将纤维素降解成葡萄糖,同时通过微生物发酵葡萄糖生成乳酸。同样,可以加入半纤维素酶来降解半纤维素。如上所述,还可以在发酵前进行所述的水解(任选地通过酶)。
含有中度嗜热芽孢杆菌的发酵培养液培养物对其它微生物污染是相对抗性的。尽管如此,优选消除加入中度嗜热杆菌的底物中先前存在的有害微生物或使其丧失能力。这可以通过常规技术如过滤、巴氏杀菌和灭菌来完成。
用于根据本发明方法中的中度嗜热杆菌在所谓化学限定的培养基中和含有不确定化合物,如酵母提取物、蛋白胨、胰蛋白胨、其它肉提取物和复合氮源的培养基中都能生长。优选使用化学限定的培养基,因为其生成较少杂质的乳酸和/或乳酸盐。
发酵后,通过从水溶液中分离乳酸和/或乳酸盐的许多已知常规技术中的任一种从发酵培养液中分离出乳酸和/或乳酸盐。可以在分离前除去底物或微生物(生物质)颗粒来提高分离效率。可以通过离心、过滤、絮凝、浮选或膜滤来进行所述的分离。例如可以从WO01/38283获知,其中描述了通过发酵制备乳酸的连续方法。而该说明书中公开的方法涉及批量生产,全部或部分过程可以连续进行。为了在发酵罐中保留微生物,可以从发酵流体中分离固体颗粒。或者,可以固定化微生物将其保留在发酵罐中或提供更容易的分离。
从发酵培养液中分离乳酸和/或乳酸盐后,可以将产品接受一个或多个纯化步骤,如提取、蒸馏、结晶、过滤、用活性炭等等处理。任选地在处理后,可以将各种残余物流循环至发酵容器或之前进行的任何纯化步骤中。
通过以下非限制性实施例进一步说明本发明。
实施例1通过中度嗜热芽孢杆菌从戊糖生成乳酸材料和方法培养基用于史氏芽孢杆菌DSM 459和460(从德国培养物保藏中心获得DSM 菌株)生长的酵母提取物培养基每升含有3.5g DAS(联胺硫酸盐),2g DAP(联胺磷酸盐),10g酵母提取物并用10g BIS-TRIS(二[2-羟甲基]亚氨基三[羟甲基]甲烷)缓冲。在使用前将培养基高压灭菌。以终浓度为3%的D-核糖、D-木糖、D-阿拉伯糖或葡萄糖用作碳源。将碳源过滤灭菌并分开加入。用HCl调培养基pH至6.6-6.7。所述用于史氏芽孢杆菌的酵母提取物培养基可以用于凝结芽孢杆菌DSM2314的生长,然而含有1g/l而非10g/l的酵母提取物。
用于史氏芽孢杆菌DSM2319和凝结芽孢杆菌DSM2314生长的最小培养基每升含有2gDAP,3.5gDAS,10gBIS-TRIS,0.5gKCl和15mgMgCl2。用HCl将培养基的pH调节至6.8。在使用前将培养基高压灭菌。终浓度为3%的D-核糖、D-木糖、D-阿拉伯糖或葡萄糖用作碳源。将碳源、生长因子和微量元素过滤灭菌并分开加入。终浓度为0.024mg/L生物素,0.012mg/L硫胺素,0.02g/L蛋氨酸,0.05g/L酵母提取物,100μl微量元素,1g/1CaCl2。每100ml微量元素含有0.36gFeCl3,0.3g MnCl2,0.24g CoCl2,0.12g ZnCl2。
乳酸生产的生长条件将来自-80℃甘油储液的所有细菌在使用葡萄糖(5%w/w)作为碳源的含有10g/l脱乙酰吉兰糖胶(gelrite)(吉兰糖胶,Sigma)的酵母提取物培养基上平板培养。平板在厌氧罐中46℃培养24-48小时。此后,将厌氧培养物接种于无菌10ml管中葡萄糖作为碳源(3%w/w)的酵母提取物培养基上。培养物在54℃培养24小时。此后将2%培养物转移至含有以葡萄糖、木糖、核糖或阿拉伯糖作为碳源的最小培养基的管中。在54℃将管孵育48小时。第二次转移(2%)至新鲜培养基并在54℃培养48小时后,取样检测生物量、pH和有机酸产量。为了测定生物质产量,在分光光度计610nm处相对于软化水测量光密度。作为(乳)酸产量的指标,测量细胞培养液的pH。此后通过离心(10分钟,8000rmp)收集细胞,上清液通过0.45μm滤器过滤并保存于4℃用于进一步分析。
有机酸、乙醇和糖的分析使用衍生和GLC测量有机酸(乳酸、乙酸、甲酸、琥珀酸)和乙醇。
通过GLC测量乳酸的光学纯度。将D-和L-乳酸盐甲基化成甲基乳酸盐并通过手性柱上的顶空分析来测量。
用包括Carbopac PA-1柱和PAD(脉冲安培检测型ED40)检测仪的Dionex型DX500来分析戊糖,使用1.0ml/分钟的流量。
结果史氏芽孢杆菌和凝结芽孢杆菌在含有3%(w/w)阿拉伯糖、核糖或木糖的酵母提取物和最小培养基上54℃厌氧生长(表1,表2)。所有菌株进行戊糖纯乳酸发酵,主要生产L-乳酸。没有发现可检测含量的乙酸。产生的L-乳酸的光学纯度为96.7-99.7%。所有情况中其它有机酸(甲酸、琥珀酸)和乙醇都低于可检测含量0.05%w/w。残余糖的分析显示了木糖、核糖和阿拉伯糖浓度根据所用碳源的降低(数据未显示)。
表1嗜热芽孢杆菌转移两次后在酵母提取物培养基上54℃从戊糖获得的酸产量
1.可检出含量为0.05%。
2.未检测到。
表2嗜热芽孢杆菌转移两次后在最小培养基上54℃从戊糖获得的酸产量。葡萄糖用作对照。
1.可检出含量为0.05%。
2.未检测到。
实施例2凝结芽孢杆菌DSM 2314的木糖纯乳酸发酵材料和方法菌株、培养基和发酵条件所用微生物为凝结芽孢杆菌DSM2314。菌株保存于-80℃甘油储液中。生物反应器(3L Applikon)含有1.51具有以下组成的培养基2g/l DAP,3.5g/l DAS,10g/l BIS-TRIS和0.5g/l KCl。
将含有培养基的生物反应器在121℃(1.2巴)高压灭菌20-30分钟。将维生素和微量元素溶液过滤灭菌并在灭菌后分别加入生物反应器中。生长因子的终浓度为20mg/l DL-蛋氨酸,24mg/l生物素,12mg/l硫胺素,15mg/l MgCl2·2H2O,0.1g/l CaCl2和1.5ml微量元素。微量元素每100ml含有0.36g FeCl3,0.3g MnCl2,0.24g CoCl2,和0.12gZnCl2。在灭菌后将D-木糖分开加入至50g/l的终浓度。用浓HCl溶液将培养基的pH调节至6.5。在发酵过程中,且由于发酵50小时后达到低生物量浓度,将酵母提取物加入至10g/l的终浓度。
接种物(~110ml)在含有1%D-木糖的发酵培养基中50℃生长过夜。在木糖培养基中两次转移后使用该接种物。
用自动添加20%(w/v)KOH溶液来维持pH。在54℃,pH6.4和250-300rmp搅拌速度下进行发酵。用水浴Lauda E100进行温度的控制,而通过ADI 1020生物处理器进行pH读数/对照数据。通过在线数据采集FM V5.0处理所有的数据(pH和碱消耗)。
在接种之前和之后取样。在发酵过程中定时取样5-30ml用于0D测定、细胞干重(CDW)测定和L(+)和D(-)乳酸、木糖和可能副产品(乙酸盐)的分析。将样品离心(4-6℃,6000-12000rmp 5-10分钟)并于-21℃回收/保存上清直至进一步分析。
生物质产量的测定通过原始称重的0.45μm微孔滤器获得干物质。过滤15至20ml样品,用10ml软化水洗涤并在105℃干燥1-2天。滤器终重量可以测量g/l的干细胞(CDM)。
糖、有机酸和乙醇的分析使用Ferric-orcinol方法通过比色试验测定样品的残余木糖浓度,方法描述于Chaplin,M.F.,Kennedy,J.F.(1987).Carbohydrateanalysisa practical approach.IRL Press Limited(ISBN0-947946-68-3)。
(1)用包括Carbopac PA-1柱和PAD(脉冲测电流检测型ED40)的检测仪Dionex型DX500来分析显示于表3的木糖浓度,使用1.0ml/分钟的流量。
通过酶方法进行样品的L(+)乳酸盐分析,酶方法是使用葡萄糖氧化酶定量葡萄糖的Boehringer’s GOD-PAP方法的修改方案。L(+)乳酸氧化酶将L(+)乳酸转化成丙酮酸盐和过氧化氢。过氧化氢在过氧化物酶存在下与4-氨基非那宗和苯酚反应生成水溶性的红色产品,可以在分光光度计540nm下测量。
显示于表3的有机酸(乳酸、乙酸、甲酸、琥珀酸)和乙醇使用衍生和GLC测量。通过GLC测定乳酸的光学纯度。将D-和L-乳酸盐甲基化至甲基乳酸盐并通过手性柱上的顶空分析来测定。
结果菌株凝结芽孢杆菌DSM2314在3升发酵罐中于54℃生长于50g/l木糖的最小培养基中(

图1)。发酵过程中,由于发酵50小时后达到低生物量浓度,将酵母提取物加入至终浓度10g/l。约105小时后耗尽了培养基中的木糖,并主要转化成乳酸(35g/l)和仅有低浓度的乙酸(1g/l)(表3)。产生的乳酸光学纯度为99%。其它有机酸的产量都低于可检测含量。
结果表明了凝结芽孢杆菌对戊糖进行纯乳酸发酵的能力。非最优木糖发酵中凝结芽孢杆菌的最大乳酸产率为1.7g/l/h,如通过在线数据采集软件所观察的。
表3凝结芽孢杆菌DSM 2314从50g/l木糖获得的有机酸产量
可检测含量为0.5g/l。
权利要求
1.生产乳酸和/或乳酸盐的方法,其中通过厌氧发酵的中度嗜热芽孢杆菌纯乳酸发酵含有戊糖的底物。
2.根据权利要求1的方法,其中含有戊糖的底物包含木糖。
3.根据权利要求1或2的方法,其中中度嗜热芽孢杆菌选自凝结芽孢杆菌和/或史氏芽孢杆菌。
4.根据在前任一权利要求的方法,其中含有戊糖的底物包含阿拉伯糖。
5.根据在前任一权利要求的方法,其中底物包含葡萄糖。
6.根据在前任一权利要求的方法,其中通过中度嗜热杆菌和另一乳酸生产微生物的混合物进行发酵。
7.根据在前任一权利要求的方法,其中从发酵培养液中分离出生成的乳酸和/或乳酸盐。
8.根据在前任一权利要求的方法,其中中度嗜热杆菌生长于化学成分确定的培养基中。
9.根据权利要求8的方法,其中在从中分离乳酸和/或乳酸盐之前,从发酵培养液中除去生物质。
10.根据权利要求8-9任一项的方法,其中将生成的乳酸和/或乳酸盐从发酵培养液中分离出来后接受一个或多个纯化步骤。
全文摘要
本发明涉及从含有戊糖,尤其是含有木糖的底物生产乳酸和/或乳酸盐的方法。通常,乳酸是从葡萄糖、淀粉、液化淀粉或蔗糖商业生产的。目前,这些底物是乳酸生长成本价格的重要组成部分。木质素生物质提供了具有价格吸引力的替代物用作乳酸生物生产的底物,因为其容易获得,没有竞争食品价值,且没有淀粉或蔗糖贵。我们已经发现中度嗜热杆菌种能够将戊糖,尤其是木糖发酵成对映体纯的乳酸和/或乳酸盐。所述的戊糖转化实际上只生成C
文档编号C12R1/07GK1735692SQ200480002160
公开日2006年2月15日 申请日期2004年1月12日 优先权日2003年1月13日
发明者R·奥托 申请人:普拉克生化公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1