益生精氨酸分解口服组合物以及制备和使用益生精氨酸分解口服组合物的方法_5

文档序号:9290576阅读:来源:国知局
)影响ADS体内表 达的宿主和生物膜微型环境因素。例如,龋齿活跃受试者的生物膜表现为处于-有利于高 ADS表达或提供降低ADS活性的一些抑制因素。因此,具有本质上高表达ADS表型的精氨酸 分解临床菌株,和其中ADS表达对已知引起口腔龋齿的条件诸如糖可用性和酸性环境不敏 感的那些,具有在益生疗法中预防和控制口腔龋齿的用途。
[0125] 本研究揭示了,在口腔精氨酸分解中受试者内的变化的微生物基础比先前理解的 更复杂;不仅口腔生物膜的精氨酸分解潜力可与细菌的某些菌株的携带相关,而且精氨酸 分解物种显示一定范围的ADS活性作为环境因素的函数。在理解龋齿作为生态驱动的疾病 的方面,结果是高度显著的,由支持,通过缓和菌斑pH并减少龋齿的风险,高表达ADS的菌 株可协同地积极地影响菌斑生态。本研究扩大了对口腔生成碱细菌的多样性以及它们在口 腔健康和疾病中的作用的知识。
[0126] 实施例2
[0127] ADS活性和种间的拮抗作用
[0128] 引言
[0129] 本实施例描述确定精氨酸分解分离株对变形链球菌的拮抗性相互作用是否可与 精氨酸分解潜力相关。
[0130] 方法和材料
[0131] 临床分离株及筛选。如以上对实施例1所述的获得样品和铺板。
[0132] 细菌菌株、生长条件和试剂。如以上对实施例1所述的保持细菌菌株。
[0133] 16S rDNA测序和生物化学测定。如以上对实施例1描述的测序和测定。
[0134] 种间拮抗作用。为检查精氨酸分解分离株对致龋细菌变形链球菌的拮抗性相互 作用,调整BHI肉汤培养基中的变形链球菌和ADS阳性分离株的过夜培养物至相同光密 度(0D600 = 0. 5)。然后,将变形链球菌和ADS阳性分离株的6 μ 1等份彼此相邻接种在 TY-25mM半乳糖琼脂板上,如下:(i)首先接种ADS阳性分离株,24h后随后接种变形链球 菌;(ii)首先接种变形链球菌,24h后随后接种ADS阳性分离株,和(iii)同时接种ADS阳 性分离株和变形链球菌。将板培养另一个24h,在其间监测相互作用。细菌在37°C下伴随 5 % 0)2和95 %空气生长。使用AlphaEaseFC软件测量生长抑制区域。
[0135] 结果
[0136] 种间拮抗作用。为了研究ADS活性与种间拮抗作用的相关性,使用板抑制测定(表 2)检查由变形链球菌UA159与不同ADS活性分离株相互的拮抗作用。高度ADS活性分离株 显示在变形链球菌的存在下存活的能力。重要地,戈登链球菌、澳大利亚链球菌和血链球菌 的分离株显示了抑制变形链球菌UA159的生长的有效能力(表2和图4A-4D)。还值得注意 的是,许多ADS阳性分离株的生长不受变形链球菌抑制(图4A-4D)。因此,不仅口腔生物膜 的精氨酸分解潜力可与细菌的某些菌株的携带相关,而且精氨酸分解物种还显示抑制变形 链球菌、以及被变形链球菌抑制的一系列能力。
[0137] 表2:ADS阳性分离株对生长变形链球菌UA159的抑制效应。
[0138]
[0140] (**)当精氨酸分解分离株首先接种(在变形链球菌之前)时,细菌菌株的拮抗 活性水平比戈登链球菌DLl的更高;(-)精氨酸分解分离株受变形链球菌抑制;SD :标准偏 差。
[0141] 结论
[0142] 本研究揭示了,牙齿生物膜被多种精氨酸分解群落定殖,并且ADS表达在受试者 间的变化的基础可能大部分是由于ADS的调控中菌株内的可变性。共同地,结果支持,表达 高水平ADS的菌株通过缓和菌斑pH并直接拮抗已知龋齿病原菌的生长,可对菌斑生态具有 积极和协同效应。
[0143] 参考文献:
[0144] 以下参考文献通过引用以相关部分并入本文。
[0145] Aas JAjGriffen ALjDardis SRjLee AMjOlsen IjDewhirst FEjLeys EJjPaster BJ:Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol 2008;46:1407-1417.
[0146] Aas JAjPaster BJjStokes LNjOlsen IjDewhirst FE:Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 2005 ;43:5721-5732.
[0147] Becker MRjPaster BJjLeys EJjMoeschberger MLjKenyon SGjGalvin JLjBoches SKj Dewhirst FE, Griffen AL:Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 2002;40:1001-1009.
[0148] Burne R,Liu,Y,Zeng,L:Acid tolerance strategies of commensal and pathogenic oral streptococci. ; in: Society for General Microbiology Autumn 2010Meeting. Nottingham, UKj 2010.
[0149] Burne RA, Marquis RE:Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett 2000a ; 193:1-6.
[0150] Burne RA, Marquis RE:Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett 2000b ; 193:1-6.
[0151] Burne RA, Parsons,D. T.和Marquis,R. E. !Environmental variables affecting arginine deiminase expression in oral streptococci. Washington, DC, 1991.
[0152] Casiano-Colon A,Marquis RE:Role of the arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance. Appl Environ Microbioll988 ;54:1318-1324.
[0153] Clancy KA,Pearson Sj Bowen WHj Burne RA !Characterization of recombinant,ureolytic streptococcus mutans demonstrates an inverse relationship between dental plaque ureolytic capacity and cariogenicity. Infection and immunity 2000;68:2621-2629.
[0154] Corby PMjLyons-Weiler JjBretz WAjHart TCjAas JAjBoumenna TjGoss JjCorby AL,Junior HM,Weyant RJjPaster BJ:Microbial risk indicators of early childhood caries. J Clin Microbiol 2005;43:5753-5759.
[0155] Crielaard WjZaura EjSchuller AAjHuse SMjMontijn RCjKeijser BJ:Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Med Genomics 2011 ; 4:22.
[0156] Dawes C,Dibdin GH:Salivary concentrations of urea released from a chewing gum containing urea and how these affect the urea content of gel-stabilized plaques and their ph after exposure to sucrose. Caries Res 2001 ; 35:344-353.
[0157] Dewhirst FE, Chen T,Izard J,Paster BJ,Tanner AC, Yu WH,Lakshmanan A,Wade WG:The human oral microbiome. J Bacteriol 2010;192:5002-5017.
[0158] Dong Y,Chen YY,Burne RA: Control of expression of the arginine deiminase operon of streptococcus gordonii by ccpa and flp. J Bacteriol 2004 ; 186:2511-2514.
[0159] Gross ELj Leys EJj Gasparovich SR, Firestone ND, Schwartzbaum JA,Janies DA,Asnani K,Griffen AL:Bacterial 16s sequence analysis of severe caries in young permanent teeth. J Clin Microbiol 2010 ;48:4121-4128.
[0160] Kleinberg I:Biochemistry of the dental plaque. Advances in oral biology 1970 ;4:43-90.
[0161] Kleinberg I,Jenkins GN:The ph of dental plaques in the different areas of the mouth before and after meals and their relationship to the ph and rate of flow of resting saliva. Arch Oral Biol 1964;72:493-516.
[0162] Liu Y,Burne RA:Mu11ipIe two-component systems modulate alkali generation in streptococcus gordonii in response to environmental stresses.J Bacteriol2009 ; 191:7353-7362.
[0163] Liu Y,Burne RA:The major autolysin of streptococcus gordonii is subject to complex regulation and modulates stress tolerance, biofilm formation, and extracellular-DNA release. J Bacteriol 2011 ;193:2826-2837.
[0164] Liu Y,Dong Y,Chen YY,Burne RA: Environmental and growth phase regulation of the streptococcus gordonii arginine deiminase genes. Appl Environ Microbiol2008 ;74:5023-5030.
[0165] Mager DLj Ximenez-Fyvie LA, Haffajee ADj Socransky SS:Distribution of selected bacterial species on intraoral surfaces. J Clin Periodontol 2003 ; 30:644-654.
[0166] Margolis HCj Duckworth JH,Moreno EC:Composition and buffer capacity of pooled starved plaque fluid from caries-free and caries-susceptible individuals. J Dent Resl988a ;67:1476-1482.
[0167] Margolis HCj Duckworth JH,Moreno EC:Composition and buffer capacity of pooled starved plaque fluid from caries-free and caries-susceptible individuals. J Dent Resl988b ;67:1476-1482.
[0168] Marquis RE:Oxygen metabolism,oxidative stress and acid-base physiology of dental plaque biofilms. Journal of industrial microbiology 1995 ;15:198-207.
[0169] Marquis RE, Bender GRj Murray DR,Wong A:Arginine deiminase system and bacterial adaptation to acid environments.Appl Environ Microbiol 1987a ; 53:198-200.
[0170] Marquis RE, Bender GRj Murray DR,Wong A:Arginine deiminase system and bacterial adaptation to acid environments.Appl Environ Microbiol 1987b ; 53:198-200.
[0171] Nascimento MM,Gordan VV,Garvan CW,Browngardt CM,Burne RA:Correlations of oral bacterial arginine and urea catabolism with caries experience.Oral Microbiol Immunol2009a ;24:89-95.
[0172] Nascimento MM,Gordan VV,Garvan CW,Browngardt CM,Burne RA:Correlations of oral bacterial arginine and urea catabolism with caries experience.Oral Microbiol Immunol2009b ;24:89-95.
[0173] Nascimento MMj Liu Y,Kalra R,Perez Sj Adewumi A, Xu X,Burne RA:Arginine metabolism may confer caries resistance in children. J Dent Res 2012 ;91:691.
[0174] Paster BJjBoches SKjGalvin JLjEricson REjLau CNjLevanos VA,Sahasrabudhe A,Dewhirst FE:Bacterial diversity in human subgingival plaque. J Bacteriol2001 ; 183:3770-3783.
[0175] Peterson P:Research for oral health in developing
当前第5页1 2 3 4 5 6 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1