一种载药纳米纤维膜及其应用的制作方法

文档序号:11812036阅读:1406来源:国知局
一种载药纳米纤维膜及其应用的制作方法与工艺

本发明属于纤维膜及其应用领域,特别涉及一种载药纳米纤维膜及其应用。



背景技术:

静电纺丝技术是可纺性的聚合物溶液在高压电场的作用下,带电的聚合物液滴在喷射头形成Taylor锥,当电场力足够大时,停留在喷射头上的液滴就会克服表面张力形成喷射细流,经过拉丝,劈裂,固化,最终在接收装置上得到纳米级纤维膜。此方法因其简单、通用、易操作等优点被广泛应用于纳米纤维领域。目前,静电纺丝纤维技术逐渐成熟,已经广泛的应用于过滤、复合材料、生物医药以及伤口敷料等方面。用静电纺丝法制得的载药纺丝膜可应用在伤口辅料上,因纳米纤维具有较高的比表面积和微纳米尺寸,能有效的增大药剂的表面积;其三维多孔结构有利于细胞粘附和增殖;透气透湿性好利于细胞生长等等。此外,一些纳米纤维膜能够有效阻止药物的突释现象,提高药物的利用率。

聚乳酸己内醋(PLCL),由PLA和CL的开环聚合而成。聚左旋乳酸生物相容性好,是一种可生物降解及成型性能优良的材料。聚已内酯也是一种可生物降解的聚合物,质地较韧,有黏性,具有优良的生物相容性和力学性能。聚乳酸和聚己内脂可通过一步聚合方法得到它们的共聚物,通过改变PLLA和PCL链段的比例可有效控制产物的断裂强度、断裂伸长和降解速率,既可以克服PLA材料的脆性,又可以很好的控制降解速率。

环丙沙星又名丙氟哌酸,是一种化学合成的第三代氟喹诺酮类药物,这类药物包括诺氟沙星(NOR),恩诺沙星(ENR),和氧氟沙星(OFL)等,但环丙沙星的使用更为广泛。



技术实现要素:

本发明所要解决的技术问题是提供一种载药纳米纤维膜及其应用,本发明纳米膜制作简单,具有良好的抗菌性和生物相容性,在伤口辅料方面具有巨大应用潜力。

本发明的一种载药纳米纤维膜,所述载药纳米纤维膜为载药聚乳酸己内酯PLCL纳米纤维膜,其中药物为抗菌性药物环丙沙星;其中聚乳酸己内酯PLCL(PCL:PLLA=1:1(摩尔比))、抗菌性药物环丙沙星的质量比为5-15:1。

所述载药聚乳酸己内酯PLCL纳米纤维膜由以下方法制备:

将聚乳酸己内酯PLCL溶于六氟异丙醇HFIP中,然后加入抗菌性药物环丙沙星,得到纺丝液,然后静电纺丝,20-30℃干燥12-24h,得到载药聚乳酸己内酯PLCL纳米纤维膜。

所述聚乳酸己内酯PLCL溶于六氟异丙醇HFIP中的浓度为8-12%(w/v)。

所述纺丝液中抗菌性药物环丙沙星在PLCL中的质量百分浓度为8-12%(w/w)。

所述静电纺丝具体为:用注射器抽取纺丝液,固定在静电纺装置上,调节纺丝参数进行电纺,喷出流速为0.5-1mL/h,电压为10-15kV,接收距离为25-30cm,纺丝时间为3-6h,接收装置为铝箔,并在铝箔上放置15个圆形载玻片收集。

本发明的一种载药纳米纤维膜的应用,载药纳米纤维膜作为伤口辅料的应用。

载药纳米纤维膜的性能测试:

(1)接触角的测试:剪取5个带有载药纳米纤维膜的圆形玻片,将铝箔揭去,进行接触角的测试;

将载药纳米纤维膜水平固定在载玻片上,保持表面平整,水平放在载物台上,调整蒸馏水液滴约为3μL,滴在样品表面平整处,在5s内记录液滴的接触角变化,计算出接触角的平均值。

(2)药物释放的测试:称取0.06mg的载药纳米纤维膜,浸泡在20mL的PBS缓冲溶液中,制备四个平行样,间隔一定时间取样,进行药物释放的测试;

其中取样时间为四天,第一天每隔1h取样,第二天每隔4h取样,第三、四天每隔8h取样;取样时,每次取1mL介质溶液,同时加入1mL新鲜的PBS溶液,以保持介质溶液的体积不变,样品的吸光度用UV-1800型紫外分光光度计测量。

(3)抗菌测试:剪取4个带有圆形玻片的载药纳米纤维膜,分别放在含有不同细菌的固体培养基上进行抗菌测试;

细菌分别选取的是金色葡萄球菌和大肠杆菌。

通过对纤维膜的接触角、抗菌和MTT性能测试,确定了PLCL作为伤口辅料的潜能

有益效果

(1)本发明的纤维膜可降解,具有抗菌性;

(2)本发明的载药纤维膜的亲水性好,生物相容性好,无细胞毒性。

附图说明

图1为未载药的PLCL膜的SEM图(a)和直径分布直方图(b);

图2为载药的PLCL膜的SEM图(a)和直径分布直方图(b);

图3为未载药的PLCL膜的接触角图;

图4为载药的PLCL膜的接触角图;

图5环丙沙星释放曲线;

图6大肠杆菌(a)和金黄色葡萄球菌(b)的抑菌圈。

具体实施方式

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

实施例1

(1)称取0.303g PLCL(PCL:PLLA=1:1)溶于3mL六氟异丙醇(HFIP)中,用磁力搅拌器搅拌24h,直至溶质在溶剂中完全溶解,得到PLCL纺丝液;

(2)用5mL注射器抽取上述纺丝液,固定在静电纺装置上,调节纺丝参数进行电纺,喷出流速为1mL/h,静电压为14kV,接收距离为25cm,所处环境温度为25℃,湿度为40-50,纺丝时间为3h,得到载药PLCL纳米纤维膜。

(3)将收集到的纳米膜放入真空干燥箱25℃中干燥24h,即得到PLCL纳米纤维膜。

(4)依照以上步骤得到未载药的PLCL纤维膜,电镜如图1,从图中可见纤维无串珠出现,在节点处亦无粘连现象,纤维表面较光滑,利用软件image J做出直径分布图可知,纤维直径分布在550-800nm处,平均直径为670.28nm,纤维直径分布均匀。

实施例2

(1)秤取0.302g PLCL(PCL:PLLA=1:1)溶于3mL六氟异丙醇(HFIP)中;

(2)在上述溶液中加入0.031g环丙沙星,在40℃条件下,用磁力搅拌器搅拌24h,直至溶质在溶剂中完全溶解,得到PLCL纺丝液;

(3)用5ml注射器抽取上述纺丝液,固定在静电纺装置上,调节纺丝参数进行电纺,喷出流速为0.9mL/h,静电压为13kV,接收距离为27cm,所处环境温度为25℃,湿度为40-50,纺丝时间为3h,得到载药PLCL纳米纤维膜。

(4)将收集到的纳米膜放到真空干燥箱25℃中干燥24h,即得到载药的PLCL纳米纤维膜。

(5)依照以上步骤所得到载药PLCL纤维膜,电镜如图2,图中可见,纤维无串珠出现,在节点处出现些许粘连现象,纤维直径分布较均匀,利用软件image J分析,可知载药PLCL纳米纤维膜的纤维直径范围为400-700nm,平均直径为582.50nm,载药后PLCL纤维直径变小,粘连及纤维上出现的不光滑的地方是负载的药物环丙沙星。

实施例3

(1)称取0.303g PLCL(PCL:PLLA=1:1),溶于3mL六氟异丙醇(HFIP)中,用磁力搅拌器搅拌24h,直至溶质在溶剂中完全溶解,得到PLCL纺丝液;

(2)用5mL注射器抽取上述纺丝液,固定在静电纺装置上,接收装置选用铝箔,并在铝箔上放置15个圆形载玻片,调节纺丝参数进行电纺,喷出流速为1mL/h,电压为14kV,接收距离为27cm,纺丝时间为3h,所处环境温度为25℃,湿度为40-50;

(3)将收集到的纤维膜放在真空干燥箱25℃中干燥24h,即得到未载药的PLCL纳米纤维膜;

(5)剪取5个带有纤维膜的圆形玻片,将铝箔揭去,进行接触角的测试,图3是未载药PLCL纤维膜的接触角图。图中可见未载药的纤维膜的接触角较大,平均接触角为134.10°,说明PLCL纤维膜亲水性差,静电纺丝并没有改变PLCL的疏水性。

实施例4

(1)称取0.305g PLCL(PCL:PLLA=1:1)溶于3mL六氟异丙醇(HFIP)中,加入0.031g环丙沙星,用磁力搅拌器搅拌24h,直至溶质在溶剂中完全溶解,得到载药PLCL纺丝液;;

(2)用5ml注射器抽取上述纺丝液,固定在静电纺装置上,接收装置选用铝箔,并在铝箔上放置15个圆形载玻片,调节纺丝参数进行电纺,喷出流速为1mL/h,电压为13kV,接收距离为29cm,纺丝时间为3h,所处环境温度为25℃,湿度为40-50;

(4)将收集到的纤维膜放在真空干燥箱25℃中干燥24h,即得到载药的PLCL纳米纤维膜;

(5)剪取5个带有纤维膜的圆形玻片,将铝箔揭去,进行接触角的测试,得到如图4所示的载药PLCL纤维膜的接触角,图中可见与未载药的纤维膜相比,接触角明显变小,亲水性增加,这主要是因为环丙沙星是亲水性药物,药物的载入使纤维由疏水性变为亲水性,更加利于细胞生长。

实施例5

(1)称取0.504g PLCL(PCL:PLLA=1:1)溶于5mL六氟异丙醇(HFIP)中,加入0.052g环丙沙星,用磁力搅拌器搅拌24h,直至溶质在溶剂中完全溶解,得到载药PLCL纺丝液;;

(2)用5ml注射器抽取上述纺丝液,固定在静电纺装置上,接收装置选用铝箔,调节纺丝参数进行电纺,喷出流速为1mL/h,电压为13kV,接收距离为27cm,纺丝时间为6h,所处环境温度为25℃,湿度为40-50;

(4)将收集到的纤维膜放在真空干燥箱中25℃干燥24h,即得到载药的PLCL纳米纤维膜;

(5)准确称取0.06mg的纤维膜,浸泡在20mL的pH=7.0的PBS缓冲溶液中,设置四个平行实验,均置于37℃、100次/min的恒温震荡器中摇晃4天;

(6)第一天每隔1h取样,第二天每隔4h取样,第三、四天每隔8h取样,且每次取1mL介质溶液,同时加入1mL新鲜的PBS溶液,以保持介质溶液的体积不变;

(7)将所取样品用UV-1800型紫外分光光度计,在环丙沙星的最大吸收波长277nm处,分别测定所取样品的吸光度,药物释放曲线如图5,可见随着时间的增加,释药率不断的增大,由图中可看出,在5h以后药物开始出现缓慢释放现象,直到22h左右,药物释放达到最大,为88%左右,而后维持一个缓慢释放的效果。

实施例4

(1)称取0.501g PLCL(PCL:PLLA=1:1)溶于5mL六氟异丙醇(HFIP)中,加入0.051g环丙沙星,用磁力搅拌器搅拌24h,直至溶质在溶剂中完全溶解,得到载药PLCL纺丝液;

(2)用5mL注射器抽取上述纺丝液,固定在静电纺装置上,接收装置选用铝箔,并在铝箔上放置15个圆形载玻片,调节纺丝参数进行电纺,喷出流速为1mL/h,电压为14kV,接收距离为28cm,纺丝时间为5h,所处环境温度为25℃,湿度为40-50;

(4)将收集到的纤维膜放在真空干燥箱25℃中干燥24h,即得到载药的PLCL纳米纤维膜;

(5)剪取4个带有纤维膜的圆形玻片,将铝箔揭去,放在预先配置好的分别含有大肠杆菌和金黄色葡萄球菌的固体培养基上,置于恒温培养箱中培养24h,如图6,图中可见两种菌均具有明显的抑菌圈,载药纤维膜对金黄色葡萄球菌的抗菌效果与其对大肠杆菌的抗菌效果具有相同的规律,均出现明显的抑菌圈,抑菌圈大小在12-15mm范围内,说明所得到的纳米纤维膜具有良好的抗菌效果,运用在伤口辅料上。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1