半导体器件及其驱动方法

文档序号:2646769阅读:402来源:国知局
专利名称:半导体器件及其驱动方法
技术领域
本发明涉及一种具有以矩阵排列的多个像素的半导体器件及其驱动方法,半导体器件使用输入到多个像素的每个的视频信号(也称作图像信号或画面信号)显示图像。特 别地,本发明涉及一种具有检测和补偿将在每列中引起的缺损像素的功能的半导体器件及 其驱动方法。
背景技术
提出了一种驱动方法,其中能够在显示屏上显示的灰度级通过在一个像素中提供 多个子像素而增加(参考文献1 日本专利公开Heill-73158号)。例如,在参考文献1中, 一个像素由多个子像素构成,从而可以仅使用一个子像素发光和不发光表示的灰度级(在 下文也称作时间灰度级方法)可以与可以仅使用多个子像素的组合表示的灰度级组合(在 下文也称作面积灰度级方法,并且这种组合在下文也称作面积/时间灰度级方法)。因此, 在参考文献1中公开的像素可以增加使用面积/时间灰度级方法表示的灰度级。也提出了一种驱动方法,其中每个像素中发光元件的特性被检测以补偿发光元件 的退化。例如,提出这种显示设备和驱动方法,如果作为每个像素中发光元件特性的检测 结果存在任何退化的发光像素,发光元件的亮度使用输入到每个像素的视频信号补偿,从 而补偿由发光元件特性的变化而引起的图像老化(幻影)等(参考文献2 日本专利公开 2003-195813 号)。但是,在一个像素具有多个子像素的像素构造的常规驱动方法中,存在一个问题, 即如果像素在发货之前具有缺陷,不能采取任何特殊措施,这导致较低的成品率。此外,甚 至当显示设备开始使用之后像素具有缺陷,不能采取任何特殊措施。

发明内容
考虑到前述,本发明的目的在于提供一种半导体器件及其驱动方法,其中缺损像 素可以与正常像素类似的方法驱动。本发明的半导体器件包括多个像素,每个具有多个子像素;电源线和用于操作 多个像素的多个信号线;用于将信号输出到多个信号线的驱动电路;用于控制驱动电路的 信号输入电路;在检测的电流值显示异常值的情况下确定像素是否具有正常状态、缺损亮 点或者点缺陷(例如如果缺损亮点出现,电流值没有变化的情况,或者如果点缺陷等因发 光元件的阳极和阴极之间的短路而出现,电流值增加的情况),从而将补偿信号输出到信号 输入电路的补偿电路;以及检测当每个子像素点亮时流过电源线的电流值的电流值检测电 路。这样,包括当点亮时显示异常电流值的子像素的像素由从驱动电路输出的信号补偿。作 为补偿视频信号的方法,假设一个子像素具有点缺陷,例如,补偿以这种方式执行,即灰度级用除了缺损子像素之外的子像素表示。因此,低灰度级和中灰度级可以表示,虽然高灰度 级不能表示。同时,假设一个子像素具有缺损亮点,补偿以这种方式执行,即灰度级用除了 缺损子像素之外的子像素表示。因此,中灰度级和高灰度级可以表示,虽然低灰度级不能表 示。根据上述驱动方法,甚至当存在缺陷例如缺损亮点和点缺陷时,某一级别的灰度级可以 表示并且缺损像素可以变得较不引人注意,只要有效矩阵显示设备提供有多个子像素,以 及缺损像素的检测电路和补偿电路。根据本发明一方面的半导体器件包括多个像素,每个具有多个子 像素;电源线 和用于操作多个像素的多个信号线;用于将信号输出到多个信号线的驱动电路;用于控制 驱动电路的信号输入电路;在检测的电流值显示异常值的情况下确定像素是否具有正常状 态、缺损亮点或者点缺陷(例如如果缺损亮点出现,电流值没有变化的情况,或者如果点缺 陷等因发光元件的阳极和阴极之间的短路而出现,电流值增加的情况),从而将补偿信号输 出到信号输入电路的补偿电路;以及检测当每个子像素点亮时流过电源线的电流值的电流 值检测电路。这样,包括当点亮时显示异常电流值的子像素的像素由从驱动电路输出的信 号补偿。作为补偿视频信号的方法,假设一个子像素具有点缺陷,例如,补偿以这种方式执 行,即灰度级用除了缺损子像素之外的子像素表示。因此,低灰度级和中灰度级可以表示, 虽然高灰度级不能表示。同时,假设一个子像素具有缺损亮点,补偿以这种方式执行,即灰 度级用除了缺损子像素之外的子像素表示。因此,中灰度级和高灰度级可以表示,虽然低灰 度级不能表示。根据上述驱动方法,甚至当存在缺陷例如缺损亮点和点缺陷时,某一级别的 灰度级可以表示并且缺损像素可以变得较不引人注意,只要有效矩阵显示设备提供有多个 子像素,以及缺损像素的检测电路和补偿电路。注意半导体器件意思是包括晶体管或非线 性元件的器件。另外,并不是所有晶体管或非线性元件需要形成在SOI衬底、石英衬底、玻 璃衬底、树脂衬底等上。根据本发明一方面的半导体器件包括源极驱动器;栅极驱动器;第一源极信号 线;第二源极信号线;栅极信号线;电源线;像素;第一子像素;第二子像素;第一 TFT ;第 二 TFT ;第三TFT ;第四TFT ;具有一对电极的第一电容器;具有一对电极的第二电容器;具 有一对电极的第一发光元件;具有一对电极的第二发光元件;以及对应于具有该对电极的 第一发光元件的另一个电极,也对应于具有该对电极的第二发光元件的另一个电极的反电 极。源极驱动器将视频信号输出到第一源极信号线和第二源极信号线;栅极驱动器扫描栅 极信号线;以及电源线电连接到第一 TFT的源极或漏极的一个以及第二 TFT的源极或漏极 的一个;第一 TFT的源极或漏极的另一个电连接到第一发光元件的一个电极;第二 TFT的 源极或漏极的另一个电连接到第二发光元件的一个电极;第一 TFT的栅极电连接到第一电 容器的一个电极以及第三TFT的源极或漏极的一个;第二 TFT的栅极电连接到第二电容器 的一个电极以及第四TFT的源极或漏极的一个;第一电容器的另一个电极和第二电容器的 另一个电极电连接到电源线;第三TFT的源极或漏极的另一个电连接到第一源极信号线; 第四TFT的源极或漏极的另一个电连接到第二源极信号线;以及第三TFT的栅极和第四 TFT的栅极电连接到栅极信号线。因为第三TFT和第四TFT的每个用作开关元件,它可以用电气开关或机械开关代 替只要它可以控制电流。作为开关元件,晶体管、二极管以及由它们构成的逻辑电路中任何 一个可以使用。此外,第一 TFT和第二 TFT也可以用作开关元件。在这种情况下,如果第一TFT和第一发光元件的操作点以及第二 TFT和第二发光元件的操作点被设置以允许第一 TFT和第二 TFT在线性区域内操作,第一 TFT和第二 TFT的阈电压的变化将不影响显示;因 此,可以提供具有更高图像质量的显示设备。根据本发明一方面的半导体器件包括源极驱动器;栅极驱动器;第一源极信号 线;第二源极信号线;栅极信号线;电源线;像素;第一子像素;第二子像素;第一 TFT ;第
二TFT ;第三TFT ;第四TFT ;具有一对电极的第一电容器;具有一对电极的第二电容器;具 有一对电极的第一发光元件;具有一对电极的第二发光元件;以及对应于具有该对电极的 第一发光元件的另一个电极,也对应于具有该对电极的第二发光元件的另一个电极的反电 极。源极驱动器将视频信号输出到第一源极信号线和第二源极信号线;栅极驱动器扫描栅 极信号线;电源线电连接到第一 TFT的源极或漏极的一个以及第二 TFT的源极或漏极的一 个;第一 TFT的源极或漏极的另一个电连接到第一发光元件的一个电极;第二 TFT的源极 或漏极的另一个电连接到第二发光元件的一个电极;第一 TFT的栅极电连接到第一电容器 的一个电极以及第三TFT的源极或漏极的一个;第二 TFT的栅极电连接到第二电容器的一 个电极以及第四TFT的源极或漏极的一个;第一电容器的另一个电极和第二电容器的另一 个电极电连接到电源线;第三TFT的源极或漏极的另一个电连接到第一源极信号线;第四 TFT的源极或漏极的另一个电连接到第二源极信号线;以及第三TFT的栅极和第四TFT的 栅极电连接到栅极信号 线。因为第三TFT和第四TFT的每个用作开关元件,它可以用电气开关或机械开关代 替只要它可以控制电流。作为开关元件,晶体管、二极管以及由它们构成的逻辑电路中任何 一个可以使用。此外,第一 TFT和第二 TFT也可以用作开关元件。在这种情况下,如果第 一 TFT和第一发光元件的操作点以及第二 TFT和第二发光元件的操作点被设置以允许第一 TFT和第二 TFT在线性区域内操作,第一 TFT和第二 TFT的阈电压的变化将不影响显示;因 此,可以提供具有更高图像质量的显示设备。在本说明书中,“半导体器件”意思是可以通过利用半导体特性而起作用的任何器 件,并且包括具有由非线性元件例如本说明书中公开的晶体管和二极管构造的电路的任何 器件。在本发明中,“显示设备”意思是具有显示元件(例如液晶元件或发光元件)的设 备。注意,显示设备也包括显示板自身,其中包括显示元件例如液晶元件或EL元件的多个 像素与用于驱动像素的外围驱动电路一起形成在衬底上。另外,它可能包括通过丝焊或凸 点焊接,也就是通过覆晶玻璃(COG)焊接而提供在衬底上的外围驱动电路。此外,它可以包 括连接到显示板的软性印刷电路(FPC)或印刷线路板(PWB)(例如IC、电阻器、电容器、电感 器或晶体管)。这种显示设备也可以包括光学镜片例如起偏振片或阻滞挡板。此外,它可以 包括背光(其可以包括导光板、棱镜片、扩散片、反射片和光源(例如LED或冷阴极管))。另外,“发光设备”意思是具有自发光显示元件的显示设备,特别地,例如EL元件或 用于FED的元件。“液晶显示设备”意思是具有液晶元件的显示设备。注意,显示元件、显示设备、发光元件或发光设备可能是多种方式,并且可能包括 各种元件。例如,存在一种对比度由电磁函数改变的显示介质,例如EL元件(例如有机EL 元件,无机EL元件,或包含有机和无机材料的EL元件),发射电子元件,液晶元件,电子墨 水,栅状光阀(GLV),等离子显示器(PDP),数字微镜装置(DMD),压电陶瓷显示器以及碳纳米管。另外,使用EL元件的显示设备包括EL显示器;使用发射电子元件的显示设备包括场致发射显示器(FED),表面传导电子发射显示器(SED)等;使用液晶元件的显示设备包括液 晶显示器,透射液晶显示器,半透射液晶显示器以及反射液晶显示器;以及使用电子墨水的 显示设备包括电子纸。注意,本发明中的开关可能是各种方式。例如,存在电气开关和机械开关。也就是, 可以控制电流的任何事物可以使用,并且各种元件可以使用而不局限于某种元件。例如,它 可能是晶体管、二极管(例如PN 二极管,PIN 二极管,肖特基二极管,或连接有二极管的晶 体管)、半导体闸流管或由它们构造的逻辑电路。因此,在使用晶体管作为开关的情况下,其 极性(导电型)不特别限制,因为它仅用作开关。但是,当关断电流优选小时,具有小的关 断电流极性的晶体管期望地使用。作为具有小的关断电流的晶体管,存在提供有LDD区域 的晶体管,具有多栅极结构的晶体管等。此外,期望地,当用作开关的晶体管的源极端子的 电势更接近低电势端电源(例如Vss,GND或0V)时使用η通道晶体管,而当源极端子的电 势更接近高电势端电源(例如Vdd)时使用ρ通道晶体管。这帮助开关有效地操作,因为晶 体管的栅极-源极电压的绝对值可以增加。同样注意,CMOS开关也可以通过组合η通道和ρ通道晶体管而使用。当CMOS用 作开关时,电流可以在P通道或η通道晶体管的任何一个导通时流过开关。因此,它可以有 效地用作开关。例如,甚至当输入到开关的信号的电压高或低时,电压可以适当地输出。此 夕卜,因为用于导通/关闭开关的信号的电压摆动可以抑制,功耗可以抑制。在使用晶体管作为开关的情况下,开关具有输入端子(源极端子或漏极端子的一 个),输出端子(源极端子或漏极端子的另一个),以及用于控制电导的端子(栅极端子)。 同时,在使用二极管作为开关的情况下,开关可能不具有控制电导的端子。因此,用于控制 端子的导线数目可以抑制。适用于本发明的晶体管并不局限于某种类型,并且本发明可以利用使用由非晶硅 或多晶硅代表的非单晶半导体薄膜的薄膜晶体管(TFT),由半导体衬底或SOI衬底形成的 MOS晶体管,面结型晶体管,双极型晶体管,由化合物半导体形成的晶体管,有机半导体,或 碳纳米管,或其他晶体管。在使用非单晶半导体薄膜的情况下,它可能包含氢或卤素。另 夕卜,晶体管形成于其上的衬底并不局限于某种类型,并且晶体管可以形成在单晶衬底,SOI 衬底,玻璃衬底,塑料衬底,纸质衬底,玻璃纸衬底,石英衬底等上。作为选择,在衬底上形成 晶体管之后,晶体管可以移位到另一个衬底上。本发明中晶体管的结构可以是各种方式,从而并不局限于某种结构。例如,具有 两个或多个栅电极的多栅极结构可以使用。当使用多栅极结构时,提供通道区域串联的这 种结构,这意味着多个晶体管串联。因此,通过使用多栅极结构,关断电流可以减小而耐压 可以增加以提高晶体管的可靠性,甚至当漏极-源极电压在当晶体管在饱和区域中操作时 波动时,平顶特性可以获得而不引起漏极-源极电流波动那么多。另外,这种结构也可以使 用,即栅电极在通道上面和下面形成。通过使用栅电极在通道上面和下面形成的这种结构, 通道区域可以扩大以增加流过其中的电流的值,并且耗尽层可以容易形成以增加S值。当 栅电极在通道上面和下面形成时,提供多个晶体管并联的这种结构。另外,可以使用下面的任何一种结构栅电极在通道上形成的结构;栅电极在通 道下形成的结构;交错结构;逆向交错结构;以及通道区域划分成多个区域并且并联或串联的结构。另外,通道(或其一部分)可以覆盖源电极或漏电极。通过形成通道(或其一部分)覆盖源电极或漏电极的结构,可以防止电荷聚集在通道一部分中,否则这将导致不 稳定的操作。另外,LDD区域可以提供。通过提供LDD区域,关断电流可以减小而耐压可以 增加以提高晶体管的可靠性,甚至当漏极-源极电压在当晶体管在饱和区域中操作时波动 时,平顶特性可以获得而不引起漏极-源极电流的波动。在本发明中,可以使用各种类型的晶体管,并且这种晶体管可以在各种类型的衬 底上形成。因此,整个电路可以在玻璃衬底、塑料衬底、单晶衬底、SOI衬底或任何其他衬底 上形成。通过在同一衬底上形成整个电路,组件数目可以减少以削减成本,以及与电路组件 的连接数目可以减少以提高可靠性。作为选择,电路的一部分可以在一个衬底上形成,而电 路的其他部分可以在另一个衬底上形成。也就是,并不是整个电路必须在同一衬底上形成。 例如,电路的一部分可以由晶体管在玻璃衬底上形成,而电路的其他部分可以在单晶衬底 上形成,使得IC芯片由COG(覆晶玻璃)焊接连接到玻璃衬底。作为选择,IC芯片可以由 TAB(卷带自动接合)或印刷板连接到玻璃衬底。这样,通过在同一衬底上形成一部分电路, 组件数目可以减少以削减成本,以及与电路组件的连接数目可以减少以提高可靠性。另外, 通过在不同的衬底上形成消耗大量功率的具有高驱动电压或高驱动频率的部分,可以防止 功耗的增加。注意,栅极意思是栅电极和栅极导线(也称作栅极线,栅极信号线等)的一部分或 全部。栅电极意思是覆盖用于形成通道区域或LDD(轻掺杂漏极)区域的半导体的导电薄 膜,栅极绝缘薄膜夹在其间。栅极导线意思是用于连接不同像素的栅电极的导线,或者用于 连接栅电极和另一个导线的导线。注意,存在既用作栅电极又用作栅极导线的部分。这种区域可以称作栅电极或栅 极导线。也就是,存在栅电极和栅极导线不能彼此清楚区分的区域。例如,在通道区域覆盖 延伸的栅极导线的情况下,重叠区域既用作栅极导线又用作栅电极。因此,这种区域可以称 作栅电极或栅极导线。另外,由与栅电极相同的材料形成,同时连接到栅电极的区域可以称作栅电极。类 似地,由与栅极导线相同的材料形成,同时连接到栅极导线的区域可以称作栅极导线。严格 地说,这种区域可能不覆盖通道区域或者可能不具有连接到另一个栅电极的功能。但是,考 虑到制造边际,存在由与栅电极或栅极导线相同的材料形成,同时连接到栅电极或栅极导 线的区域。因此,这种区域也可以称作栅电极或栅极导线。另外,在多栅极晶体管的情况下,例如,晶体管的栅电极使用由与栅电极相同材料 形成的导电薄膜连接到另一个晶体管的栅电极。因为该区域将一个栅电极连接到另一个栅 电极,它可以称作栅极导线,并且它也可以称作栅电极,因为多栅极晶体管可以看作一个晶 体管。也就是,区域可以称作栅电极或栅极导线,只要它由与栅电极或栅极导线相同的材料 形成并且连接到那里。另外,将栅电极连接到栅极导线的导电薄膜的一部分,例如,也可以 称作栅电极或栅极导线。注意,栅极端子意思是栅电极的一部分,或者电连接到栅电极的区域的一部分。注意,源极意思是源极区域、源电极和源极导线(也称作源极线,源极信号线等) 的一部分或全部。源极区域是包含大量P型杂质(例如硼,或镓)或η型杂质(例如磷或 砷)的半导体区域。因此,它不包括包含微量P型杂质或η型杂质的区域,也就是LDD (轻掺杂漏极)区域。源电极是由不同于源极区域的材料形成,而电连接到源极区域的导电层。 注意,存在源电极和源极区域共同称作源电极的情况。源极导线是用于连接不同像素的源 电极的导线,或者将源电极连接到另一个导线的导线。注意,存在既用作源电极又用作源极导线的部分。这种区域可以称作源电极或源 极导线。也就是,存在源电极和源极导线不能彼此清楚区分的区域。例如,在源极区域覆盖 延伸的源极导线的情况下,重叠区域既用作源极导线又用作源电极。因此,这种区域可以称 作源电极或源极导线。另外,由与源电极相同的材料形成,同时连接到源电极的区域可以称作源电极。覆 盖源极区域的源极导线的一部分也可以称作源电极。类似地,由与源极导线相同的材料形 成,同时连接到源极导线的区域也可以称作源极导线。严格地讲,这种区域可能不具有连接 到另一个源电极的功能。但是,考虑到制造边际,存在由与源电极或源极导线相同的材料形 成,同时连接到源电极或源极导线的区域。因此,这种区域也可以称作源电极或源极导线。另外,将源电极连接到源极导线的导电薄膜的一部分可以称作源电极或源极导 线,例如。注意,源极端子意思是源极区域的一部分,源电极,或电连接到 源电极的区域的一 部分。同样注意,漏极具有与源极类似的结构。在本说明书中,“晶体管(TFT)导通”意思是高于阈电压的电压施加在晶体管的栅极 和源极之间,从而电流流过源极和漏极的状态。同时,“晶体管(TFT)关闭”意思是等于或低 于阈电压的电压施加在晶体管的栅极和源极之间,从而没有电流流过源极和漏极的状态。在本说明书中,“连接”意思是电连接。因此,在本说明书中公开的每种构造中,允 许电连接的另一个元件(例如开关、晶体管、二极管或电容器)可以插入具有预先确定连接 关系的元件之间,只要电连接不改变。不必说,元件可以连接而不在其间插入另一个元件, 因此电连接包括直接连接。在本说明书中,晶体管仅需要用作开关晶体管,并且η通道晶体管或ρ通道晶体管 可以使用,除非指定极性(导电型)。在本说明书中,“源极信号线”意思是连接到源极驱动器的输出,以便发送来自源 极驱动器用于控制像素操作的视频信号的导线。另外,在本说明书中,“栅极信号线”意思是连接到栅极驱动器的输出,以便发送来 自栅极驱动器用于控制视频信号写到像素的选择/不选择的扫描信号的导线。在本说明书中,发光元件发光而不管视频信号的输入的状态称作缺损亮点,而发 光元件不发光而不管视频信号的输入的状态称作点缺陷(缺损暗点)。在本发明中,当描述一个对象在另一个对象上形成时,这并不一定意味着该对象 与该另一个对象直接接触。在上面两个对象不彼此直接接触的情况下,再一个对象可以夹 在其间。因此,当描述层B在层A上形成时,这意思是层B与层A直接接触地形成的情况, 或者另一层(例如层C和/或层D)与层A直接接触地形成,然后层B与层C或D直接接触 地形成的情况。另外,当描述一个对象在另一个对象之上或上面形成时,这并不一定意味着 该对象与该另一个对象直接接触,并且再一个对象可以夹在其间。因此,当描述层B在层A 之上或上面形成时,这意思是层B与层A直接接触地形成的情况,或者另一层(例如层C和/或层D)与层A直接接触地形成,然后层B与层C或D直接接触地形成的情况。类似地,当 描述一个对象在另一个对象下面或之下形成时,这意思是对象彼此直接接触或不直接接触 的情况。本发明的显示设备包括多个像素,每个包括多个子像素;电源线和用于操作多个 像素的多个信号线;用于将信号输出到多个信号线的驱动电路;用于控制驱动电路的信号 输入电路;在检测的电流值显示异常值的情况下确定像素是否具有正常状态、缺损亮点或 者点缺陷(例如如果缺损亮点出现,电流值没有变化的情况,或者如果点缺陷等因发光元 件的阳极和阴极之间的短路而出现,电流值增加的情况),从而将补偿信号输出到信号输入 电路的补偿电路;以及检测当每个子像素点亮时流过电源线的电流值的电流值检测电路。 这样,包括当点亮时显示异常电流值的子像素的像素由从驱动电路输出的信号补偿。作为 补偿视频信号的方法,假设一个子像素具有点缺陷,例如,补偿以这种方式执行,即灰度级 用除了缺损子像素之外的子像素表示。通过这样执行补偿,甚至高灰度级可以表示。同时, 假设一个子像素具有缺损亮点,补偿以这种方式执行,即灰度级用除了缺损子像素之外的 子像素表示。通过这样执行补偿,甚至低灰度级可以表示。根据上述驱动方法,甚至当存在 缺陷例如缺损亮点和点缺陷时,某一级别的灰度级可以表示并且缺损像素可以变得较不引 人注意,只要有效矩阵显示设备提供有多个子像素,以及缺损像素的检测电路和补偿电路。附图简述在附随附图中,

图1显示实施方式1 ;图2显示实施方式2 ;图3显示实施方式3 ;图4显示实施方式4 ;图5显示实施方式5 ;图6显示实施方式6 ;图7显示实施方式7;图8显示实施方式8 ;图9显示实施方式9 ;图10显示实施方式10 ;图11显示实施方式11;图12显示实施方式12 ;图13显示实施方式13 ;图14显示实施方式14 ;图15显示实施方式15 ;图16显示实施方式16 ;图17显示实施方式17;图18显示实施方式18 ;图19显示实施方式19 ;图20显示实施方式20 ;图21显示实施方式21 ;
图22显示实施方式22 ;图23显示实施方式23 ;图24A和24B显示实施方案1 ;图25A 25C显示实施方案7 ;图26显示实施方案8 ;图27A 27D显示实施方案9 ;图28A和28B显示实施方案2 ;图29A和29B显示实施方案2 ;图30A和30B显示实施方案2 ;图31显示实施方式24 ;图32显示实施方式25 ;图33显示实施方式26 ;图34显示实施方式27 ;图35显示实施方式29 ;图36显示实施方式29 ;
图37显示实施方式29 ;图38显示实施方式30 ;图39显示实施方式30 ;图40A和40B显示实施方式28 ;图41显示实施方式31 ;图42A 42C显示实施方案3 ;图43A 43D显示实施方案3 ;图44A 44C显示实施方案3 ;图45A 4OT显示实施方案3 ;图46A 46D显示实施方案3 ;
图47A 47D显示实施方案3 ;图48A和48B显示实施方案3 ;图49A和49B显示实施方案3 ;图50显示实施方案4 ;图51A 51E显示实施方案5 ;图52A和52B显示实施方案5 ;图53A和53B显示实施方案5 ;图54A和54B显示实施方案5 ;图55显示形成EL层的汽相沉积装置的结构;图56显示形成EL层的汽相沉积装置的结构;以及图57显示显示板的实例构造。
具体实施例方式虽然本发明将参考附随附图通过实施方式和实施方案完全描述,应当理解,各种改变和修改将对本领域技术人员显然。因此,除非这种改变和修改背离于本发明的范围,否 则它们应当构造为包括在其中。[实施方式1]参考图1描述具有第一构造的显示设备。在图1中,参考数字101表示电流值检 测电路,102表示电源,103表示补偿电路,104表示信号输入电路,105表示电源线,106表示 导线,107表示面板,108表示驱动电路,109表示像素,以及110(a)和110(b)表示子像素。
在该半导体器件中,电源线105连接到构成像素109的子像素110(a)和110(b); 导线106连接到构成像素109的子像素110(a)和110(b);电源线105通过电流值检测电 路101连接到电源102的正极;电源102的负极连接到导线106 ;电流值检测电路101将检 测的电流输出到补偿电路103 ;补偿电路103将补偿信号输出到信号输入电路104 ;以及信 号输入电路104将控制信号输出到驱动电路108。下面将描述电流值检测电路101,补偿电路103,信号输入电路104和驱动电路108 的功能。电流值检测电路101具有当点亮构成像素109的子像素110(a)或110(b)的一个 时检测电源线105的电流值,并且将电流值输出到补偿电路103的功能。补偿电路103具 有基于从电流值检测电路101获得的数据,将用于补偿控制信号例如视频信号、起动脉冲、 时钟和反向时钟的补偿信号输出到信号输入电路104的功能。信号输入电路104具有将操 作驱动电路108的控制信号例如视频信号、起动脉冲、时钟和反向时钟输出到驱动电路108 的功能。驱动电路108具有输出控制像素109和构成像素109的子像素110(a)和110(b) 亮度的信号的功能。子像素110(a)和110(b)的每个包括具有一对电极的发光元件,以及 用于控制发光元件的电路。该电路使用从驱动电路108输出的信号控制,并且在点亮发光 元件的情况下,它将电源线105的电势输入到发光元件的电极的一个,而在不点亮发光元 件的情况下,它不会将电源线105的电势输入到那里,从而处于浮动状态。发光元件的另一 个电极连接到导线106。在点亮发光元件时,电流可以提供到发光元件的一个电极。在本发明中,检测缺损像素,并且从信号输入电路104输出的控制信号使用补偿 电路103补偿,从而使得缺损像素变得较不引人注意。下面将描述这种操作,同时将它们划 分成几个操作周期。描述检测缺损像素的操作。作为缺损像素的检测方法,每个子像素的发光元件被 点亮,并且电源线105的电流值使用电流值检测电路101检测。然后,缺损像素通过比较每 个子像素的电流值来检测。例如,如果点缺陷出现(子像素中的发光元件不发光,即使用于 点亮子像素的控制信号从驱动电路输入的状态),该子像素中的电流值大于正常子像素中 的电流值。这是因为,因为发光元件的点缺陷在发光元件的一个电极短路到另一个电极的 情况下出现,具有点缺陷的子像素中发光元件的电阻值,电源线105的电势输入到那里,小 于不具有点缺陷的子像素中发光元件的电阻值。因此,该子像素中电源线105的电流值大 于不具有点缺陷的子像素中的电流值。同时,如果缺损亮点出现(子像素中的发光元件恒 定发光而不管从驱动电路输出的控制信号的状态),其电流值小于正常子像素中的电流值。 更具体地说,在所有像素点亮的情况下,正常像素的电流值与电源线105的电流值之间仅 存在小的差异。这是因为,因为发光元件的缺损亮点在施加到发光元件一个电极的电势高 于发光元件的另一个电极连接到的导线106的电势的情况下出现,即使当电源线105的电势输入到具有缺损亮点的子像素中的发光元件时,电源线105的电流值仅轻微地改变。下面描述补偿缺损像素的方法。注意,将分别描述缺损像素具有点缺陷的情况和缺损像素具有缺损亮点的情况。关于点缺陷,如果在构成像素108的子像素110(a)和子像素110(b)中子像素 110(a)具有点缺陷,子像素110(a)不发光。因此,灰度级仅使用子像素110 (b)表示。注 意,因为子像素110(a)处于不发光状态而不管来自驱动电路108的控制信号,灰度级需要 仅使用子像素110(b)表示。因此,尽管低灰度级可以表示,高灰度级不能表示。关于缺损亮点,如果在构成像素108的子像素110(a)和子像素110(b)中子像素 110(a)具有缺损亮点,子像素110(a)连续不断地发光而不管来自驱动电路108的控制信 号。因此,灰度级仅使用子像素110(b)表示。注意,因为子像素110(a)处于发光状态中, 灰度级需要仅使用子像素110(b)表示。因此,尽管高灰度级可以表示,低灰度级不能表示。这种缺陷使用电流值检测电路101基于电源线105的电流值而检测,并且缺损像 素基于电流值由补偿电路103确定。然后,补偿信号基于确定结果输出到信号输入电路 104。这样,信号输入电路104基于从补偿电路103输入的补偿信号将控制信号输出到驱动 电路108,并且执行使得缺损像素较不引人注意的这种操作。也就是,显示异常电流值的像 素通过使用为了使缺损像素较不引人注意而补偿的信号输入来驱动。在一个子像素具有点缺陷的情况下,从驱动电路108输出的信号(视频信号)例 如可以补偿,使得灰度级使用除缺损子像素之外的子像素表示。通过以这种方式执行补偿, 甚至高灰度级可以表示。类似地,在一个子像素具有缺损亮点的情况下,甚至低灰度级可以通过执行补偿 使得灰度级使用除缺损子像素之外的子像素表示来表示。这样,即使当缺损像素出现时,它可以变得较不引人注意,这可以防止甚至具有这 种缺损像素的缺损显示。虽然,上面的描述适用于提供有两个子像素的情况,三个子像素同样可以提供。如 果存在三个子像素并且各自面积比设置为1 2 4,可以表示的灰度级数目可以增加到使 用一个像素表示情况下的八倍。另外,面积比同样可以是1 1 1。通过设置面积比为 1:1: 1,每个子像素的退化级别可以变得均勻。通过增加子像素的数目,与不提供子像 素的情况相比较,驱动电路的规模可以抑制,从而功耗可以抑制。另外,即使当提供两个子像素时,如果各自面积比设置为1 2,可以表示的灰度 级数目可以增加到使用一个子像素显示的情况下的四倍。如上所述,该实施方式具有检测电源线105的电流值的特征。通过检测电源线105 的电流值,甚至在提供多个电源线的情况下,例如提供与R,G和B像素相对应的电源线的 情况,或者不同电源线连接到各个子像素的情况,多个子像素中的电流值可以同时检测。因 此,用于检测子像素电流值的时期可以缩短。在该实施方式中,通过检测每个子像素中发光元件的电流值,检查子像素110(a) 和110(b)中是否存在点缺陷或缺损亮点。如上所述,在本发明中,甚至当缺陷例如缺损亮点或点缺陷出现时,根据缺损面积 的灰度级的减少可以抑制,只要提供多个子像素,以及缺损像素的检测电路和补偿电路,从 而缺损像素可以变得较不引人注意。
[实施方式2]参考图2描述具有第二构造的显示设备。在图2中,参考数字201表示电流值检 测电路,102表示电源,103表示补偿电路,104表示信号输入电路,105表示电源线,106表示 导线,107表示面板,108表示驱动电路,109表示像素,以及110(a)和110(b)表示子像素。在该半导体器件中,电源102连接到构成像素109的子像素110(a)和110(b);导 线106连接到构成像素109的子像素110(a)和110(b);电源线105连接到电源102的正 极;电源102的负极通过电流值检测电路201连接到导线106 ;电流值检测电路201将检测 的电流输出到补偿电路103 ;补偿电路103将补偿信号输出到信号输入电路104 ;以及信号 输入电路104将控制信号输出到驱动电路108。下面将描述电流值检测电路201,补偿电路103,信号输入电路104和驱动电路108 的功能。电流值检测电路201具有当点亮构成像素109的子像素110(a)或110(b)的一个 时检测连接到反电极的导线106的电流值,并且将电流值输出到补偿电路103的功能。补 偿电路103具有基于从电流值检测电路201获得的数据,将用于补偿控制信号例如视频信 号、起动脉冲、时钟和反向时钟的补偿信号输出到信号输入电路104的功能。信号输入电 路104具有将操作驱动电路108的控制信号例如视频信号、起动脉冲、时钟和反向时钟输 出到驱动电路108的功能。驱动电路108具有输出控制像素109和构成像素109的子像素 110(a)和110(b)亮度的信号的功能。子像素110(a)和110(b)的每个包括具有一对电极 的发光元件,以及用于控制发光元件的电路。该电路使用从驱动电路108输出的信号控制, 并且在点亮发光元件的情况下,它将电源线105的电势输入到发光元件的电极的一个,而 在不点亮发光元件的情况下,它不会将电源线105的电势输入到那里,从而处于浮动状态。 发光元件的另一个电极连接到反电极连接到那里的导线106。在点亮发光元件时,电流可以 提供到发光元件的一个电极。在该实施方式中,检测缺损像素,并且从信号输入电路104输出的控制信号使用 补偿电路103补偿,从而缺损像素变得较不引人注意。下面将描述这种操作,同时将它们划 分成几个操作周期。描述检测缺损像素的操作。作为缺损像素的检测方法,每个子像素中的发光元件点亮,并且连接到反电极的导线106的电流值使用电流值检测电路201检测。然后,缺损像 素通过比较每个子像素的电流值来检测。例如,如果点缺陷出现(子像素中的发光元件不 发光,即使用于点亮子像素的控制信号从驱动电路输入的状态),该子像素中的电流值大于 正常子像素中的电流值。这是因为,因为发光元件的点缺陷在发光元件的一个电极短路到 另一个电极的情况下出现,具有点缺陷的子像素中发光元件的电阻值,电源线105的电势 输入到那里,小于不具有点缺陷的子像素中发光元件的电阻值。因此,该子像素中连接到反 电极的导线106的电流值大于不具有点缺陷的子像素中的电流值。同时,如果缺损亮点出 现(子像素中的发光元件恒定发光而不管从驱动电路输出的控制信号的状态),其电流值 小于正常子像素中的电流值。更具体地说,在所有像素点亮的情况下,正常像素的电流值与 连接到反电极的导线106的电流值之间仅存在小的差异。这是因为,因为发光元件的缺损 亮点在施加到发光元件一个电极的电势高于发光元件的另一个电极连接到的导线106的 电势的情况下出现,即使当电源线105的电势输入到具有缺损亮点的子像素中的发光元件时,导线106的电流值仅轻微地改变。下面将描述补偿缺损像素的方法。注意,将分别描述缺损像素具有点缺陷的情况和缺损像素具有缺损亮点的情况。关于点缺陷,如果在构成像素108的子像素110(a)和子像素110(b)中子像素 110(a)具有点缺陷,子像素110(a)不发光。因此,灰度级仅使用子像素110 (b)表示。注 意,子像素110(a)处于不发光状态而不管来自驱动电路108的控制信号,从而灰度级需要 仅使用子像素110(b)表示。因此,尽管低灰度级可以表示,高灰度级不能表示。关于缺损亮点,如果在构成像素108的子像素110(a)和子像素110(b)中子像素 110(a)具有缺损亮点,子像素110(a)连续不断地发光而不管来自驱动电路108的控制信 号。因此,灰度级仅使用子像素110(b)表示。注意,子像素110(a)处于发光状态中,从而 灰度级需要仅使用子像素110(b)表示。因此,尽管高灰度级可以表示,低灰度级不能表示。具有这种缺陷的像素由补偿电路103基于由电流值检测电路201检测的电流值来 确定,并且补偿电路103基于确定结果将补偿信号输出到信号输入电路104。因此,信号输 入电路104基于输入的补偿信号将控制信号输出到驱动电路108,并且执行使得缺损像素 较不引人注意的这种操作。这样,即使当缺损像素出现时,它可以变得较不引人注意,这可以防止甚至具有这 种缺损像素的缺损显示。虽然,上面的描述适用于提供有两个子像素的情况,三个子像素同样可以提供。当 存在三个子像素并且各自面积比设置为1 2 4时,可以表示的灰度级数目可以增加到 使用一个像素表示情况下的八倍。另外,面积比同样可以是1 1 1。通过设置面积比为 1:1: 1,每个子像素的退化级别可以变得均勻。通过增加子像素的数目,与不提供子像 素的情况相比较,驱动电路的规模可以抑制,从而功耗可以抑制。另外,即使当提供两个子像素时,如果各自面积比设置为1 2,可以表示的灰度 级数目可以增加到使用一个子像素显示的情况下的四倍。通过设置面积比为1 1,每个子 像素的退化级别可以变得均勻。该实施方式具有检测导线106的电流值的特征。通过检测导线106的电流值,甚 至当提供多个电源线时,因为导线106对所有像素而共有,每个发光元件的电流值可以检 测而不增加电路规模。在该实施方式中,子像素110(a)和110(b)中是否存在点缺陷或缺损亮点的检查 通过检测每个子像素中发光元件的电流值来执行。另外,本发明可以减小电路规模,特别 地,补偿电路103的电路规模。[实施方式3]参考图3描述在实施方式1和2中描述的电流值检测电路101和201的实例构造。在图3中,参考数字301和302表示电源线,303表示电阻器,304表示开关元件, 以及305表示模拟-数字转换电路。在该半导体器件中,电源线301连接到电阻器303的一个端子和开关元件304的 一个端子。电源线302连接到电阻器303的另一个端子,开关元件304的另一个端子,以及 模拟_数字转换电路305的输入。另外,电源线301连接到电源102的正极(实施方式1 中)或其负极(实施方式2中),而电源线302连接到电源线105 (实施方式1中)或导线106 (实施方式2中)。电阻器303是具有电阻成分的电阻器。开关元件304是具有开关性质的开关元件。 模拟_数字转换电路305是用于将电阻器303另一端子处的电势转换成数字值的电路。转 换后的值并不局限于数字值,并且它可以是任意值,只要它可以由补偿电路103识别。
点亮子像素110(a)和110(b)的每个中的发光元件时的电流值被检测。当发光元 件点亮时,与发光元件的特性相对应的电流从电源线302通过电阻器303流到电源线301。 因为电源线301连接到电源102,电阻器303的另一端子具有通过从电阻器303的一个端 子处的电势中减去电阻器303处的电压降而获得的电势值,在实施方式1的情况下,或者通 过将电阻器303处的电压降加到电阻器303的一个端子处的电势而获得的电势值,在实施 方式2的情况下。这样,在点亮子像素110(a)和110(b)的每个中的发光元件的情况下,流 过电源线302的电流值转换成电压以输入到模拟_数字转换电路305。此时,开关元件304 关闭。另外,开关元件304与电阻器303并联。因此,在通过点亮处于正常状态的多个子 像素110(a)和110(b)中的发光元件来显示图像的情况下,与点亮每个子像素中发光元件 的情况相比较,流过电源线302的电流值非常大。因此,电阻器303引起的电压降增大,这 导致施加到电源线105和连接到反电极的导线106的低电压。因此,在正常驱动中需要导 通开关元件304以便消除电阻器303的效应。电阻器303的电阻值被设置使得电压降低之后电源线302的电势具有电源102的 正电势和负电势之间的电平。因此,电压降的效应可以减小,从而发光元件的特性可以更准 确地检测。[实施方式4]参考图4描述在实施方式1和2中描述的电流值检测电路101和201的实例构造。在图4中,参考数字301和302表示电源线,303表示电阻器,304表示开关元件, 305表示模拟-数字转换电路,以及306表示降噪电路。在该半导体器件中,电源线301连接到电阻器303的一个端子和开关元件304的 一个端子。电源线302连接到电阻器303的另一个端子,开关元件304的另一个端子,以及 降噪电路306的输入。另外,电源线301连接到电源102的正极(实施方式1中)或其负 极(实施方式2中),而电源线302连接到电源线105 (实施方式1中)或导线106 (实施方 式2中)。电阻器303是具有电阻成分的电阻器。开关元件304是具有开关性质的开关元件。 模拟_数字转换电路305是用于将电阻器303另一端子处的电势转换成数字值的电路。降 噪电路306是用于减少在电阻器303另一端子处的电势中产生的噪声的电路。转换后的值 并不局限于数字值,并且它可以是任意值,只要它可以由补偿电路103识别。点亮子像素110(a)和110(b)的每个中的发光元件时的电流值被检测。当发光元 件点亮时,与发光元件的特性相对应的电流从电源线302通过电阻器303流到电源线301。 因为电源线301连接到电源102,电阻器303的另一端子具有通过从电阻器303的一个端子 处的电势中减去电阻器303处的电压降而获得的电势值,在实施方式1的情况下,或者通过 将电阻器303处的电压降加到电阻器303的一个端子处的电势而获得的电势值,在实施方 式2的情况下。这样,在点亮子像素110(a)和110(b)的每个中的发光元件的情况下,流过电源线302的电流值转换成电压,然后输入到降噪电路306以减少噪声。然后,信号输出到 模拟_数字转换电路305的输入。此时,开关元件304关闭。另外,开关元件304与电阻器303并联。因此,在通过点亮处于正常状态的多个子 像素110(a)和110(b)中的发光元件来显示图像的情况下,与点亮每个子像素中发光元件 的情况相比较,流过电源线302的电流值非常大。因此,电阻器303引起的电压降增大,这 导致施加到电源线105和连接到反电极的导线106的低电压。因此,在正常驱动中需要导 通开关元件304以便消除电阻器303的效应。电阻器303的电阻值被设置使得电压降低之后电源线302的电势具有电源102的 正电势和负电势之间的电平。因此,电压降的效应可以减小,从而发光元件的特性可以更准 确地检测。[实施方式5]参考图5描述在实施方式1和2中描述的电流值检测电路10 1和201的实例构造。在图5中,参考数字301和302表示电源线,303表示电阻器,304表示开关元件, 305表示模拟-数字转换电路,以及307表示放大器电路。在该半导体器件中,电源线301连接到电阻器303的一个端子和开关元件304的 一个端子。电源线302连接到电阻器303的另一个端子,开关元件304的另一个端子,以及 放大器电路307的输入。另外,电源线301连接到电源102的正极(实施方式1中)或其 负极(实施方式2中),而电源线302连接到电源线105 (实施方式1中)或导线106 (实施 方式2中)。电阻器303是具有电阻成分的电阻器。开关元件304是具有开关性质的开关元件。 模拟_数字转换电路305是用于将电阻器303另一端子处的电势转换成数字值的电路。放 大器电路307是用于放大电阻器303另一端子处的电势的电路。转换后的值并不局限于数 字值,并且它可以是任意值,只要它可以由补偿电路103识别。点亮子像素110(a)和110(b)的每个中的发光元件时的电流值被检测。当发光元 件点亮时,与发光元件的特性相对应的电流从电源线302通过电阻器303流到电源线301。 因为电源线301连接到电源102,电阻器303的另一端子具有通过从电阻器303的一个端子 处的电势中减去电阻器303处的电压降而获得的电势值,在实施方式1的情况下,或者通过 将电阻器303处的电压降加到电阻器303的一个端子处的电势而获得的电势值,在实施方 式2的情况下。这样,在点亮子像素110(a)和110(b)的每个中的发光元件的情况下,流过 电源线302的电流值转换成电压,然后输入到放大器电路307。然后,信号被放大以输出到 模拟_数字转换电路305的输入。另外,开关元件304与电阻器303并联。因此,在通过点亮处于正常状态的多个子 像素110(a)和110(b)中的发光元件来显示图像的情况下,与点亮每个子像素中发光元件 的情况相比较,流过电源线302的电流值非常大。因此,电阻器303引起的电压降增大,这 导致施加到电源线105和连接到反电极的导线106的低电压。因此,在正常驱动中需要导 通开关元件304以便消除电阻器303的效应。电阻器303的电阻值被设置使得电压降低之后电源线302的电势具有电源102的 正电势和负电势之间的电平。因此,电压降的效应可以减小,从而发光元件的特性可以更准 确地检测。
[实施方式6]参考图6描述在实施方式1和2中描述的电流值检测电路101和201的实例构造。在图6中,参考数字301和302表示电源线,303表示电阻器,304表示开关元件, 305表示模拟-数字转换电路,306表示降噪电路,以及307表示放大器电路。在该半导体器件中,电源线301连接到电阻器303的一个端子和开关元件304的 一个端子。电源线302连接到电阻器303的另一个端子,开关元件304的另一个端子,以及 降噪电路306的输入。降噪电路306的输出连接到放大器电路307的输入,并且放大器电 路307的输出连接到模拟_数字转换电路305的输入。另外,电源线301连接到电源102 的正极(实施方式1中)或其负极(实施方式2中),而电源线302连接到电源线105 (实 施方式1中)或导线106(实施方式2中)。电阻器303是具有电阻成分的电阻器。开关元件304是具有开关性质的开关元件。 模拟_数字转换电路305是用于将电阻器303另一端子处的电势转换成数字值的电路。降 噪电路306是用于减少在电阻器303另一端子处的电势中产生的噪声的电路,以及放大器 电路307是用于放大电阻器303另一端子处的电势的电路。转换后的值并不局限于数字值, 并且它可以是任意值,只要它可以由补偿电路103识别。点亮子像素110(a)和110(b)的每个中的发光元件时的电流值被检测。当发光元 件点亮时,与发光元件的特性相对应的电流从电源线302通过电阻器303流到电源线301。 因为电源线301连接到电源102,电阻器303的另一端子具有通过从电阻器303的一个端子 处的电势中减去电阻器303处的电压降而获得的电势值,在实施方式1的情况下,或者通过 将电阻器303处的电压降加到电阻器303的一个端子处的电势而获得的电势值,在实施方 式2的情况下。这样,在点亮子像素110(a)和110(b)的每个中的发光元件的情况下,流过 电源线302的电流值转换成电压,然后输入到降噪电路306以减少噪声。然后,信号输出到 放大器电路307的输入以放大,从而输出到模拟-数字转换电路305的输入。此时,开关元 件304关闭。另外,开关元件304与电阻器303并联。因此,在通过点亮处于正常状态的多个子 像素110(a)和110(b)中的发光元件来显示图像的情况下,与点亮每个子像素中发光元件 的情况相比较,流过电源线302的电流值非常大。因此,电阻器303引起的电压降增大,这 导致施加到电源线105和连接到反电极的导线106的低电压。因此,在正常驱动中需要导 通开关元件304以便消除电阻器303的效应。电阻器303的电阻值被设置使得电压降低之后电源线302的电势具有电源102的 正电势和负电势之间的电平。因此,电压降的效应可以减小,从而发光元件的特性可以更准 确地检测。[实施方式7]参考图7描述在实施方式1和2中描述的电流值检测电路101和201的实例构造。在图7中,参考数字301和302表示电源线,703表示恒流源,704表示选择器电路, 以及305表示模拟-数字转换电路。在该半导体器件中,电源线301连接到选择器电路704的第一端子。电源线302 连接到选择器电路704的第二端子以及模拟-数字转换电路305的输入。恒流源703连 接到选择器电路704的第三端子。另外,电源线301连接到电源102的正极(实施方式1中)或其负极(实施方式2中),而电源线302连接到电源线105 (实施方式1中)或导线 106 (实施方式2中)。恒流源703是用于提供恒定电流的电路。选择器电路704是用于选择第一端子或 第三端子的任何一个连接到第二端子的电路。模拟_数字转换电路305是用于将电源线 302的电势转换成数字值的电路。转换后的值并不局限于数字值,并且它可以是任意值,只 要它可以由补偿电路103识别。在点亮子像素110(a)和110(b)的每个中的发光元件的情况下,选择器电路704 的第一端子和第二端子在正常驱动中连接。也就是,电源线301和电源线302连接。在该 实施方式中,恒流源703用于确定子像素110(a)和110(b)的每个中的发光元件是否具有 点缺陷、缺损亮点或正常状态。通过连接选择器电路704的第二端子和第三端子,恒定电流 提供到子像素110(a)和110(b)的每个中的发光元件,并且检查电源线302中随之发生的 电势变化。这样,电源线302的电势输入到模拟_数字转换电路305。在该实施方式中,模拟-数字转换电路305的输入与子像素110(a)和110(b)的 每个中的发光元件之间不存在任何组件例如电路组、电阻器或电容器,像在正常驱动中一 样。因此,噪声可以抑制,并且每个子像素中发光元件的特性可以使用与正常驱动中相同的 条件检查。[实施方式8]参考图8描述在实施方式1和2中描述的电流值检测电路101和201的实例构造。在图8中,参考数字301和302表示电源线,703表示恒流源,704表示选择器电路, 305表示模拟-数字转换电路,以及306是降噪电路。在该半导体器件中,电源线301连接到选择器电路704的第一端子。电源线302 连接到选择器电路704的第二端子以及降噪电路306的输入。恒流源703连接到选择器电 路704的第三端子。降噪电路306的输出连接到模拟-数字转换电路305的输入。另外, 电源线301连接到电源102的正极(实施方式1中)或其负极(实施方式2中),而电源线 302连接到电源线105 (实施方式1中)或导线106 (实施方式2中)。恒流源703是用于提供恒定电流的电路。选择器电路704是用于选择第一端子或 第三端子的任何一个连接到第二端子的电路。模拟_数字转换电路305是用于将电源线 302的电势转换成数字值的电路。降噪电路306是用于减少在电源线302的电势中产生的 噪声的电路。转换后的值并不局限于数字值,并且它可以是任意值,只要它可以由补偿电路 103识别。在点亮子像素110(a)和110(b)的每个中的发光元件的情况下,选择器电路704 的第一端子和第二端子在正常驱动中连接。也就是,电源线301和电源线302连接。在该 实施方式中,恒流源703用于确定子像素110(a)和110(b)的每个中的发光元件是否具有 点缺陷、缺损亮点或正常状态。通过连接选择器电路704的第二端子和第三端子,恒定电流 提供到子像素110(a)和110(b)的每个中的发光元件,并且检查电源线302中随之发生的 电势变化。这样,电源线302的电势输出到降噪电路306的输入以减少噪声,然后输入到模 拟-数字转换电路305。在该实施方式中,模拟-数字转换电路305的输入与子像素110(a)和110(b)的 每个中的发光元件之间不存在任何组件例如电路组、电阻器或电容器,像在正常驱动中一样。因此,噪声可以抑制,并且每个子像素中发光元件的特性可以使用与正常驱动中相同的条件检查。[实施方式9]参考图9描述在实施方式1和2中描述的电流值检测电路101和201的实例构造。在图9中,参考数字301和302表示电源线,703表示恒流源,704表示选择器电路, 305表示模拟-数字转换电路,以及307是放大器电路。在该半导体器件中,电源线301连接到选择器电路704的第一端子。电源线302 连接到选择器电路704的第二端子以及放大器电路307的输入。恒流源703连接到选择器 电路704的第三端子。放大器电路307的输出连接到模拟-数字转换电路305的输入。另 夕卜,电源线301连接到电源102的正极(实施方式1中)或其负极(实施方式2中),而电 源线302连接到电源线105 (实施方式1中)或导线106 (实施方式2中)。恒流源703是用于提供恒定电流的电路。选择器电路704是用于选择第一端子或 第三端子的任何一个连接到第二端子的电路。模拟-数字转换电路305是用于将电源线302 的电势转换成数字值的电路,以及放大器电路307是用于放大电源线302的电势的电路。转 换后的值并不局限于数字值,并且它可以是任意值,只要它可以由补偿电路103识别。在点亮子像素110(a)和110(b)的每个中的发光元件的情况下,选择器电路704 的第一端子和第二端子在正常驱动中连接。也就是,电源线301和电源线302连接。在该 实施方式中,恒流源703用于确定子像素110(a)和110(b)的每个中的发光元件是否具有 点缺陷、缺损亮点或正常状态。通过连接选择器电路704的第二端子和第三端子,恒定电流 提供到子像素110(a)和110(b)的每个中的发光元件,并且检查电源线302中随之发生的 电势变化。这样,电源线302的电势输出到放大器电路307的输入以放大,然后输入到模 拟-数字转换电路305。在该实施方式中,模拟-数字转换电路305的输入与子像素110(a)和110(b)的 每个中的发光元件之间不存在任何组件例如电路组、电阻器或电容器,像在正常驱动中一 样。因此,噪声可以抑制,并且每个子像素中发光元件的特性可以使用与正常驱动中相同的 条件检查。[实施方式10]参考图10描述在实施方式1和2中描述的电流值检测电路101和201的实例构造。在图10中,参考数字301和302表示电源线,703表示恒流源,704表示选择器电 路,305表示模拟-数字转换电路,306表示降噪电路,以及307是放大器电路。在该半导体器件中,电源线301连接到选择器电路704的第一端子。电源线302 连接到选择器电路704的第二端子以及降噪电路306的输入。恒流源703连接到选择器电 路704的第三端子。降噪电路306的输出连接到放大器电路307的输入,并且放大器电路 307的输出连接到模拟-数字转换电路305的输入。另外,电源线301连接到电源102的正 极(实施方式1中)或其负极(实施方式2中),而电源线302连接到电源线105 (实施方 式1中)或导线106 (实施方式2中)。恒流源703是用于提供恒定电流的电路。选择器电路704是用于选择第一端子或 第三端子的任何一个连接到第二端子的电路。模拟_数字转换电路305是用于将电源线302的电势转换成数字值的电路。降噪电路306是用于减少在电源线302的电势中产生的 噪声的电路。放大器电路307是用于放大电源线302的电势的电路。转换后的值并不局限 于数字值,并且它可以是任意值,只要它可以由补偿电路103识别。在点亮子像素110(a)和110(b)的每个中的发光元件的情况下,选择器电路704 的第一端子和第二端子在正常驱动中彼此连接。也就是,电源线301和电源线302连接。在 该实施方式中,恒流源703用于确定子像素110(a)和110(b)的每个中的发光元件是否具 有点缺陷、缺损亮点或正常状态。通过连接选择器电路704的第二端子和第三端子,恒定电 流提供到子像素110(a)和110(b)的每个中的发光元件,并且检查电源线302中随之发生 的电势变化。这样,电源线302的电势输出到降噪电路306的输入以减少噪声,然后输出到 放大器电路307的输入。从而,信号被放大以输入到模拟-数字转换电路305。在该实施方式中,模拟-数字转换电路305的输入与子像素110(a)和110(b)的 每个中的发光元件之间不存在任何组件例如电路组、电阻器或电容器,像在正常驱动中一 样。因此,噪声可以抑制,并且每个子像素中发光元件的特性可以使用与正常驱动中相同的 条件检查。[实施方式11]
参考图11描述在实施方式3 10中描述的模拟_数字转换电路305的实例构造。在图11的半导体器件中,参考数字1101表示数据信号输入线,1102表示电源, 1103表示运算放大器,1104(a)和1104(b)表示电阻器,1105表示比较电势(第一行),1106 表示比较电势(第二行),1107表示比较电势(第(n-1)行),1108表示比较电势(第η 行),以及1109表示运算放大器的输出。数据输入线1101输入到运算放大器1103的第一输入端子,并且电源线1102通过 电阻器1104(a)和多个电阻器1104(b)连接到参考电势(地电势,这里),从而在每个电阻 器1104(b)中产生的电势用作输入到运算放大器1103的第二输入端子的比较电势。数据输入线1101具有电源线302的电势或者电源线302的放大电势。运算放大 器1103是比较第一和第二输入端子的电势以确定哪个比另一个更高的电路。通过电阻器 1104(a)和多个电阻器1104(b)连接在电源1102和参考电势之间的电路组对应于将不同 电势输入到运算放大器1103的各自第二输入端子的电路。从电阻器1104(a)和多个电阻 器1104(b)的对端输出的电势的每个对应于电阻划分电源1102和参考电势的电势而获得 的电势。这样,每个运算放大器1103比较来自数据输入线1101的电势和比较电势1105, 1106,1107或1108的电势,从而可以检测数据输入线1101的电势。虽然数据输入线1101的电势在该实施方式中不转换成数字值,某一级别的电势 值可以被检查。因此,这种比较器电路可以使用而不需要将模拟值转换成数字值。另外,不仅运算放大器1103,而且可以比较第一和第二输入端子的电势的任何电 路可以使用。此外,虽然运算放大器1103的数目并不特别限制,期望是两个。这是因为,如 果连接到两个运算放大器1103的第二输入端子的电势分别设置为最大级别和最小级别, 当输入到第一端子的电势等于或高于最大级别或者等于或低于最小级别时,可以确定像素 具有缺陷。电势的最大级别和最小级别考虑到数据输入线1101电势的变化而确定。[实施方式12]参考图12描述在实施方式3 10中描述的实例降噪电路306。
在图12中,参考数字1201表示数据输入线,1202表示数据输出线,1203表示电阻 器,以及1204表示电容器。在该半导体器件中,数据输入线1201连接到电阻器1203的一个电极和电容器 1204的一个电极,电容器1204的另一个电极连接到参考电势,并且电阻器1203的另一个电 极连接到数据输出线1202。假设电阻器1203的电阻值是R[ Ω ]并且电容器1204的电容值是C[ μ F],频率高 于l/2pRC的噪声被截除。因此,具有高频的噪声可以减少。[实施方式13]参考图13描述在实施方式3 10中描述的放大器电路307的实例构造。
在图13中,参考数字1301表示数据输入线,1302表示数据输出线,1303表示运算 放大器,以及1304和1305表示电阻器。在该半导体器件中,数据输入线1301输入到运算放大器1303的第一输入端子;运 算放大器1303的第二输入端子连接到电阻器1304的一个端子和电阻器1305的一个端子; 电阻器1305的另一个端子连接到参考电势;以及电阻器1304的另一个端子连接到作为运 算放大器1303输出的数据输出线1302。假设电阻器1304的电阻值是R(4) [Ω],电阻器1305的电阻值是R(5) [ Ω ], 以及从数据输入线1301输入的电势是Vsin,数据输出线1302具有电势Vout = Vin- {[R(4)+R(5)]/R(5)}。这样,从电源线302获得的电势可以放大,从而在模拟-数字 转换电路305中将模拟值转换成数字值变得更加容易。[实施方式14]参考图14描述在实施方式1和2中描述的面板107的实例构造。在图14中,参考数字1401表示源极驱动器,1402表示栅极驱动器,1404和1405表 示源极信号线,1406表示栅极信号线,1409表示电源线,1411表示像素,1412和1413表示 子像素,1414,1415,1416和1417表示TFT,1420和1421表示每个具有一对电极的电容器, 1422和1423表示每个具有一对电极的发光元件,以及1424表示对应于发光元件1422的 另一个电极和发光元件1423的另一个电极的反电极。注意在该实施方式中,TFT 1414和 1415是ρ通道薄膜晶体管,而TFT1416和1417是η通道薄膜晶体管。源极驱动器1401连接到并且输出视频信号到源极信号线1404和1405。栅极驱动 器1402连接到并且扫描栅极信号线1406。电源线1409连接到TFT 1414的源极或漏极的 一个以及TFT 1415的源极或漏极的一个。TFT 1414的源极或漏极的另一个连接到发光元 件1422的一个电极,并且TFT 1415的源极或漏极的另一个连接到发光元件1423的一个电 极。TFT 1414的栅极连接到电容器1420的一个电极以及TFT1416的源极或漏极的一个,而 TFT 1415的栅极连接到电容器1421的一个电极以及TFT 1417的源极或漏极的一个。电容 器1420的另一个电极以及电容器1421的另一个电极连接到电源线1409。TFT 1416的源 极或漏极的另一个连接到源极信号线1404,以及TFT 1417的源极或漏极的另一个连接到 源极信号线1405。TFT 1416和TFT 1417的栅极连接到栅极信号线1406。当TFT 1416导通时,视频信号通过源极信号线1404写到TFT1414的栅极和电容 器1420的一个电极。当TFT 1417导通时,视频信号通过源极信号线1405写到TFT 1415 的栅极和电容器1421的一个电极。TFT 1416和TFT 1417的栅极连接到公用栅极信号线1406 ;因此,它们同时导通。在TFT 1414和TFT 1415的每个中流动的电流值由输入到其栅 极的视频信号的电势与电源线1409的电势之间的关系确定,从而流入发光元件1422和发 光元件1423中的电流被确定。也就是,亮度由视频信号确定。这样,用于控制流入每个子 像素中发光元件的电流的TFT也称作发光元件的亮度确定电路。因为视频信号分别输入到 子像素1412和子像素1413,子像素1412的亮度和子像素1413的亮度可以彼此不同。因 此,假设在一个子像素可以显示16个灰度级的条件下发光元件1422和发光元件1423的面 积设计为具有1 2的比值,64个灰度级可以显示。这样,大量灰度级可以显示。虽然在前述驱动方法中发光元件1422和发光元件1423的亮度由其中流动的电流 值确定,亮度同样可以由发光时间确定。下面将描述这种情况。在本发明中,从源极信号线1404和源极信号线1405的每个输入的视频信号设 置具有可以导通/关闭TFT 1414和TFT 1415的二进制值的电势。因此,发光状态或不 发光状态可以被选择。在这种情况下,通过将一个帧周期划分成多个子帧周期,灰度级 (亮度)可以表示。例如,通过将一帧划分成六个子帧,将各自发光周期的长度设置为 1 2 4 8 16 32,并且组合每个子帧,具有64级的灰度级(亮度)可以表示。注 意,本发明并不局限于此,例如,上面长度可以是1 :2:4:8:8:8:8:8:8:8。 该实例对应于将16和32的发光周期分别划分成8,8和8,8,8,8的情况。在使用发光时间表示灰度级(亮度)的上述方法中,擦除周期可以提供。擦除周 期对应于在一个帧周期划分成多个子帧的情况下,发光元件的发光在一个子帧中暂停一会 儿直到下一个子帧开始的时期。作为该操作方法,TFT 1414和TFT 1415可以关闭。为了 实现这一点,子帧周期可以以一半划分,使得写操作可以在一个周期内执行,而擦除操作可 以在另一个周期内执行。在擦除操作中,可以关闭TFT 1414和TFT 1415的视频信号分别 从源极信号线1404和源极信号线1405输出。虽然该实施方式说明提供两个源极信号线的情况,本发明并不局限于此,多于两 个源极信号线可以根据子像素数目的增加而提供。因为TFT 1416和TFT 1417的每个用作开关元件,它可以用电气开关或机械开关 代替,只要它可以控制电流。作为开关元件,例如,二极管或者由二极管和晶体管构造的逻 辑电路可以使用。另外,如果TFT 1414和发光元件1422的操作点以及TFT 1415和发光元 件1423的操作点被设置以便允许TFT 1414和TFT 1415在线性区域内操作,TFT 1414和 TFT 1415的阈电压的变化将不影响显示;因此,可以提供具有更高图像质量的显示设备。[实施方式15]参考图15描述在实施方式1和2中描述的面板107的实例构造。在图15中,参考数字1501表示源极驱动器,1502表示栅极驱动器,1504表示源极 信号线,1506和1507表示栅极信号线,1509表示电源线,1511表示像素,1512和1513表示 子像素,1514,1515,1516和1517表示TFT,1520和1521表示每个具有一对电极的电容器, 1522和1523表示每个具有一对电极的发光元件,以及1524表示对应于发光元件1522的 另一个电极和发光元件1523的另一个电极的反电极。注意在该实施方式中,TFT 1514和 1515是ρ通道薄膜晶体管,而TFT1516和1517是η通道薄膜晶体管。源极驱动器1501连接到并且输出视频信号到源极信号线1504。栅极驱动器1502连接到并且扫描栅极信号线1506和栅极信号线1507。电源线1509连接到TFT 1514的源极或漏极的一个以及TFT1515的源极或漏极的一个。TFT 1514的源极或漏极的另一个连接到发光元件1522的一个电极,并且TFT 1515的源极或漏极的另一个连接到发光元件1523 的一个电极。TFT 1514的栅极连接到电容器1520的一个电极以及TFT 1516的源极或漏 极的一个,而TFT 1515的栅极连接到电容器1521的一个电极以及TFT 1517的源极或漏 极的一个。电容器1520的另一个电极以及电容器1521的另一个电极连接到电源线1509。 TFT 1516的源极或漏极的另一个以及TFT 1517的源极或漏极的另一个连接到源极信号线 1504。TFT 1516的栅极连接到栅极信号线1506以及TFT 1517的栅极连接到栅极信号线 1507。当TFT 1516导通时,视频信号通过源极信号线1504写到TFT1514的栅极和电容 器1520的一个电极。当TFT 1517导通时,视频信号通过源极信号线1504写到TFT 1515 的栅极和电容器1521的一个电极。TFT 1516的栅极连接到栅极信号线1506,而TFT 1517 的栅极连接到栅极信号线1507 ;因此,它们独立地导通,从而源极信号线1504可以公用。在 TFT 1514和TFT 1515的每个中流动的电流值由输入到其栅极的视频信号的电势与电源线 1509的电势之间的关系确定,从而流入发光元件1522和发光元件1523中的电流被确定。 也就是,亮度由视频信号确定。因为视频信号分别输入到子像素1512和子像素1513,子像 素1512的亮度和子像素1513的亮度可以彼此不同。因此,假设在一个子像素可以显示16 个灰度级的条件下发光元件1522和发光元件1523的面积设计为具有1 2的比值,64个 灰度级可以显示。这样,大量灰度级可以显示。虽然在前述驱动方法中发光元件1522和发光元件1523的亮度由其中流动的电流 值确定,亮度同样可以由发光时间确定。下面将描述这种情况。在本发明中,从源极信号线1504输入的视频信号设置具有可以导通/关闭TFT 1514和TFT 1515的二进制值的电势。因此,发光状态或不发光状态可以被选择。在这种情 况下,通过将一个帧周期划分成多个子帧周期,灰度级(亮度)可以表示。例如,通过将一 帧划分成六个子帧,将各自发光周期的长度设置为1 2 4 8 16 32,并且组合每 个子帧,具有64级的灰度级(亮度)可以表示。注意,本发明并不局限于此,例如,上面每 个子帧的发光周期的长度可以是1 2 4 8 8 8 8 8 8 8。该实例对应 于将16和32的发光周期分别划分成8,8和8,8,8,8的情况。在使用发光时间表示灰度级(亮度)的上述方法中,擦除周期可以提供。擦除周 期对应于在一个帧周期划分成多个子帧的情况下,发光元件的发光在一个子帧中暂停一会 儿直到下一个子帧开始的时期。作为该操作方法,TFT 1514和TFT 1515可以关闭。为了 实现这一点,子帧周期可以以一半划分,使得写操作可以在一个周期内执行,而擦除操作可 以在另一个周期内执行。在擦除操作中,可以关闭TFT 1514和TFT 1515的视频信号从源 极信号线1504输出。虽然该实施方式说明提供两个栅极信号线的情况,本发明并不局限于此,多于两 个栅极信号线可以根据子像素数目的增加而提供。因为TFT 1516和TFT 1517的每个用作开关元件,它可以用电气开关或机械开关 代替,只要它可以控制电流。作为开关元件,例如,二极管或者由二极管和晶体管构造的逻 辑电路可以使用。此外,TFT1514和TFT 1515的每个也可以用作开关元件。另外,如果TFT 1514和发光元件1522的操作点以及TFT 1515和发光元件1523的操作点被设置以便允许TFT 1514和TFT 1515在线性区域内操作,TFT 1514和TFT 1515的阈电压的变化将不影响 显示;因此,可以提供具有更高图像质量的显示设备。[实施方式16]参考图16描述在实施方式1和2中描述的面板107的实例构造。在图16中,参考数字1601表示源极驱动器,1602表示栅极驱动器 ,1604和1605表 示源极信号线,1606表示栅极信号线,1609表示电源线,1611表示像素,1612和1613表示 子像素,1614,1615,1616和1617表示TFT,1620和1621表示每个具有一对电极的电容器, 1622和1623表示每个具有一对电极的发光元件,以及1624表示对应于发光元件1622的 另一个电极和发光元件1623的另一个电极的反电极。注意在该实施方式中,TFT 1614和 1615,1616和1617是η通道薄膜晶体管。源极驱动器1601连接到并且输出视频信号到源极信号线1604和源极信号线 1605。栅极驱动器1602连接到并且扫描栅极信号线1406。电源线1609连接到TFT 1614的 源极或漏极的一个以及TFT 1615的源极或漏极的一个。TFT 1614的源极或漏极的另一个 连接到发光元件1622的一个电极,并且TFT 1615的源极或漏极的另一个连接到发光元件 1623的一个电极。TFT 1614的栅极连接到电容器1620的一个电极以及TFT 1616的源极或 漏极的一个,而TFT 1615的栅极连接到电容器1621的一个电极以及TFT 1617的源极或漏 极的一个。电容器1620的另一个电极以及电容器1621的另一个电极连接到电源线1609。 TFT 1616的源极或漏极的另一个连接到源极信号线1604,以及TFT1617的源极或漏极的另 一个连接到源极信号线1605。TFT 1616和TFT 1617的栅极连接到栅极信号线1606。当TFT 1616导通时,视频信号通过源极信号线1604写到TFT1614的栅极和电容 器1620的一个电极。当TFT 1617导通时,视频信号通过源极信号线1605写到TFT 1615 的栅极和电容器1621的一个电极。TFT 1616和TFT 1617的栅极连接到公用栅极信号线 1606 ;因此,它们同时导通。在TFT 1614和TFT 1615的每个中流动的电流值由输入到其栅 极的视频信号的电势与电源线1609的电势之间的关系确定,从而流入发光元件1622和发 光元件1623中的电流被确定。也就是,亮度由视频信号确定。因为视频信号分别输入到子 像素1612和子像素1613,子像素1612和子像素1613的亮度可以彼此不同。因此,假设在 一个子像素可以显示16个灰度级的条件下发光元件1622和发光元件1623的面积设计为 具有1 2的比值,64个灰度级可以显示。这样,大量灰度级可以显示。虽然在前述驱动方法中发光元件1622和发光元件1623的亮度由其中流动的电流 值确定,亮度同样可以由发光时间确定。下面将描述这种情况。在该实施方式中,从源极信号线1604和源极信号线1605的每个输入的视频信 号设置具有可以导通/关闭TFT 1614和TFT 1615的二进制值的电势。因此,发光状态 或不发光状态可以被选择。在这种情况下,通过将一个帧周期划分成多个子帧周期,灰度 级(亮度)可以表示。例如,通过将一帧划分成六个子帧,将各自发光周期的长度设置为 1 2 4 8 16 32,并且组合每个子帧,具有64级的灰度级(亮度)可以表示。注 意,本发明并不局限于此,例如,上面长度可以是1 :2:4:8:8:8:8:8:8:8。 该实例对应于将16和32的发光周期分别划分成8,8和8,8,8,8的情况。在使用发光时间表示灰度级(亮度)的上述方法中,擦除周期可以提供。擦除周 期对应于在一个帧周期划分成多个子帧的情况下,发光元件的发光在一个子帧中暂停一会儿直到下一个子帧开始的时期。作为该操作方法,TFT 1614和TFT 1615可以关闭。为了 实现这一点,子帧周期可以以一半划分,使得写操作可以在一个周期内执行,而擦除操作可 以在另一个周期内执行。在擦除操作中,可以关闭TFT 1614和TFT 1615的视频信号分别 从源极信号线1604和源极信号线1605输出。虽然该实施方式说明提供两个子像素的情况,子像素的数目可以多于两个。另外, 虽然提供两个源极信号线,本发明并不局限于此,并且多于两个源极信号线可以根据子像 素数目的增加而提供。在该实施方式中,像素1611中的所有TFT是η通道TFT ;因此,这种TFT可以使用 非晶硅制造。因为TFT 1616和TFT 1617的每个用作开关元件,它可以用电气开关或机械开关 代替,只要它可以控制电流。作为开关元件,例如,二极管或者由二极管和晶体管构造的逻 辑电路可以使用。此外,TFT1614和TFT 1615的每个也可以用作开关元件。另外,如果TFT 1614和发光元件1622的操作点以及TFT 1615和发光元件1623的操作点被设置以便允许 TFT 1614和TFT 1615在线性区域内操作,TFT 1614和TFT 1615的阈电压的变化将不影响 显示;因此,可以提供具有更高图像质量的显示设备。
[实施方式17]参考图17描述在实施方式1和2中描述的面板107的实例构造。在图17中,参考数字1701表示源极驱动器,1702表示栅极驱动器,1704表示源极 信号线,1706和1707表示栅极信号线,1709表示电源线,1711表示像素,1712和1713表示 子像素,1714,1715,1716和1717表示TFT,1720和1721表示每个具有一对电极的电容器, 1722和1723表示每个具有一对电极的发光元件,以及1724表示对应于发光元件1722的 另一个电极和发光元件1723的另一个电极的反电极。注意在该实施方式中,TFT 1714和 1715,1716和1717是η通道薄膜晶体管。源极驱动器1701连接到并且输出视频信号到源极信号线1704。栅极驱动器1702 连接到并且扫描栅极信号线1706和栅极信号线1707。电源线1709连接到TFT 1714的源 极或漏极的一个以及TFT1715的源极或漏极的一个。TFT 1714的源极或漏极的另一个连接 到发光元件1722的一个电极,并且TFT 1715的源极或漏极的另一个连接到发光元件1723 的一个电极。TFT 1714的栅极连接到电容器1720的一个电极以及TFT 1716的源极或漏 极的一个,而TFT 1715的栅极连接到电容器1721的一个电极以及TFT 1717的源极或漏 极的一个。电容器1720的另一个电极以及电容器1721的另一个电极连接到电源线1709。 TFT 1716的源极或漏极的另一个以及TFT 1717的源极或漏极的另一个连接到源极信号 线1704。TFT 1716的栅极连接到栅极信号线1706,而TFT 1717的栅极连接到栅极信号线 1707。当TFT 1716导通时,视频信号通过源极信号线1704写到TFT1714的栅极和电容 器1720的一个电极。当TFT 1717导通时,视频信号通过源极信号线1704写到TFT 1715 的栅极和电容器1721的一个电极。TFT 1716的栅极连接到栅极信号线1706,而TFT 1717 的栅极连接到栅极信号线1707 ;因此,它们独立地导通,从而源极信号线1704可以公用。在 TFT 1714和TFT 1715的每个中流动的电流值由输入到其栅极的视频信号的电势与电源线 1709的电势之间的关系确定,从而流入发光元件1722和发光元件1723中的电流被确定。也就是,亮度由视频信号确定。因为视频信号分别输入到子像素1712和子像素1713,子像 素1712的亮度和子像素1713的亮度可以彼此不同。因此,假设在一个子像素可以显示16 个灰度级的条件下发光元件1722和发光元件1723的面积设计为具有1 2的比值,64个 灰度级可以显示。这样,大量灰度级可以显示。虽然在前述驱动方法中发光元件1722和发光元件1723的亮度由其中流动的电流 值确定,亮度同样可以由发光时间确定。下面将描述这种情况。 在本发明中,从源极信号线1704输入的视频信号设置具有可以导通/关闭TFT 1714和TFT 1715的二进制值的电势。因此,发光状态或不发光状态可以被选择。在这种情 况下,通过将一个帧周期划分成多个子帧周期,灰度级(亮度)可以表示。例如,通过将一 帧划分成六个子帧,将各自发光周期的长度设置为1 2 4 8 16 32,并且组合每 个子帧,具有64级的灰度级(亮度)可以表示。注意,本发明并不局限于此,例如,上面长 度可以是1 :2:4:8:8:8:8:8:8:8。该实例对应于将16和32的发光周 期分别划分成8,8和8,8,8,8的情况。在使用发光时间表示灰度级(亮度)的上述方法中,擦除周期可以提供。擦除周 期对应于在一个帧周期划分成多个子帧的情况下,发光元件的发光在一个子帧中暂停一会 儿直到下一个子帧开始的时期。作为该操作方法,TFT 1714和TFT 1715可以关闭。为了 实现这一点,子帧周期可以以一半划分,使得写操作可以在一个周期内执行,而擦除操作可 以在另一个周期内执行。在擦除操作中,可以关闭TFT 1714和TFT 1715的视频信号从源 极信号线1704输出。虽然该实施方式说明提供两个栅极信号线的情况,本发明并不局限于此,多于两 个栅极信号线可以根据子像素数目的增加而提供。在该实施方式中,像素1711中的所有TFT是η通道TFT ;因此,这种TFT可以使用 非晶硅制造。因为TFT 1716和TFT 1717的每个用作开关元件,它可以用电气开关或机械开关 代替,只要它可以控制电流。作为开关元件,例如,二极管或者由二极管和晶体管构造的逻 辑电路可以使用。此外,TFT1714和TFT 1715的每个也可以用作开关元件。另外,如果TFT 1714和发光元件1722的操作点以及TFT 1715和发光元件1723的操作点被设置以便允许 TFT 1714和TFT 1715在线性区域内操作,TFT 1714和TFT 1715的阈电压的变化将不影响 显示;因此,可以提供具有更高图像质量的显示设备。[实施方式18]参考图18描述在实施方式1和2中描述的面板107的实例构造。在图18中,参考数字1801表示源极驱动器,1802和1803表示栅极驱动器,1804 和1805表示源极信号线,1806和1808表示栅极信号线,1809表示电源线,1811表示像素, 1812 和 1813 表示子像素,1814,1815,1816,1817,1818 和 1819 表示 TFT,1820 和 1821 表示 每个具有一对电极的电容器,1822和1823表示每个具有一对电极的发光元件,以及1824表 示对应于发光元件1822的另一个电极和发光元件1823的另一个电极的反电极。注意在该 实施方式中,TFT 1814和1815是ρ通道薄膜晶体管,而TFT 1816,1817,1818和1819是η 通道薄膜晶体管。源极驱动器1801连接到并且输出视频信号到源极信号线1804和源极信号线1805。栅极驱动器1802连接到并且扫描栅极信号线1806,而栅极驱动器1803连接到并且 扫描栅极信号线1808。电源线1809连接到TFT 1814的源极或漏极的一个,TFT 1815的源 极或漏极的一个,TFT 1818的源极或漏极的一个,以及TFT 1819的源极或漏极的一个。TFT 1814的源极或漏极的另一个连接到发光元件1822的一个电极,并且TFT 1815的源极或漏 极的另一个连接到发光元件1823的一个电极。TFT 1814的栅极连接到电容器1820的一个 电极,TFT 1818的源极或漏极的另一个,以及TFT 1816的源极或漏极的一个。TFT 1815的 栅极连接到电容器1821的一个电极,TFT 1819的源极或漏极的另一个,以及TFT 1817的 源极或漏极的另一个。电容器1820的另一个电极以及电容器1821的另一个电极连接到电 源线1809。TFT 1816的源极或漏极的另一个连接到源极信号线1804,以及TFT 1817的源 极或漏极的另一个连接到源极信号线1805。TFT 1816和TFT 1817的栅极连接到栅极信号 线1806,而TFT 1818和TFT 1819的栅极连接到栅极信号线1808。当TFT 1816导通时,视频信号通过源极信号线1804写到TFT1814的栅极和电容 器1820的一个电极。当TFT 1817导通时,视频信号通过源极信号线1805写到TFT 1815 的栅极和电容器1821的一个电极。TFT 1816和TFT 1817的栅极连接到公用栅极信号线 1806 ;因此,它们同时导通。在TFT 1814和TFT 1815的每个中流动的电流值由输入到其 栅极的视频信号的电势与电源线1809的电势之间的关系确定,从而流入发光元件1822和 发光元件1823中的电流被确定。也就是,亮度由视频信号确定。因为视频信号分别输入到 子像素1812和子像素1813,子像素1812的亮度和子像素1813的亮度可以彼此不同。因 此,假设在一个子像素可以显示16个灰度级的条件下发光元件1822和发光元件1823的面 积设计为具有1 2的比值,64个灰度级可以显示。这样,大量灰度级可以显示。另外,当 TFT 1818和TFT 1819导通时,电源线1809的电势施加到TFT 1814和TFT 1815的栅极; 因此,TFT 1814和TFT 1815的栅极-源极电势变成0V,从而这些晶体管关闭。这样,发光 元件1822和发光元件1823不发光,并且擦除周期因此可以提供。虽然该实施方式说明提供两个源极信号线的情况,本发明并不局限于此,并且多 于两个源极信号线可以根据子像素数目的增加而提供。因为TFT 1816和TFT 1817的每个用作开关元件,它可以用电气开关或机械开关 代替,只要它可以控制电流。作为开关元件,例如,二极管或者由二极管和晶体管构造的逻 辑电路可以使用。另外,TFT1814和TFT 1815也可以用作开关元件。在这种情况下,如果 TFT 1814和发光元件1822的操作点以及TFT 1815和发光元件1823的操作点被设置以便 允许TFT 1814和TFT 1815在线性区域内操作,TFT 1814和TFT 1815的阈电压的变化将 不影响显示;因此,可以提供具有更高图像质量的显示设备。[实施方式19]参考图19描述在实施方式1和2中描述的面板107的实例构造。在图19中,参考数字1901表示源极驱动器,1902和1903表示栅极驱动器,1904表示源极信号线,1906,1907和1908表示栅极信号线,1909表示电源线,1911表示像素,1912 和1913表示子像素,1914,1915,1916和1917表示TFT,1920和1921表示每个具有一对电 极的电容器,1922和1923表示每个具有一对电极的发光元件,以及1924表示对应于发光元 件1922的另一个电极和发光元件1923的另一个电极的反电极。注意在该实施方式中,TFT 1914和1915是ρ通道薄膜晶体管,而TFT 1916,1917,1918和1919是η通道薄膜晶体管。
源极驱动器1901连接到并且输出视频信号到源极信号线1904。栅极驱动器1902连接到并且扫描栅极信号线1906和栅极信号线1907,而栅极驱动器1903连接到并且扫描 栅极信号线1908。电源线1909连接到TFT 1914的源极或漏极的一个,TFT 1915的源极 或漏极的一个,TFT 1918的源极或漏极的一个,以及TFT 1919的源极或漏极的一个。TFT 1914的源极或漏极的另一个连接到发光元件1922的一个电极,并且TFT 1915的源极或漏 极的另一个连接到发光元件1923的一个电极。TFT 1914的栅极连接到电容器1920的一个 电极,TFT1918的源极或漏极的另一个,以及TFT 1916的源极或漏极的一个。TFT 1915的 栅极连接到电容器1921的一个电极,TFT 1919的源极或漏极的另一个,以及TFT 1917的 源极或漏极的另一个。电容器1920的另一个电极以及电容器1921的另一个电极连接到电 源线1909。TFT1916的源极或漏极的另一个以及TFT 1917的源极或漏极的另一个连接到 源极信号线1904。TFT 1916的栅极连接到栅极信号线1906,TFT1917的栅极连接到栅极信 号线1907,以及TFT 1918和TFT 1919的栅极连接到栅极信号线1908。当TFT 1916导通时,视频信号通过源极信号线1904写到TFT1914的栅极和电容 器1920的一个电极。当TFT 1917导通时,视频信号通过源极信号线1904写到TFT 1915 的栅极和电容器1921的一个电极。TFT 1916的栅极连接到栅极信号线1906,而TFT 1917 的栅极连接到栅极信号线1907 ;因此,它们独立地导通,从而源极信号线1904可以公用。在 TFT 1914和TFT 1915的每个中流动的电流值由输入到其栅极的视频信号的电势与电源线 1909的电势之间的关系确定,从而流入发光元件1922和发光元件1923中的电流被确定。 也就是,亮度由视频信号确定。因为视频信号分别输入到子像素1912和子像素1913,子像 素1912的亮度和子像素1913的亮度可以彼此不同。因此,假设在一个子像素可以显示16 个灰度级的条件下发光元件1922和发光元件1923的面积设计为具有1 2的比值,64个 灰度级可以显示。这样,大量灰度级可以显示。另外,当TFT 1918和TFT 1919导通时,电 源线1909的电势施加到TFT 1914和TFT 1915的栅极;因此,TFT1914和TFT 1915的栅 极_源极电势变成0V,从而这些晶体管关闭。这样,发光元件1922和发光元件1923不发 光,并且擦除周期因此可以提供。虽然该实施方式说明提供两个栅极信号线的情况,本发明并不局限于此,并且多 于两个栅极信号线可以根据子像素数目的增加而提供。因为TFT 1916和TFT 1917的每个用作开关元件,它可以用电气开关或机械开关 代替,只要它可以控制电流。作为开关元件,例如,二极管或者由二极管和晶体管构造的逻 辑电路可以使用。另外,TFT1914和TFT 1915也可以用作开关元件。在这种情况下,如果 TFT 1914和发光元件1922的操作点以及TFT 1915和发光元件1923的操作点被设置以便 允许TFT 1914和TFT 1915在线性区域内操作,TFT 1914和TFT 1915的阈电压的变化将 不影响显示;因此,可以提供具有更高图像质量的显示设备。[实施方式20]参考图20描述在实施方式1和2中描述的面板107的实例构造。在图20中,参考数字2001表示源极驱动器,2002和2003表示栅极驱动器,2004 和2005表示源极信号线,2006和2008表示栅极信号线,2009表示电源线,2011表示像素, 2012 和 2013 表示子像素,2014,2015,2016,2017,2018 和 2019 表示 TFT,2020 和 2021 表示 每个具有一对电极的电容器,2022和2023表示每个具有一对电极的发光元件,以及2024表示对应于发光元件2022的另一个电极和发光元件2023的另一个电极的反电极。注意在该 实施方式中,TFT 2014,2015,2016,2017,2018和2019是η通道薄膜晶体管。源极驱动器2001连接到并且输出视频信号到源极信号线2004和源极信号线 2005。栅极驱动器2002连接到并且扫描栅极信号线2006。电源线2009连接到TFT 2014 的源极或漏极的一个,TFT 2015的源极或漏极的一个,TFT 2018的源极或漏极的一个,以 及TFT 2019的源极或漏极的一个。TFT 2014的源极或漏极的另一个连接到发光元件2022 的一个电极,并且TFT 2015的源极或漏极的另一个连接到发光元件2023的一个电极。TFT 2014的栅极连接到电容器2020的一个电极,TFT 2018的源极或漏极的另一个,以及TFT 2016的源极或漏极的一个。TFT 2015的栅极连接到电容器2021的一个电极,TFT 2019的 源极或漏极的另一个,以及TFT 2017的源极或漏极的另一个。电容器2020的另一个电极以 及电容器2021的另一个电极连接到电源线2009。TFT 2016的源极或漏极的另一个连接到 源极信号线2004,以及TFT 2017的源极或漏极的另一个连接到源极信号线2005。TFT2016 和TFT 2017的栅极连接到栅极信号线2006,而TFT 2018和TFT2019的栅极连接到栅极信 号线2008。当TFT 2016导通时,视频信号通过源极信号线2004写到TFT2014的栅极和电容 器2020的一个电极。当TFT 2017导通时,视频信号通过源极信号线2005写到TFT 2015 的栅极和电容器2021的一个电极。TFT 2016和TFT 2017的栅极连接到公用栅极信号线 2006 ;因此,它们同时导通。在TFT 2014和TFT 2015的每个中流动的电流值由输入到其 栅极的视频信号的电势与电源线2009的电势之间的关系确定,从而流入发光元件2022和 发光元件2023中的电流被确定。也就是,亮度由视频信号确定。因为视频信号分别输入到 子像素2012和子像素2013,子像素2012的亮度和子像素2013的亮度可以彼此不同。因 此,假设在一个子像素可以显示16个灰度级的条件下发光元件2022和发光元件2023的面 积设计为具有1 2的比值,64个灰度级可以显示。这样,大量灰度级可以显示。另外,当 TFT 2018和TFT 2019导通时,电源线2009的电势施加到TFT 2014和TFT 2015的栅极; 因此,TFT 2014和TFT 2015的栅极-源极电势变成0V,从而这些晶体管关闭。这样,发光 元件2022和发光元件2023不发光,并且擦除周期因此可以提供。虽然该实施方式说明提供两个子像素的情况,子像素的数目可以多于两个。另外, 虽然提供两个栅极信号线,本发明并不局限于此,并且多于两个栅极信号线可以根据子像 素数目的增加而提供。在该实施方式中,像素2011中的所有TFT是η通道TFT ;因此,这种TFT可以使用 非晶硅制造。因为TFT 2016和TFT 2017的每个用作开关元件,它可以用电气开关或机械开关代替,只要它可以控制电流。作为开关元件,例如,二极管或者由二极管和晶体管构造的逻 辑电路可以使用。另外,TFT2014和TFT 2015也可以用作开关元件。在这种情况下,如果 TFT 2014和发光元件2022的操作点以及TFT 2015和发光元件2023的操作点被设置以便 允许TFT 2014和TFT 2015在线性区域内操作,TFT 2014和TFT 2015的阈电压的变化将 不影响显示;因此,可以提供具有更高图像质量的显示设备。[实施方式21]参考图21描述在实施方式1和2中描述的实例面板107。
在图21中,参考数字2101表示源极驱动器,2102和2103表示栅极驱动器,2104表 示源极信号线,2106,2107和2108表示栅极信号线,2109表示电源线,2111表示像素,2112 和2113表示子像素,2114,2115,2116和2117表示TFT, 2120和2121表示每个具有一对电 极的电容器,2122和2123表示每个具有一对电极的发光元件,以及2124表示对应于发光元 件2122的另一个电极和发光元件2123的另一个电极的反电极。注意在该实施方式中,TFT 2114和2115是ρ通道薄膜晶体管,而TFT 2116,2117,2118和2119是η通道薄膜晶体管。源极驱动器2101连接到并且输出视频信号到源极信号线2104。栅极驱动器2102 连接到并且扫描栅极信号线2106和栅极信号线2107,而栅极驱动器2103连接到并且扫描 栅极信号线2108。电源线2109连接到TFT 2114的 源极或漏极的一个,TFT 2115的源极 或漏极的一个,TFT 2118的源极或漏极的一个,以及TFT 2119的源极或漏极的一个。TFT 2114的源极或漏极的另一个连接到发光元件2122的一个电极,并且TFT 2115的源极或漏 极的另一个连接到发光元件2123的一个电极。TFT 2114的栅极连接到电容器2120的一个 电极,TFT2118的源极或漏极的另一个,以及TFT 2116的源极或漏极的一个。TFT 2115的 栅极连接到电容器2121的一个电极,TFT 2119的源极或漏极的另一个,以及TFT 2117的 源极或漏极的另一个。电容器2120的另一个电极以及电容器2121的另一个电极连接到电 源线2109。TFT2116的源极或漏极的另一个以及TFT 2117的源极或漏极的另一个连接到 源极信号线2104。TFT 2116的栅极连接到栅极信号线2106,TFT2117的栅极连接到栅极信 号线2107,以及TFT 2118和TFT 2119的栅极连接到栅极信号线2108。当TFT 2116导通时,视频信号通过源极信号线2104写到TFT2114的栅极和电容 器2120的一个电极。当TFT 2117导通时,视频信号通过源极信号线2104写到TFT 2115 的栅极和电容器2121的一个电极。TFT 2116的栅极连接到栅极信号线2106,而TFT 2117 的栅极连接到栅极信号线2107;因此,它们独立地导通,从而源极信号线2104可以公用。在 TFT 2114和TFT 2115的每个中流动的电流值由输入到其栅极的视频信号的电势与电源线 2109的电势之间的关系确定,从而流入发光元件2122和发光元件2123中的电流被确定。 也就是,亮度由视频信号确定。因为视频信号分别输入到子像素2112和子像素2113,子像 素2112的亮度和子像素2113的亮度可以彼此不同。因此,假设在一个子像素可以显示16 个灰度级的条件下发光元件2122和发光元件2123的面积设计为具有1 2的比值,64个 灰度级可以显示。这样,大量灰度级可以显示。另外,当TFT 2118和TFT 2119导通时,电 源线2109的电势施加到TFT 2114和TFT 2115的栅极;因此,TFT2114和TFT 2115的栅 极_源极电势变成0V,从而这些晶体管关闭。这样,发光元件2122和发光元件2123不发 光,并且擦除周期因此可以提供。虽然该实施方式说明提供两个栅极信号线的情况,本发明并不局限于此,并且多 于两个栅极信号线可以根据子像素数目的增加而提供。在该实施方式中,像素2111中的所有TFT是η通道TFT ;因此,这种TFT可以使用 非晶硅制造。因为TFT 2116和TFT 2117的每个用作开关元件,它可以用电气开关或机械开关 代替,只要它可以控制电流。作为开关元件,例如,二极管或者由二极管和晶体管构造的逻 辑电路可以使用。另外,TFT2114和TFT 2115也可以用作开关元件。在这种情况下,如果TFT 2114和发光元件2122的操作点以及TFT 2115和发光元件2123的操作点被设置以便允许TFT 2114和 TFT 2115在线性区域内操作,TFT 2114和TFT 2115的阈电压的变化将不影响显示;因此, 可以提供具有更高图像质量的显示设备。[实施方式22]参考图22描述在实施方式1和2中描述的面板107的实例构造。在图22中,参考数字2201表示源极驱动器,2202和2203表示栅极驱动器,2204 和2205表示源极信号线,2206和2208表示栅极信号线,2209表示电源线,2211表示像素, 2212 和 2213 表示子像素,2214,2215,2216 和 2217 表示 TFT,2218 和 2219 表示二极管,2220 和2221表示每个具有一对电极的电容器,2222和2223表示每个具有一对电极的发光元件, 以及2224表示对应于发光元件2222的另一个电极和发光元件2223的另一个电极的反电 极。注意在该实施方式中,TFT 2214和2215是ρ通道薄膜晶体管,而TFT 2216和2217是 η通道薄膜晶体管。源极驱动器2201连接到并且输出视频信号到源极信号线2204和源极信号线 2205。栅极驱动器2202连接到并且扫描栅极信号线2206,而栅极驱动器2203连接到并且 扫描栅极信号线2208。电源线2209连接到TFT 2214的源极或漏极的一个以及TFT 2215 的源极或漏极的一个。TFT 2214的源极或漏极的另一个连接到发光元件2222的一个电极, 并且TFT 2215的源极或漏极的另一个连接到发光元件2223的一个电极。TFT 2214的栅极 连接到电容器2220的一个电极,二极管2218的输出,以及TFT 2216的源极或漏极的一个。 TFT 2215的栅极连接到电容器2221的一个电极,二极管2219的输出,以及TFT 2217的源 极或漏极的另一个。电容器2220的另一个电极以及电容器2221的另一个电极连接到电源 线2209。TFT 2216的源极或漏极的另一个连接到源极信号线2204,以及TFT 2217的源极 或漏极的另一个连接到源极信号线2205。TFT 2216和TFT 2217的栅极连接到栅极信号线
2206。二极管2218和二极管2219的输入连接到栅极信号线2208。当TFT 2216导通时,视频信号通过源极信号线2204写到TFT2214的栅极和电容 器2220的一个电极。当TFT 2217导通时,视频信号通过源极信号线2205写到TFT 2215 的栅极和电容器2221的一个电极。TFT 2216和TFT 2217的栅极连接到公用栅极信号线 2206 ;因此,它们同时导通。在TFT 2214和TFT 2215的每个中流动的电流值由输入到其栅 极的视频信号的电势与电源线2209的电势之间的关系确定,从而流入发光元件2222和发 光元件2223中的电流被确定。也就是,亮度由视频信号确定。因为视频信号分别输入到子 像素2212和子像素2213,子像素2212的亮度和子像素2213的亮度可以彼此不同。因此, 假设在一个子像素可以显示16个灰度级的条件下发光元件2222和发光元件2223的面积 设计为具有1 2的比值,64个灰度级可以显示。这样,大量灰度级可以显示。另外,栅极 信号线2208通常具有比保持在电容器2220和电容器2221中的电势低的电势。因此,通过 将栅极信号线2208的电势设置得高于保持在电容器2220和电容器2221中的电势(关闭 TFT 2214和TFT 2215的电势),发光元件2222和发光元件2223可以被控制以不发光。这 样,擦除周期可以提供。虽然该实施方式说明提供两个子像素的情况,子像素的数目可以多于两个。另外, 虽然提供两个栅极信号线,本发明并不局限于此,并且多于两个栅极信号线可以根据子像 素数目的增加而提供。
因为TFT 2216和TFT 2217的每个用作开关元件,它可以用电气开关或机械开关 代替,只要它可以控制电流。作为开关元件,例如,二极管或者由二极管和晶体管构造的逻 辑电路可以使用。另外,TFT2214和TFT 2215也可以用作开关元件。在这种情况下,如果 TFT 2214和发光元件2222的操作点以及TFT 2215和发光元件2223的操作点被设置以便 允许TFT 2214和TFT 2215在线性区域内操作,TFT 2214和TFT 2215的阈电压的变化将 不影响显示;因此,可以提供具有更高图像质量的显示设备。[实施方式23]参考图23描述在实施方式1和2中描述的面板107的实例构造。在图23中,参考数字2301表示源极驱动器,2302和2303表示栅极驱动器,2304表 示源极信号线,2306,2307和2308表示栅极信号线,2309表示电源线,2311表示像素,2312 和2313表示子像素,2314,2315,2316和2317表示TFT,2318和2319表示二极管,2320和 2321表示每个具有一对电极的电容器,2322和2323表示每个具有一对电极的发光元件,以 及2324表示对应于发光元件2322的另一个电极和发光元件2323的另一个电极的反电极。 注意在该实施方式中,TFT 2314和2315是ρ通道薄膜晶体管,而TFT 2316和2317是η通 道薄膜晶体管。源极驱动器2301连接到并且输出视频信号到源极信号线2304。栅极驱动器2302 连接到并且扫描栅极信号线2306和栅极信号线2307,而栅极驱动器2303连接到并且扫描 栅极信号线2308。电源线2309连接到TFT 2314的源极或漏极的一个以及TFT 2315的源 极或漏极的一个。TFT 2314的源极或漏极的另一个连接到发光元件2322的一个电极,并 且TFT 2315的源极或漏极的另一个连接到发光元件2323的一个电极。TFT 2314的栅极 连接到电容器2320的一个电极,二极管2318的输出,以及TFT 2316的源极或漏极的一个。 TFT 2315的栅极连接到电容器2321的一个电极,二极管2319的输出,以及TFT2317的源极 或漏极的另一个。电容器2320的另一个电极以及电容器2321的另一个电极连接到电源线 2309。TFT 2316的源极或漏极的另一个以及TFT 2317的源极或漏极的另一个连接到源极 信号线2304。TFT 2316的栅极连接到栅极信号线2306,以及TFT 2317的栅极连接到栅极 信号线2307。二极管2318和二极管2319的输入连接到栅极信号线2308。当TFT 2316导通时,视频信号通过源极信号线2304写到TFT2314的栅极和电容 器2320的一个电极。当TFT 2317导通时,视频信号通过源极信号线2304写到TFT 2315 的栅极和电容器2321的一个电极。TFT 2316的栅极连接到栅极信号线2306,而TFT 2317 的栅极连接到栅极信号线2307 ;因此,它们独立地导通,从而源极信号线2304可以公用。在 TFT 2314和TFT 2315的每个中流动的电流值由输入到其栅极的视频信号的电势与电源线 2309的电势之间的关系确定,从而流入发光元件2322和发光元件2323中的电流被确定。 也就是,亮度由视频信号确定。因为视频信号分别输入到子像素2312和子像素2313,子像 素2312的亮度和子像素2313的亮度可以彼此不同。因此,假设在一个子像素可以显示16 个灰度级的条件下发光元件2322和发光元件2323的面积设计为具有1 2的比值,64个 灰度级可以显示。这样,大量灰度级可以显示。另外,栅极信号线2308通常具有比保持在 电容器2320和电容器2321中的电势低的电势。因此,通过将栅极信号线2308的电势设置 得高于保持在电容器2320和电容器2321中的电势(关闭TFT 2314和TFT 2315的电势), 发光元件2322和发光元件2323可以被控制以不发光。这样,擦除周期可以提供。
虽然该实施方式说明提供两个栅极信号线的情况,本发明并不局限于此,并且多于两个栅极信号线可以根据子像素数目的增加而提供。因为TFT 2316和TFT 2317的每个用作开关元件,它可以用电气开关或机械开关 代替,只要它可以控制电流。作为开关元件,例如,二极管或者由二极管和晶体管构造的逻 辑电路可以使用。另外,TFT2314和TFT 2315也可以用作开关元件。在这种情况下,如果 TFT 2314和发光元件2322的操作点以及TFT 2315和发光元件2323的操作点被设置以便 允许TFT 2314和TFT 2315在线性区域内操作,TFT 2314和TFT 2315的阈电压的变化将 不影响显示;因此,可以提供具有更高图像质量的显示设备。[实施方式24]参考图31描述在实施方式1和2中描述的面板107的实例构造。在图31中,参考数字3101表示源极驱动器,3102和3103表示栅极驱动器,3104 和3105表示源极信号线,3106和3108表示栅极信号线,3109表示电源线,3111表示像素, 3112 和 3113 表示子像素,3114,3115,3116,3117,3118 和 3119 表示 TFT,3120 和 3121 表示 每个具有一对电极的电容器,3122和3123表示每个具有一对电极的发光元件,以及3124表 示对应于发光元件3122的另一个电极和发光元件3123的另一个电极的反电极。注意在该 实施方式中,TFT 3114和3115是ρ通道薄膜晶体管,而TFT 3116,3117,3118和3119是η 通道薄膜晶体管。源极驱动器3101连接到并且输出视频信号到源极信号线3104和源极信号线 3105。栅极驱动器3102连接到并且扫描栅极信号线3106,而栅极驱动器3103连接到并且 扫描栅极信号线3108。电源线3109连接到TFT 3114的源极或漏极的一个以及TFT 3115 的源极或漏极的一个。TFT 3114的源极或漏极的另一个连接到TFT 3118的源极或漏极的 一个,并且TFT 3118的源极或漏极的另一个连接到发光元件3122的一个电极。TFT 3115 的源极或漏极的另一个连接到TFT 3119的源极或漏极的一个,并且TFT 3119的源极或漏 极的另一个连接到发光元件3123的一个电极。TFT 3114的栅极连接到电容器3120的一个 电极以及TFT 3116的源极或漏极的一个,而TFT 3115的栅极连接到电容器3121的一个电 极以及TFT 3117的源极或漏极的另一个。电容器3120的另一个电极以及电容器3121的 另一个电极连接到电源线3109。TFT 3116的源极或漏极的另一个连接到源极信号线3104, 以及TFT3117的源极或漏极的另一个连接到源极信号线3105。TFT 3116和TFT 3117的栅 极连接到栅极信号线3106,而TFT 3118和TFT 3119的栅极连接到栅极信号线3108。当TFT 3116导通时,视频信号通过源极信号线3104写到TFT3114的栅极和电容 器3120的一个电极。当TFT 3117导通时,视频信号通过源极信号线3105写到TFT 3115 的栅极和电容器3121的一个电极。TFT 3116和TFT 3117的栅极连接到公用栅极信号线 3106 ;因此,它们同时导通。在TFT 3114和TFT 3115的每个中流动的电流值由输入到其栅 极的视频信号的电势与电源线3109的电势之间的关系确定,从而流入发光元件3122和发 光元件3123中的电流被确定。也就是,亮度由视频信号确定。因为视频信号分别输入到子 像素3112和子像素3113,子像素3112的亮度和子像素3113的亮度可以彼此不同。因此, 假设在一个子像素可以显示16个灰度级的条件下发光元件3122和发光元件3123的面积 设计为具有1 2的比值,64个灰度级可以显示。这样,大量灰度级可以显示。另外,因为 TFT 3118和TFT 3119通常导通,当TFT 3118和TFT 3119关闭时,发光元件3122的一个电极和发光元件3123的一个电极进入浮动状态,从而可以提供不发光状态。这样,擦除周期
可以提供。虽然该实施方式说明提供两个子像素的情况,子像素的数目可以多于两个。另外, 虽然提供两个栅极信号线,本发明并不局限于此,并且多于两个栅极信号线可以根据子像 素数目的增加而提供。因为TFT 3116,TFT 3117,TFT 3118禾口 TFT 3119的每个用作开关元件,它可以用 电气开关或机械开关代替,只要它可以控制电流。作为开关元件,例如,二极管或者由二极 管和晶体管构造的逻辑电路可以使用。另外,TFT 3114和TFT 3115也可以用作开关元件。 在这种情况下,如果TFT 3114和发光元件3122的操作点以及TFT 3115和发光元件3123 的操作点被设置以便允许TFT 3114和TFT 3115在线性区域内操作,TFT 3114和TFT 3115 的阈电压的变化将不影响显示;因此,可以提供具有更高图像质量的显示设备。[实施方式邪]参考图32描述在实施方式1和2中描述的面板107的实例构造。在图32中,参考数字3201表示源极驱动器,3202和3203表示栅极驱动器,3204表 示源极信号线,3206,3207和3208表示栅极信号线,3209表示电源线,3211表示像素,3212 和 3213 表示子像素,3214,3215,3216,3217,3218 和 3219 表示 TFT,3220 和 3221 表示每个 具有一对电极的电容器,3222和3223表示每个具有一对电极的发光元件,以及3224表示对 应于发光元件3222的另一个电极和发光元件3223的另一个电极的反电极。注意在该实施 方式中,TFT 3214和3215是ρ通道薄膜晶体管,而TFT 3216,3217,3218和3219是η通道 薄膜晶体管。源极驱动器3201连接到并且输出视频信号到源极信号线3204。栅极驱动器3202 连接到并且扫描栅极信号线3206和栅极信号线3207,而栅极驱动器3203连接到并且扫描 栅极信号线3208。电源线3209连接到TFT 3214的源极或漏极的一个以及TFT 3215的源 极或漏极的一个。TFT 3214的源极或漏极的另一个连接到TFT 3218的源极或漏极的一个, 并且TFT 3218的源极或漏极的另一个连接到发光元件3222的一个电极。TFT 3215的源 极或漏极的另一个连接到TFT3219的源极或漏极的一个,并且TFT 3219的源极或漏极的另 一个连接到发光元件3223的一个电极。TFT 3214的栅极连接到电容器3220的一个电极 以及TFT 3216的源极或漏极的一个,而TFT 3215的栅极连接到电容器3221的一个电极以 及TFT 3217的源极或漏极的另一个。电容器3220的另一个电极以及电容器3221的另一 个电极连接到电源线3209。TFT 3216的源极或漏极的另一个以及TFT 3217的源极或漏极 的另一个连接到源极信号线3204。TFT 3216的栅极连接到栅极信号线3206,TFT 3217的 栅极连接到栅极信号线3207,以及TFT3218和TFT 3219的栅极连接到栅极信号线3208。当TFT 3216导通时,视频信号通过源极信号线3204写到TFT3214的栅极和电容 器3220的一个电极。当TFT 3217导通时,视频信号通过源极信号线3204写到TFT 3215的 栅极和电容器3221的一个电极。TFT 3216的栅极连接到栅极信号线3206,并且TFT 3217 的栅极连接到栅极信号线3207 ;因此,它们独立地导通,从而源极信号线3204可以公用。在 TFT 3214和TFT 3215的每个中流动的电流值由输入到其栅极的视频信号的电势与电源线 3209的电势之间的关系确定,从而流入发光元件3222和发光元件3223中的电流被确定。 也就是,亮度由视频信号确定。因为视频信号分别输入到子像素3212和子像素3213,子像素3212的亮度和子像素3213的亮度可以彼此不同。因此,假设在一个子像素可以显示16个灰度级的条件下发光元件3222和发光元件3223的面积设计为具有1 2的比值,64个 灰度级可以显示。这样,大量灰度级可以显示。另外,因为TFT 3218和TFT 3219通常导通, 当TFT 3218和TFT 3219关闭时,发光元件3222的一个电极和发光元件3223的一个电极 进入浮动状态,从而可以提供不发光状态。这样,擦除周期可以提供。虽然该实施方式说明提供两个子像素的情况,子像素的数目可以多于两个。另外, 虽然提供两个栅极信号线,本发明并不局限于此,并且多于两个栅极信号线可以根据子像 素数目的增加而提供。因为TFT 3216,TFT 3217,TFT 3218禾口 TFT 3219的每个用作开关元件,它可以用 电气开关或机械开关代替,只要它可以控制电流。作为开关元件,例如,二极管或者由二极 管和晶体管构造的逻辑电路可以使用。另外,TFT 3214和TFT 3215也可以用作开关元件。 在这种情况下,如果TFT 3214和发光元件3222的操作点以及TFT 3215和发光元件3223 的操作点被设置以便允许TFT 3214和TFT 3215在线性区域内操作,TFT 3214和TFT 3215 的阈电压的变化将不影响显示;因此,可以提供具有更高图像质量的显示设备。[实施方式26]参考图33描述在实施方式1和2中描述的面板107的实例构造。在图33中,参考数字3301表示源极驱动器,3302和3303表示栅极驱动器,3304 和3305表示源极信号线,3306和3308表示栅极信号线,3309表示电源线,3311表示像素, 3312 和 3313 表示子像素,3314,3315,3316,3317,3318 和 3319 表示 TFT,3320 和 3321 表示 每个具有一对电极的电容器,3322和3323表示每个具有一对电极的发光元件,以及3324表 示对应于发光元件3322的另一个电极和发光元件3323的另一个电极的反电极。注意在该 实施方式中,TFT 3314,3315,3316,3317,3318和3319是η通道薄膜晶体管。源极驱动器3301连接到并且输出视频信号到源极信号线3304和源极信号线 3305。栅极驱动器3302连接到并且扫描栅极信号线3306,而栅极驱动器3303连接到并且 扫描栅极信号线3308。电源线3309连接到TFT 3314的源极或漏极的一个以及TFT 3315 的源极或漏极的一个。TFT 3314的源极或漏极的另一个连接到TFT 3318的源极或漏极的 一个,并且TFT 3318的源极或漏极的另一个连接到发光元件3322的一个电极。TFT 3315 的源极或漏极的另一个连接到TFT 3319的源极或漏极的一个,并且TFT 3319的源极或漏 极的另一个连接到发光元件3323的一个电极。TFT 3314的栅极连接到电容器3320的一个 电极以及TFT 3316的源极或漏极的一个,而TFT 3315的栅极连接到电容器3321的一个电 极以及TFT 3317的源极或漏极的另一个。电容器3320的另一个电极以及电容器3321的 另一个电极连接到电源线3309。TFT 3316的源极或漏极的另一个连接到源极信号线3304, 以及TFT3317的源极或漏极的另一个连接到源极信号线3305。TFT 3316和TFT 3317的栅 极连接到栅极信号线3306,而TFT 3318和TFT 3319的栅极连接到栅极信号线3308。当TFT 3316导通时,视频信号通过源极信号线3304写到TFT3314的栅极和电容 器3320的一个电极。当TFT 3317导通时,视频信号通过源极信号线3305写到TFT 3315 的栅极和电容器3321的一个电极。TFT 3316和TFT 3317的栅极连接到公用栅极信号线 3306 ;因此,它们同时导通。在TFT 3314和TFT 3315的每个中流动的电流值由输入到其栅 极的视频信号的电势与电源线3309的电势之间的关系确定,从而流入发光元件3322和发光元件3323中的电流被确定。也就是,亮度由视频信号确定。因为视频信号分别输入到子 像素3312和子像素3313,子像素3312的亮度和子像素3313的亮度可以彼此不同。因此, 假设在一个子像素可以显示16个灰度级的条件下发光元件3322和发光元件3323的面积 设计为具有1 2的比值,64个灰度级可以显示。这样,大量灰度级可以显示。另外,因为 TFT 3318和TFT 3319通常导通,当TFT 3318和TFT 3319关闭时,发光元件3322的一个电 极和发光元件3323的一个电极进入浮动状态,从而可以提供不发光状态。这样,擦除周期 可以提供。虽然该实施方式说明提供两个子像素的情况,子像素的数目可以多于两个。另外, 虽然提供两个栅极信号线,本发明并不局限于此,并且多于两个栅极信号线可以根据子像 素数目的增加而提供。在该实施方式中,像素3311中的所有TFT是η通道TFT ;因此,这种TFT可以使用 非晶硅制造。因为TFT 3316,TFT 3317,TFT 3318和TFT 3319的每 个用作开关元件,它可以用 电气开关或机械开关代替,只要它可以控制电流。作为开关元件,例如,二极管或者由二极 管和晶体管构造的逻辑电路可以使用。另外,TFT 3314和TFT 3315也可以用作开关元件。 在这种情况下,如果TFT 3314和发光元件3322的操作点以及TFT 3315和发光元件3323 的操作点被设置以便允许TFT 3314和TFT 3315在线性区域内操作,TFT 3314和TFT 3315 的阈电压的变化将不影响显示;因此,可以提供具有更高图像质量的显示设备。[实施方式27]参考图34描述在实施方式1和2中描述的面板107的实例构造。在图34中,参考数字3401表示源极驱动器,3402和3403表示栅极驱动器,3404表 示源极信号线,3406,3407和3408表示栅极信号线,3409表示电源线,3411表示像素,3412 和 3413 表示子像素,3414,3415,3416,3417,3418 和 3419 表示 TFT,3420 和 3421 表示每个 具有一对电极的电容器,3422和3423表示每个具有一对电极的发光元件,以及3424表示对 应于发光元件3422的另一个电极和发光元件3423的另一个电极的反电极。注意在该实施 方式中,TFT 3414,3415,3416,3417,3418和3419是η通道薄膜晶体管。源极驱动器3401连接到并且输出视频信号到源极信号线3404。栅极驱动器3402 连接到并且扫描栅极信号线3406和栅极信号线3407,而栅极驱动器3403连接到并且扫描 栅极信号线3408。电源线3409连接到TFT 3414的源极或漏极的一个以及TFT 3415的源 极或漏极的一个。TFT 3414的源极或漏极的另一个连接到TFT 3418的源极或漏极的一个, 并且TFT 3418的源极或漏极的另一个连接到发光元件3422的一个电极。TFT 3415的源极 或漏极的另一个连接到TFT3419的源极或漏极的一个,并且TFT 3419的源极或漏极的另一个连接到发光元 件3423的一个电极。TFT 3414的栅极连接到电容器3420的一个电极以及TFT 3416的源 极或漏极的一个,而TFT 3415的栅极连接到电容器3421的一个电极以及TFT 3417的源极 或漏极的另一个。电容器3420的另一个电极以及电容器3421的另一个电极连接到电源线 3409。TFT 3416的源极或漏极的另一个以及TFT 3417的源极或漏极的另一个连接到源极 信号线3404。TFT 3416的栅极连接到栅极信号线3406,TFT 3417的栅极连接到栅极信号 线3407,以及TFT3418和TFT 3419的栅极连接到栅极信号线3408。
当TFT 3416导通时,视频信号通过源极信号线3404写到TFT3414的栅极和电容 器3420的一个电极。当TFT 3417导通时,视频信号通过源极信号线3404写到TFT 3415的 栅极和电容器3421的一个电极。TFT 3416的栅极连接到栅极信号线3406,并且TFT 3417 的栅极连接到栅极信号线3407 ;因此,它们独立地导通,从而源极信号线3404可以公用。在 TFT 3414和TFT 3415的每个中流动的电流值由输入到其栅极的视频信号的电势与电源线 3409的电势之间的关系确定,从而流入发光元件3422和发光元件3423中的电流被确定。 也就是,亮度由视频信号确定。因为视频信号分别输入到子像素3412和子像素3413,子像 素3412的亮度和子像素3413的亮度可以彼此不同。因此,假设在一个子像素可以显示16 个灰度级的条件下发光元件3422和发光元件3423的面积设计为具有1 2的比值,64个 灰度级可以显示。这样,大量灰度级可以显示。另外,因为TFT 3418和TFT 3419通常导通, 当TFT 3418和TFT 3419关闭时,发光元件3422的一个电极和发光元件3423的一个电极 进入浮动状态,从而可以提供不发光状态。这样,擦除周期可以提供。虽然该实施方式说明提供两个栅极信号线的情况,本发明并不局限于此,并且多 于两个栅极信号线可以根据子像素数目的增加而提供。 在该实施方式中,像素3411中的所有TFT是η通道TFT ;因此,这种TFT可以使用 非晶硅制造。因为TFT 3416,TFT 3417,TFT 3418和TFT 3419的每个用作开关元件,它可以用 电气开关或机械开关代替,只要它可以控制电流。作为开关元件,例如,二极管或者由二极 管和晶体管构造的逻辑电路可以使用。另外,TFT 3414和TFT 3415也可以用作开关元件。 在这种情况下,如果TFT 3414和发光元件3422的操作点以及TFT 3415和发光元件3423 的操作点被设置以便允许TFT 3414和TFT 3415在线性区域内操作,TFT 3414和TFT 3415 的阈电压的变化将不影响显示;因此,可以提供具有更高图像质量的显示设备。[实施方式观]参考图40Α和40Β描述使用实施方式14 27中描述的构造显示灰度级的实例方法。在该实施方式中,描述一个帧周期划分成多个子帧周期,并且亮度用发光元件的 发光时间表示的方法。图40Α和40Β显示在将一个帧周期划分成三个子帧周期的情况下的 时间图的实例。这种驱动方法称作数字时间灰度级驱动。在图40Α中,一个帧周期划分成三个子帧周期。第一子帧周期由SFl表示;第二子 帧周期,SF2 ;以及第三子帧周期,SF3。SFl中的发光周期由Tsl表示;SF2中的发光周期, Ts2 ;以及SF3中的发光周期,Ts3。SFl中的写周期由Tal表示;SF2中的写周期,Ta2 ;以及 SF3中的写周期,Ta3。另外,写周期可以包括擦除周期。图40B是驱动第i行中像素的时间图,其显示一帧中各个子帧周期中的发光周期 和写周期。例如,通过设置Tsl,Ts2和Ts3的发光周期的比值为1 2 4,并且选择点亮像 素的子帧,8个灰度级可以显示。另外,一个帧周期的划分数目并不特别限制,并且它可以是 任意数。例如,一个帧周期可以划分成六个,并且Tsl, Ts2, Ts3, Ts4, Ts5和Ts6的比值可 以设置为1 2 4 8 16 32。另外,Ta5和Ta6可以进一步划分,使得各个发光周 期的比值为 1:2:4:8:8:8:8:8:8:8。
此外,如果每个子帧缩短,更多子帧周期可以在同一个帧周期中提供。另外,如果 子帧周期被提供以短于将信号写到所有行中像素所需的时间,可以使用提供擦除周期的方 法。因此,在写周期中从第一行开始依次扫描栅极信号线的情况下,已经写入的数据在终止 所有栅极信号线的扫描操作之前擦除,从而子帧周期中的发光周期可以缩短。为了提供这种擦除周期,存在一种方法,即一个栅极选择周期划分成多个周期并 且使用同一个源极信号线,如实施方式14,15,16和17中所示。作为选择,在实施方式18, 19,20,21,22和23中,除了用于写入信号的栅极信号线之外,另一个栅极信号线被提供,并 且驱动TFT在它由另外的栅极信号线选择时关闭。此外作为选择,在实施方式31,32,33和 34中,TFT提供在发光元件和电源线之间,并且擦除周期通过关闭TFT而提供。[实施方式29]参考图35,图36和图37描述具有实施方式14 27中描述的构造的栅极驱动 器 1402,1502,1602,1702,1802,1803,1902,1903,2002,2003,2102,2103,2202,2203,2302, 2303,3102,3103,3202,3203,3302,3303,3402 和 3403 的实例。参考图35描述栅极驱动器1402,1502,1602和1702的实例。栅极驱动器包括第一移位寄存器6101,第二移位寄存器6102,第三移位寄存器 6103,AND 电路 6104,AND 电路 6105,AND 电路 6106 和 OR 电路 6107。GCK, GCKB 和 GlSP 输 入到第一移位寄存器6101,GCK,GCKB和G2SP输入到第二移位寄存器6102,以及GCK,GCKB 和G3SP输入到第三移位寄存器6103。第一移位寄存器6101的输出和G_CP1连接到AND电 路6104的输入,第二移位寄存器6102的输出和G_CP2连接到AND电路6105的输入,以及 第三移位寄存器6103的输出和G_CP3连接到AND电路6106的输入。AND电路6104,6105 和6106的输出连接到OR电路6107。栅极信号线Gy中哪个被选择以输出信号由第一移位 寄存器6101,第二移位寄存器6102和第三移位寄存器6103的输出,与G_CP1,G_CP2和G_ CP3的组合确定。使用图35的构造,可以提供三个子栅极选择周期。另外,移位寄存器的数 目并不特别限制,如同子栅极选择周期的数目不特别限制一样。参考图36描述解码器电路用于栅极驱动器1402,1502,1602,1702,1802,1803, 1902,1903,2002,2003,2102,2103,2202,2203,2302,2303,3102,3103,3202,3203,3302, 3303,3402 和 3403 的实例。使用解码器电路的栅极驱动器包括输入端子,NAND电路,反相电路,电平移位器 5805和缓冲电路5806。具有四个输入端子的NAND电路的输入连接到选自第一输入端子 5801,第二输入端子5802,第三输入端子5803,第四输入端子5804,输入到第一输入端子 5801的信号的反相信号,输入到第二输入端子5802的信号的反相信号,输入到第三输入端 子5803的信号的反相信号,以及输入到第四输入端子5804的信号的反相信号的四个输入 端子。具有四个输入端子的NAND电路的输出连接到反相电路的输入,并且反相电路的输出 连接到电平移位器5805的输入。电平移位器5805的输出连接到缓冲电路5806的输入,并 且缓冲电路5806的输出通过栅极信号线输出到像素。具有四个输入端子的NAND电路的输 入由不同信号的组合确定,并且使用图36中所示的构造,可以控制16种输出。参考图37 描述栅极驱动器 1902,1903,2002,2003,2102,2103,2202,2203,2302, 2303,3102,3103,3202,3203,3302,3303,3402 和 3403。移位寄存器3701从第一行开始顺序地扫描栅极信号线,从而将信号通过电平移位器3702和移位寄存器3703输出到栅极信号线G1,G2. . . Gy。移位寄存器3701的构造并 不特别限制。它可以具有任何构造,只要它可以执行扫描操作。例如,触发器或异步移位 寄存器可以使用。栅极驱动器 1902,1903,2002,2003,2102,2103,2202,2203,2302,2303, 3102,3103,3202,3203,3302,3303,3402和3403的每个以实现实施方式28的方式操作。[实施方式3O]参考图38和图39描述具有实施方式14 27中描述的构造的源极驱动器1401, 1501,1601,1701,1801,1901,2001,2101,2201,2301,3101,3201,3301 和 3401。参考图38 描述源极驱动器 1801,1901,2001,2101,2201,2301,3101,3201,3301 和 3401的实例。参考数字3801表示移位寄存器,3802和3803表示LAT电路,3804表示电平移位电 路,3805表示缓冲电路,3806表示视频信号,3807表示LAT电路3802的闩锁脉冲,以及3808 表示LAT电路3803的闩锁脉冲。移位寄存器3801的输出顺序地输出到闩锁电路3802,从 而视频信号3806保存在那里。当视频信号3806在所有行中LAT电路3802中的保存终止 时,视频信号与闩锁脉冲3807同步地输出到LAT电路3803并且保存在那里。当闩锁脉冲 3808输出时,LAT电路3803将视频信号3806通过电平移位电路3804和缓冲电路3805输 出到源极信号线。参考图39描述源极驱动器1501,1601和1701的实例。参考数字3901表示移位寄存器,3902和3903表示LAT电路,3904表示电平移位电 路,3905表示缓冲电路,3906表示视频信号,3907表示LAT电路3902的闩锁脉冲,3908表 示LAT电路3903的闩锁脉冲,3909表示三态缓冲电路,以及3910表示三态缓冲电路3909 的控制信号。移位寄存器3901的输出顺序地输出到闩锁电路3902,从而视频信号3906保 存在那里。当视频信号3906在所有行中LAT电路3902中的保存终止时,视频信号与闩锁 脉冲3907同步地输出到LAT电路3903并且保存在那里。当闩锁脉冲3908输出时,LAT电 路3903将视频信号通过电平移位电路3904和缓冲电路3905输出到三态缓冲器3909。然 后,每个三态缓冲电路3909控制是否与控制信号3910同步地输出输入的视频信号。在不 输出输入信号的情况下,可以同时关闭所有行中的驱动TFT的信号被输出。[实施方式31]在该实施方式中,参考图41描述检测缺损像素的方法,其不同于实施方式1和2 中描述的检测缺损像素的方法。为了容易描述,这里显示的每个像素不具有多个子像素;但 是,它期望地具有多个子像素。在图41中,参考数字4101和4108表示源极驱动器,4102表示栅极驱动器,4103表 示源极信号线,4104表示栅极信号线,4105表示电源线,4106,4107和4111表示电源,4109, 4110,4114和4115表示TFT,4112和4113表示传感器电路,4116表示电容器,以及4117表 示连接到发光元件的一个电极的导线。源极驱动器4101包括源极驱动器4108,TFT 4109,以及TFT4110。源极驱动器4108的输出连接到TFT 4109的栅极和TFT 4110的栅极,TFT 4109的源极或漏极的一个通过传 感器电路4112连接到电源4106。TFT 4110的源极或漏极的一个通过传感器电路4113连 接到电源4107,以及TFT 4109的源极或漏极的另一个和TFT 4110的源极或漏极的另一个 连接到源极信号线4103。栅极驱动器4102的输出连接到栅极信号线4104,并且TFT 4114的源极或漏极的一个连接到电源线4105,而TFT 4114的源极或漏极的另一个连接到导线4117。TFT 4114的栅极连接到电容器4116的一个电极以及TFT 4115的源极或漏极的一 个。电容器4116的另一个电极连接到电源线4105,并且TFT 4115的源极或漏极的另一个 连接到源极信号线4103。TFT4115的栅极连接到栅极信号线4104。下面描述检测缺损像素的操作。首先,在该实施方式中,缺损像素通过检查从源极 信号线发送的视频信号的值由电容器4116保存还是由TFT 4114的栅极保存来检测。因此, 发光元件可能连接到导线4117可能不连接。在该实施方式中,描述在发光元件不连接到导 线4117的情况下检测缺损像素的方法。另外,虽然描述源极驱动器4101输出具有二进制 值的信号的情况,本发明并不局限于此。首先,某行中的TFT 4115由栅极信号线4104导通,从而输出来自源极信号线4103 的视频信号。这里,源极驱动器4108输出仅在某行中导通TFT 4109并关闭TFT 4110而在 其他行中关闭TFT 4109并导通TFT 4110的信号。因此,电源4106的电势通过源极信号线 4103和TFT 4115输出到某个像素中的电容器4116和TFT 4114的栅极,此后TFT 4115由 栅极驱动器4102关闭,从而电源4106的电势保存在所有像素中仅一个像素中。此后,当在 电源4113的电势从源极信号线4103输出的条件下保存电源线4106电势的像素中的TFT 4115导通时,电流从电容器4116通过源极信号线4103输出到电源4107,直到电容器4116 的一个电极的电势达到电源4107的电势。通过检测这种变化,可以确定视频信号是否可以 保存,使得缺损像素可以被检测。使用这种方法,缺损像素可以在发光元件连接到导线4117之前检测。因此,视频 信号可以通过将检测结果存储在闪速存储器等中而在发货之前预先校正。从而,成品率可 以提高以增加生产力。[实施方式32]如实施方式1和2中描述的,本发明可以类似地应用于任何半导体器件,只要它包 括每个具有多个子像素的像素,并且缺损子像素可以从多个子像素中检测,以便校正视频 信号。另外,可以检测多个子像素中缺损子像素的任何方法可以使用,只要缺陷可以确定为 点缺陷或缺损亮点。此外,本发明可以应用于具有多个子像素的任何显示器,例如液晶显示 器,FED,SED 或 PDP。虽然晶体管作为开关元件的实例而说明,本发明并不局限于此。开关元件可以是 电气开关或机械开关,只要它可以控制电流。作为开关元件,例如,二极管或由二极管和晶 体管构造的逻辑电路可以使用。另外,在该实施方案中可适用于开关元件的晶体管并不局限于某种类型,并且使 用由非晶硅或多晶硅代表的非单晶半导体薄膜的任何TFT,由半导体衬底或SOI衬底形成 的MOS晶体管,面结型晶体管,双极型晶体管,由有机半导体或碳纳米管形成的晶体管,或 其他晶体管可以使用。此外,晶体管形成于其上的衬底并不局限于某种类型,并且单晶衬 底,SOI衬底,石英衬底,玻璃衬底,树脂衬底等的任何一种可以自由地使用。因为晶体管仅用作开关,其极性(导电型)并不特别限制,η通道晶体管或P通道 晶体管可以使用。但是,当关断电流优选小时,具有小的关断电流极性的晶体管期望地使 用。作为具有小的关断电流的晶体管,存在在通道形成区域和源极或漏极区域之间提供有 以低浓度掺杂授予导电型的杂质的区域(称作LDD区域)的晶体管。
此外,期望地,如果它使用更接近低电势端电源的源极电势驱动,使用η通道晶体 管,而如果它使用更接近高电势端电源的源极电势驱动,使用P通道晶体管。这有助于开关 有效地操作,因为晶体管的栅极-源极电压的绝对值可以增加。此外,CMOS开关元件可以 通过使用η通道和ρ通道晶体管来构造。在实施方式1 10,和实施方式14 31的框图中的电路构造可以是任何电路构 造,只要这里描述的驱动可以实现。在该实施方式中,已知电路可以用作输入信号到像素的驱动电路。例如,san驱动 电路或可以选择任意行的驱动电路例如转换器可以使用。[实施方案1]在该实施方式中,描述实例像素结构。图24A和24B显示在实 施方式1 24中描 述的面板的像素的横截面。这里显示的实例使用TFT作为布置在像素中的开关元件,并且 使用发光元件作为布置在像素中的显示介质。在图24A和24B中,参考数字2400表示衬底,2401表示基薄膜,2402表示半导体 层,2412表示半导体层,2403表示第一绝缘薄膜,2404表示栅电极,2414表示电极,2405表 示第二绝缘薄膜,2406表示电极,2407表示第一电极,2408表示第三绝缘薄膜,2409表示发 光层,以及2420表示第二电极。参考数字2410表示TFT,2415表示发光元件,以及2411表 示电容器。在图24A和24B中,TFT 2410和电容器2411显示为构成像素的元件的典型实 例。首先描述图24A的结构。作为衬底2400,玻璃衬底例如钡硼矽酸玻璃或铝硼矽酸玻璃,石英衬底,陶瓷衬底 等可以使用。作为选择,包含不锈钢的金属衬底或具有由绝缘薄膜形成的表面的半导体衬 底可以使用。由挠性合成树脂例如塑料形成的衬底也可以使用。衬底2400的表面可以通 过抛光例如CMP平面化。作为基薄膜2401,包含氧化硅,氮化硅,氮氧化硅等的绝缘薄膜可以使用。基薄膜 2401可以防止包含在衬底2400中的碱金属例如Na或碱土金属到半导体层2402中的扩散, 否则这将不利地影响TFT 2410的特性。虽然基薄膜2401在图24A中以单层形成,它可以 具有两层或多层。注意,在例如使用石英衬底的情况下杂质的扩散不是重要关注问题的情 况下,基薄膜2401不一定提供。作为半导体层2402和半导体层2412,形成图案的结晶半导体薄膜或非晶半导体 薄膜可以使用。结晶半导体薄膜可以通过使非晶半导体薄膜结晶而获得。作为结晶方法, 激光结晶,使用RTA或退火炉的热结晶,使用促进结晶的金属元素的热结晶等可以使用。半 导体层2402包括通道形成区域以及一对掺杂有授予导电型的杂质元素的杂质区域。注意, 以较低浓度掺杂有上述杂质元素的另一个杂质区域可以提供在通道形成区域和该对杂质 区域之间。半导体层2412可以具有整个层掺杂有授予导电型的杂质元素的这种结构。第一绝缘薄膜2403可以通过在单层或多层中堆叠氧化硅、氮化硅、氮氧化硅等来 形成。注意,第一绝缘薄膜2403可以由包含氢的薄膜形成以便使得半导体层2402与氢化
I=I ο栅电极2404和电极2414可以由选自Ta,W,Ti,Mo,Al,Cu,Cr和Nd的一种元素或 合金或者包含这种元素的化合物,在单层或堆叠层中形成。TFT 2410形成以具有半导体层2402,栅电极2404,以及夹在半导体层2402和栅电极2404之间的第一绝缘薄膜2403。虽然图24A仅显示连接到发光元件2415的第一电极2407的TFT 2410作为部分构成像素的TFT,多个TFT可以提供。另外,虽然本实施方案说明 上栅极晶体管作为TFT 2410,TFT 2410可以是栅电极位于半导体层下面的下栅极晶体管, 或者栅电极位于半导体层上面和下面的双栅极晶体管。电容器2411形成以具有作为电介质的第一绝缘薄膜2403,和一对电极,也就是半 导体层2412和电极2414彼此面向且第一绝缘薄膜2403夹在其间。虽然图24A说明包括 在像素中的电容器的实例,其中与TFT 2410的半导体层2402同时形成的半导体层2412用 作该对电极的一个,而与TFT 2410的栅电极2404同时形成的电极2414用作另一个电极, 本发明并不局限于这种结构。第二绝缘薄膜2405可以使用无机绝缘薄膜或有机绝缘薄膜形成以具有单层或堆 叠层。作为无机绝缘薄膜,存在由CVD形成的氧化硅薄膜或由SOG(旋涂玻璃)形成的氧化 硅薄膜。作为有机绝缘薄膜,存在由聚酰亚胺,聚酰胺,BCB(苯并环丁烯),丙烯酸,正性光 敏有机树脂,负性光敏有机树脂等制成的薄膜。第二绝缘薄膜2405也可以由具有硅(Si)氧(0)键的骨架结构的材料形成。作为 这种材料的取代基,使用包含至少氢的有机官能团(例如烷基或芳香烃)。作为选择,氟代 官能团可以用作取代基,或者氟代官能团和包含至少氢的有机官能团可以用作取代基。注意,第二绝缘薄膜2405的表面可以由高密度等离子处理氮化。高密度等离 子通过使用具有例如2. 45GHz高频率的微波产生。注意,作为高密度等离子,使用具有 1 X IO11CnT3或更多的电子密度和0. 2 2. OeV (优选地0. 5 1. 5eV)的电子温度的等离 子。这样,因为在低电子温度具有特征的高密度等离子具有低动能的激活原子团,与由常规 等离子处理形成的薄膜相比较,具有很少等离子损坏的较不缺损薄膜可以形成。在执行高 密度等离子处理时,衬底2400设置在350 450°C的温度。另外,产生高密度等离子的装置 中用于产生微波的天线与衬底2400之间的距离设置为20 80mm(优选地,20 60mm)。第二绝缘薄膜2405的表面通过在氮气氛,例如,包含氮气(N2)和稀有气体(He, Ne,Ar,Kr和Xe的至少一种)的大气,包含氮气、氢气(H2)和稀有气体的大气,或者包含NH3 和稀有气体的大气下执行前述高密度等离子处理来氮化。由使用高密度等离子的这种氮化 处理形成的第二绝缘薄膜2405的表面与元素例如N2和He,Ne,Ar,Kr或Xe混合。例如,通 过使用氧化硅薄膜或氧氮化硅薄膜作为第二绝缘薄膜2405并且使用高密度等离子处理薄 膜表面,氮化硅薄膜形成。包含在这样形成的氮化硅薄膜中的氢可以用于使TFT 2410的半 导体层2402与氢化合。注意,该氢化处理可以与前述使用包含在第一绝缘薄膜2403中的 氢的氢化处理相结合。注意,另一个绝缘薄膜可以在由高密度等离子处理形成的氮化物薄膜上形成,以 便用作第二绝缘薄膜2405。电极2406可以由选自Al,Ni,C,W, Mo,Ti,Pt,Cu,Ta,Au和Mn的元素,或包含这
种元素的合金形成,以便具有单层结构或堆叠层结构。第一电极2407和第二电极2420的一个或两个可以形成为透光电极。透光电极可 以由包含氧化钨的氧化铟,包含氧化钨的氧化铟锌,包含氧化钛的氧化铟,包含氧化钛的氧 化铟锡等形成。不必说,氧化铟锡,氧化铟锌,掺杂有氧化硅的氧化铟锡等可以使用。发光层优选地由具有不同功能的多个层,例如空穴注入/传输层,发光层和电子注入/传输层形成。 空穴注入/传输层优选地由具有空穴传输性质的有机化合物材料与相对于有机 化合物材料表现出电子接受性质的无机化合物材料的复合材料形成。通过使用这种结构, 许多空穴载流子可以在固有具有少数载流子的有机化合物中产生,从而可以获得极好的空 穴注入/传输性质。因这种效应,与常规结构中相比较,驱动电压可以抑制。此外,因为空 穴注入/传输层可以做得厚而不增加驱动电压,由灰尘等引起的发光元件的短路等也可以 抑制。作为具有空穴传输性质的有机化合物材料,存在例如4,4',4"-三[N-(3-甲基 苯基)-N-苯胺基]三苯胺(缩写MTDATA) ; 1,3,5-三[N,N- 二(m-甲苯基)氨基]苯(缩 写m-MTDAB) ;N,N'-联苯-N,N'-双(3-甲基苯基)-1,Γ -联苯-4,4' -二胺(缩 写TPD) ;4,4'-双[N-(l-萘)-N-苯胺基]联苯(缩写ΝΡΒ)等。但是,本发明并不局限 于此。作为表现出电子接受性质的无机化合物材料,存在例如氧化钛、氧化锆、氧化钒、 氧化钼、氧化钨、氧化铼、氧化钌、氧化锌等。特别地,氧化钒、氧化钼、氧化钨和氧化铼是优 选的,因为它们可以在真空中沉积,从而易于处理。电子注入/传输层由具有电子传输性质的有机化合物材料形成。特别地,存在三 (8-羟基喹啉)铝(缩写Alq3),三(4-甲基-8-羟基喹啉)铝(缩写=Almq3)等。但是本 发明并不局限于此。发光层可以由例如以下材料形成9,10-二(2-萘基)蒽(缩写DNA) ;9,10-二 (2-萘基)-2_叔丁蒽(缩写t-BuDNA) ;4,4'-双(2,2_二苯乙烯基)联苯(缩写DPVBi); 香豆素30 ;香豆素6 ;香豆素545 ;香豆素545T ;二萘嵌苯;红荧烯;periflanthene ;2,5,8, 11-四(叔丁基)二萘嵌苯(缩写TBP) ;9,10-联苯蒽(缩写DPA) ;4-(氰亚甲基)-2-甲 基-6-(ρ-二甲氨基苯乙烯基)-4H-吡喃(缩写DCM1) ;4-(氰亚甲基)-2-甲基-6-[2-(久 洛尼定-9-yl)乙烯基]-4H-吡喃(缩写:DCM2) ;4-(氰亚甲基)-2,6-双[ρ-(二甲氨基) 苯乙烯基]-4Η-吡喃(缩写=BisDCM)等。作为选择,可以使用下面能够产生磷光的化合物 双[2-(4',6' -二氟苯基)比啶基-N,C2']甲基比啶铱(III) (FIrpic);双-{2-[3', 5'-双(三氟甲基)苯基]比啶基-N,C2' }甲基比啶铱(缩写Ir(CF3ppy)2(pic))); 三(2-苯基比啶基-N,C2')铱(IHppy)3);双(2-苯基比啶基-N,C2')乙酰丙酮铱 (缩写Ir(ppy)2(aCaC));双[2-(2'-噻吩基)比啶基-N,C3 ‘]乙酰丙酮铱(缩写 Ir(thp)2(acac));双(2_ 苯基喹啉基-N,C2')乙酰丙酮铱(缩写Ir (pq)2(aCaC));双 [2-(2'-苯噻吩基)比啶基-N,C3']乙酰丙酮铱(缩写Ir(btp)2(acac))等。此外,作为选择,发光层可以由以下场致发光材料形成,例如基于聚对苯撑乙烯的 材料、基于聚对苯的材料、基于聚噻吩的材料,或基于聚芴的材料。在任何情况下,发光层可以具有各种层结构,并且在作为发光元件的对象可以实 现的范围内修改是可能的。例如,这种结构可以使用,即不提供特定的空穴或电子注入/传 输层,但是代替地,提供为此目的的代替电极层或者发光材料分散在层中。第一电极2407或第二电极2420的另一个可以由不发光的材料形成。例如,它可以 由碱金属例如Li和Cs,碱土金属例如Mg,Ca或Sr,包含这种金属的合金(例如MgAg,AlLi, 或MgIn),包含这种金属的化合物(例如CaF2或Ca3N2),或稀土金属例如Yb或Er形成。
第三绝缘薄膜2408可以由与第二绝缘薄膜2405类似的材料形成。第三绝缘薄膜 2408在第一电极2407的外围形成,以便覆盖第一电极2407的边缘,并且具有分离相邻像素 的发光层2409的功能。发光层2409在单层或多层中形成。在发光层2409在多层中形成的情况下,层可 以根据载流子传输性质分类成空穴注入层,空穴传输层,发光层,电子传输层,电子注入层 等。注意,各个层之间的边界不一定清晰,并且可能存在形成相邻层的材料部分地彼此混合 的情况,这使得各个层之间的分界面不清晰。每层可以由有机材料或无机材料形成。有机 材料可能是高分子,中分子或低分子材料的任何一种。
发光元件2415形成以具有发光层2409以及彼此重叠的第一电极2407和第二电 极2420,发光元件2409夹在其间。第一电极2407或第二电极2420的一个对应于阳极,而 另一个对应于阴极。当高于阈电压的正向偏压施加在发光元件2415的阳极和阴极之间时, 电流从阳极流到阴极,从而发光元件2415发光。接下来描述图24B的结构。注意,图24A和24B之间的共同部分由共同的参考数 字表示,因此关于其的描述将省略。图24B显示另一个绝缘薄膜2418提供在图24A中的第二绝缘层2405和第三绝缘 薄膜2408之间的结构。电极2406和第一电极2407在绝缘薄膜2418中提供的接触孔中与 电极2416连接。绝缘薄膜2418可以形成以具有与第二绝缘薄膜2405类似的结构。电极2416可 以形成以具有与电极2406类似的结构。[实施方案2]在该实施方案中,描述非晶硅(a_Si:H)薄膜用作晶体管的半导体层的情况。图 28A和28B显示上栅极晶体管,而图29A 30B显示下栅极晶体管。图28A显示具有上栅极结构的晶体管的横截面,其中非晶硅用于半导体层。如图 28A中所示,基薄膜2802在衬底2801上形成。此外,像素电极2803在基薄膜2802上形成。 另外,第一电极2804由与像素电极2803相同的材料且在同一层中形成。衬底可能是玻璃衬底,石英衬底,陶瓷衬底等。另外,基薄膜2802可以由氮化铝 (AlN),氧化硅(SiO2),氧氮化硅(SiOxNy)等在单层或堆叠层中形成。此外,导线2805和2806在基薄膜2802上形成,并且像素电极2803的边缘用导线 2805覆盖。每个具有η型导电型的η型半导体层2807和2808分别在导线2805和2806上 形成。另外,半导体层2809在导线2805和2806之间以及基薄膜2802上形成。半导体层 2809延伸以部分地覆盖η型半导体层2807和2808。注意,半导体层2809由非晶半导体薄 膜例如非晶硅(a_Si:H),微晶半导体(y-Si:H)等形成。栅极绝缘薄膜2810在半导体层 2809上形成。另外,绝缘薄膜2811由与栅极绝缘薄膜2810相同的材料且在同一层中在第 一电极2804上形成。注意,栅极绝缘薄膜2810由氧化硅薄膜,氮化硅薄膜等形成。栅电极2812在栅极绝缘薄膜2810上形成。另外,第二电极2813由与栅电极2812 相同的材料且在同一层中在第一电极2811上形成,绝缘薄膜2811夹在其间。这样,电容器 2819形成,其中绝缘薄膜2811夹在第一电极2804和第二电极2813之间。层间绝缘薄膜 2814覆盖像素电极2803,驱动晶体管2818和电容器2819的边缘而形成。包含有机化合物的层2815和反电极2816在层间绝缘薄膜2814以及位于层间绝缘薄膜2814开口中的像素电极2803上形成。这样,发光元件2817在包含有机化合物的层 2815夹在像素电极2803和反电极2816之间的区域中形成。图28A中所示的第一电极2804可以由图28B中所示的第一电极2820代替。第一 电极2820由与导线2805和2806相同的材料且在同一层中形成。图29A和29B显示具有使用非晶硅作为其半导体层的下栅极晶体管的半导体器件 的面板的部分横截面。栅电极2903在衬底2901上形成。另外,第一电极2904由与栅电极2903相同的 材料且在同一层中形成。作为栅电极2903的材料,掺杂磷的多晶硅可以使用。作为金属和 硅的化合物的硅化物可以使用,同多晶硅一样。另外,栅极绝缘薄膜2905覆盖栅电极2903和第一电极2904而形成。栅极绝缘薄 膜2905由氧化硅薄膜,氮化硅薄膜等形成。半导体层2906在栅极绝缘薄膜2905上形成。 另外,半导体层2907由与半导体层2906相同的材料 且在同一层中形成。衬底可以是玻璃衬底,石英衬底,陶瓷衬底等的任何一种。每个具有η型导电型的η型半导体层2908和2909在半导体层2906上形成,而η 型半导体层2910在半导体层2907上形成。导线2911,2912和2913分别在η型半导体层2908,2909和2910上形成,并且导 电层2913由与导线2911和2912相同的材料且在同一层中在η型半导体层2910上形成。第二电极形成以具有半导体层2907,η型半导体层2910和导电层2913。注意,电 容器2920形成以具有栅极绝缘薄膜2905夹在第二电极和第一电极2904之间的结构。另外,导线2911的边缘延伸,并且像素电极2914与导线2911延伸部分的顶面接 触而形成。绝缘体2915覆盖像素电极2914,驱动晶体管2919和电容器2920的边缘而形 成。包含有机化合物的层2916和反电极2917在像素电极2914和绝缘体2915上形成, 并且发光元件2918在包含有机化合物的层2916夹在像素电极2914和反电极2917之间的 区域中形成。部分用作电容器第二电极的半导体层2907和η型半导体层2910不一定提供。也 就是,仅导电层2913可以用作第二电极,使得电容器提供以具有栅极绝缘薄膜夹在第一电 极2904和导电层2913之间的结构。注意,如果像素电极2914在形成图29Α中所示导线2911之前形成,图29Β中所示 电容器2922可以形成,其具有栅极绝缘薄膜2905夹在由与像素电极2914相同的材料且在 同一层中形成的第一电极2904和第二电极2921之间的结构。虽然图29Α和29Β显示具有通道刻蚀结构的逆向交错晶体管的实例,具有通道保 护结构的晶体管同样可以使用。接下来,参考图30Α和30Β描述具有通道保护结构的晶体管。图30Α中所示具有通道保护结构的晶体管不同于图29Α中所示具有通道刻蚀结构 的驱动晶体管2919在于,用作蚀刻掩模的绝缘体3001在半导体层2906中的通道形成区域 上提供。图29Α和30Α之间的共同部分由共同的参考数字表示。类似地,图30Β中所示具有通道保护结构的晶体管不同于图29Β中所示具有通道 刻蚀结构的驱动晶体管2919在于,用作蚀刻掩模的绝缘体3001在半导体层2906中的通道形成区域上提供。图29B和30B之间的共同部分由共同的参考数字表示。通过使用非晶半导体薄膜用于作为本发明像素构成元件之一的晶体管的半导体层(例如通道形成区域,源极区域或漏极区域),制造成本可以减少。例如,非晶半导体薄膜 可以在使用图28A 30B中所示像素结构的情况下使用。注意,本发明的像素结构可以应用于其中的晶体管或电容器的结构并不局限于至 此描述的结构,并且各种结构的晶体管或电容器可以使用。[实施方案3]在该实施方案中,描述作为制造包含例如晶体管的半导体器件的方法,使用等离 子处理制造半导体器件的方法。图42A 42C显示包含晶体管的半导体器件的实例结构。注意,图42B对应于沿 着图42A中线a-b而获得的横截面,而图42C对应于沿着图42A中线c_d而获得的横截面。图42A 42C中所示的半导体器件包括在衬底4601上提供的半导体薄膜4603a 和4603b,绝缘薄膜4602夹在其间,在半导体薄膜4603a和4603b上提供的栅电极4605,栅 极绝缘层4604夹在其间,提供以覆盖栅电极4605的绝缘薄膜4606和4607,以及以电连接 到半导体薄膜4603a和4603b的源极区域或漏极区域的方式在绝缘薄膜4607上提供的导 电薄膜4608。虽然图42A 42C显示提供使用半导体薄膜4603a的一部分作为通道区域 的η通道晶体管4610a,以及使用半导体薄膜4603b的一部分作为通道区域的ρ通道晶体 管4610b的情况,本发明并不局限于这种结构。例如,虽然在图42A 42C中η通道晶体管 4610a提供有LDD区域,而ρ通道晶体管4610b没有提供LDD区域,可以提供两个晶体管都 提供有LDD区域或者两个晶体管都不提供LDD区域的这种结构。在该实施方式中,图42A 42C中所示的半导体器件通过氧化或氮化半导体薄膜 或绝缘薄膜,也就是通过对衬底4601,绝缘薄膜4602,半导体薄膜4603a和4603b,栅极绝缘 薄膜4604,绝缘薄膜4606以及绝缘薄膜4607中至少一层执行等离子氧化或氮化处理来制 造。这样,通过由等离子处理氧化或氮化半导体薄膜或绝缘薄膜,半导体薄膜或绝缘薄膜的 表面可以修改,从而与由CVD或溅射形成的绝缘薄膜相比较,更致密的绝缘薄膜可以形成。 因此,缺陷例如针孔可以抑制,从而半导体器件的特性等可以改进。在该实施方案中,参考附图描述通过由等离子处理氧化或氮化图42A 42C中所 示的半导体薄膜4603a和4603b或栅极绝缘薄膜4604来制造半导体器件的方法。首先,岛形半导体薄膜4603a和4603b在衬底4601上形成(图43A)。岛形半导 体薄膜4603a和4603b可以通过由已知方法(例如溅射,LPCVD或等离子CVD)使用包含硅 (Si)作为主要成分的材料(例如SixGel-x)在预先在衬底4601上形成的绝缘薄膜4602上 形成非晶半导体薄膜,然后结晶化非晶半导体薄膜,以及进一步选择性地刻蚀半导体薄膜 来提供。注意,非晶半导体薄膜的结晶可以由已知结晶方法,例如激光结晶,使用RTA或退 火炉的热结晶,使用促进结晶的金属元素的热结晶,或它们的组合执行。注意在图43A中, 岛形半导体薄膜4603a和4603b每个形成以具有大约90度(θ = 85 100度)的边缘。接下来,半导体薄膜4603a和4603b由等离子处理氧化或氮化以分别在半导体薄 膜4603a和4603b的表面上形成氧化物或氮化物薄膜4621a和4621b (在下文也称作绝缘薄 膜4621a和4621b)(图43B)。例如,当Si用于半导体薄膜4603a和4603b时,氧化硅(SiOx) 或氮化硅(SiNx)形成为绝缘薄膜4621a和4621b。此外,在由等离子处理氧化之后,半导体薄膜4603a和4603b可以再次经历等离子处理以氮化。在这种情况下,氧化硅(SiOx)首先 在半导体薄膜4603a和4604b上形成,然后氮氧化硅(SiNxOy) (x > y)在氧化硅的表面上形 成。注意,在由等离子处理氧化半导体薄膜的情况下,等离子处理在氧气氛(例如包含氧气 (O2)和稀有气体(He,Ne, Ar,Kr和Xe的至少一种)的大气,包含氧气、氢气(H2)和稀有气 体的大气,或者包含一氧化二氮和稀有气体的大气)下执行。同时,在由等离子处理氮化半 导体薄膜的情况下,等离子处理在氮气氛(例如包含氮气(N2)和稀有气体(He,Ne, Ar, Kr 和Xe的至少一种)的大气,包含氮气、氢气和稀有气体的大气,或者包含NH3和稀有气体的 大气)下执行。作为稀有气体,Ar可以使用,例如。作为选择,Ar和Kr的混合气体可以使 用。因此,绝缘薄膜4621a和4621b包含在等离子处理中使用的稀有气体(He,Ne,Ar,Kr和 Xe的至少一种),并且在使用Ar的情况下,绝缘薄膜4621a和4621b包含Ar。因为等离子处理在包含前述气体的气氛中,使用IXlO11 IXlO13cnT3的等离子 电子密度和0. 5 1. 5eV的等离子电子温度的条件下执行。因为等离子电子密度高而在衬 底4601上形成的处理主体(这里,半导体薄膜4603a和4603b)附近的电子温度低,对处理 主体的等离子损坏可以被防止。另外,因为等离子电子密度高达IX IO11enT3或更高,与由 CVD、溅射等形成的薄膜相比较,通过由等离子处理氧化或氮化处理主体而形成的氧化物或 氮化物薄膜在其均勻厚度等方面是有利的并且致密。此外,因为等离子电子温度低至leV, 与常规等离子处理或热氧化相比较,氧化或氮化处理可以在低温执行。例如,甚至当等离子 处理在低于玻璃衬底应变点100度或更多的温度执行时,氧化或氮化处理可以充分执行。 注意,作为产生等离子的频率,高频例如微波(2.45GHz)可以使用。同样注意,除非另外指 定,等离子处理在前述条件下执行。接下来,栅极绝缘薄膜4604形成以覆盖绝缘薄膜4621a和4621b (图43C)。栅 极绝缘薄膜4604可以由已知方法(例如溅射,LPCVD或等离子CVD)形成以具有包含氧或 氮的绝缘薄膜,例如氧化硅(SiOx),氮化硅(SiNx),氧氮化硅(SiOxNy) (x > y),或氮氧化硅 (SiNxOy) (x > y)的单层结构或堆叠层结构。例如,当Si用于半导体薄膜4603a和4603b, 并且Si由等离子处理氧化以形成氧化硅作为半导体薄膜4603a和4603b表面上的绝缘薄 膜4621a和4621b时,氧化硅(SiOx)形成为绝缘薄膜4621a和4621b上的栅极绝缘薄膜。 另外,参考图43B,如果通过由等离子处理氧化或氮化半导体薄膜4603a和4603b而形成的 绝缘薄膜4621a和4621b足够厚,绝缘薄膜4621a和4621b可以用作栅极绝缘薄膜。接下来,通过在栅极绝缘薄膜4604上形成栅电极4605等,具有分别以岛形半导体 薄膜4603a和4603b作为通道区域的η通道晶体管4610a和ρ通道晶体管4610b的半导体 器件可以制造(图43D)。这样,通过在半导体薄膜4603a和4603b上提供栅极绝缘薄膜4604之前由等离子处理氧化或氮化半导体薄膜4603a和4603b的表面,栅电极与半导体薄膜之间的短路等可 以防止,否则这将由通道区域的边缘4651a和4651b处栅极绝缘薄膜4604的覆盖缺陷而引 起。也就是,如果岛形半导体薄膜具有大约90度(θ =85 100度)的角度,存在一种考 虑,即当栅极绝缘薄膜由CVD、溅射等形成以覆盖半导体薄膜时,覆盖缺陷可能由半导体薄 膜边缘等处栅极绝缘薄膜的破裂而产生。但是,这种覆盖缺陷等可以预先通过由等离子处 理氧化或氮化半导体薄膜的表面而防止。作为选择,参考图43C,栅极绝缘薄膜4604可以在形成栅极绝缘薄膜4604之后通过执行等离子处理而氧化或氮化。在这种情况下,氧化物或氮化物薄膜4623 (在下文也称 作绝缘薄膜4623)通过对形成以覆盖半导体薄膜4603a和4603b的栅极绝缘薄膜4604执 行等离子处理(图44B)来氧化或氮化栅极绝缘薄膜4604而在栅极绝缘薄膜4604 (图44A) 的表面上形成。等离子处理可以使用与图43B中类似的条件执行。另外,绝缘薄膜4623包 含在等离子处理中使用的稀有气体,并且例如包含Ar,如果Ar用于等离子处理。作为选择,参考图44B,在通过在氧气氛下执行等离子处理而氧化栅极绝缘薄膜 4604之后,栅极绝缘薄膜4604可以在氮气氛下再次经历等离子处理,以便氮化。在这种情 况下,氧化硅(SiOx)或氧氮化硅(SiOxNy) (x > y)首先在半导体薄膜4603a和4603b上形 成,然后氮氧化硅(SiNxOy) (x>y)形成以与栅电极4605接触。此后,通过在绝缘薄膜4623 上形成栅电极4605等,具有分别以岛形半导体薄膜4603a和4603b作为通道区域的η通道 晶体管4610a和ρ通道晶体管4610b的半导体器件可以制造(图44C)。这样,通过由等离 子处理氧化或氮化栅极绝缘薄膜的表面,栅极绝缘薄膜的表面可以修改以形成致密膜。与 由CVD或溅射形成的绝缘薄膜相比较,由等离子处理获得的绝缘薄膜是致密的并且具有很 少缺陷例如针孔。因此,晶体管的特性可以改进。虽然图44A 44C显示半导体薄膜4603a和4603b的表面通过预先对半导体薄膜 4603a和4603b执行等离子处理而氧化或氮化的情况,这种方法可以使用,即等离子处理不 对半导体薄膜4603a和4603b执行,但是等离子处理在形成栅极绝缘薄膜4604之后执行。 这样,通过在形成栅电极之前执行等离子处理,半导体薄膜可以氧化或氮化,即使半导体薄 膜因覆盖缺陷例如半导体薄膜边缘处栅极绝缘薄膜的破裂而暴露;因此,可以防止栅电极 和半导体薄膜之间的短路等,否则这将由半导体薄膜边缘处栅极绝缘薄膜的覆盖缺陷而引 起。这样,通过由等离子处理氧化或氮化半导体薄膜或栅极绝缘薄膜,可以防止栅电 极和半导体薄膜之间的短路等,否则这将由半导体薄膜边缘处栅极绝缘薄膜的覆盖缺陷而 引起,即使岛形半导体薄膜形成以具有大约90度(θ = 30 85度)角度的边缘。接下来,显示在衬底上形成的岛形半导体薄膜提供有楔形边缘(θ = 30 85度) 的情况。首先,岛形半导体薄膜4603a和4603b在衬底4601上形成(图45A)。岛形半导体 薄膜4603a和4603b可以通过由溅射、LPCVD或等离子CVD等使用包含硅(Si)作为主要成 分的材料在预先在衬底4601上形成的绝缘薄膜4602上形成非晶半导体薄膜,然后由已知 结晶方法,例如激光结晶,使用RTA或退火炉的热结晶,或使用促进结晶的金属元素的热结 晶来结晶化非晶半导体薄膜,以及进一步选择性地刻蚀半导体薄膜来提供。注意,在图45A 中,岛形半导体薄膜形成以具有楔形边缘(θ = 35 85度)。接下来,栅极绝缘薄膜4604形成以覆盖半导体薄膜4603a和4603b (图45B)。栅极绝缘薄膜4604可以由已知方法例如溅射、LPCVD或等离子CVD提供以具有包含氧或氮的绝 缘薄膜,例如氧化硅(SiOx),氮化硅(SiNx),氧氮化硅(SiOxNy) (χ > y)或氮氧化硅(SiNxOy) (x > y)的单层结构或堆叠层结构。接下来,氧化物或氮化物薄膜4624(在下文也称作绝缘薄膜4624)通过由等离子 处理氧化或氮化栅极绝缘薄膜4604在栅极绝缘薄膜4604的表面上形成(图45C)。等离子 处理可以使用前述条件执行。例如,如果氧化硅(SiOx)或氧氮化硅(SiOxNy) (x > y)用作栅极绝缘薄膜4604,栅极绝缘薄膜4604通过在氧气氛下执行等离子处理而氧化,从而具有 很少缺陷例如针孔的致密膜可以在栅极绝缘薄膜的表面上形成,与由CVD、溅射等形成的栅 极绝缘薄膜相比较。另一方面,如果栅极绝缘薄膜4604在氮气氛下由等离子处理而氮化, 氮氧化硅薄膜(SiNxOy) (x > y)可以作为栅极绝缘薄膜4604表面上的绝缘薄膜4624而提 供。作为选择,在通过在氧气氛下执行等离子处理而氧化栅极绝缘薄膜4604之后,栅极绝 缘薄膜4604可以在氮气氛下再次经历等离子处理,以便氮化。另外,绝缘薄膜4624包含在 等离子处理中使用的稀有气体,例如包含Ar,如果Ar在等离子处理中使用。 接下来,通过在栅极绝缘薄膜4604上形成栅电极4605等,具有分别以岛形半导体 薄膜4603a和4603b作为通道区域的η通道晶体管4610a和ρ通道晶体管4610b的半导体 器件可以制造(图44D)。这样,通过对栅极绝缘薄膜执行等离子处理,由氧化物或氮化物薄膜制成的绝缘 薄膜可以在栅极绝缘薄膜的表面上提供,从而栅极绝缘薄膜的表面可以修改。因为与由CVD 或溅射形成的栅极绝缘薄膜相比较,由使用等离子处理的氧化或氮化而获得的绝缘薄膜是 致密的并且具有很少缺陷例如针孔,晶体管的特性可以改进。另外,尽管栅电极和半导体薄 膜之间的短路等可以通过形成半导体薄膜以具有楔形边缘而防止,否则这将由半导体薄膜 边缘处栅极绝缘薄膜的覆盖缺陷而引起,栅电极和半导体薄膜之间的短路等可以通过在形 成栅极绝缘薄膜之后执行等离子处理而更有效地防止。接下来,参考附图描述与图45A 45D中不同的半导体器件制造方法。特别地,显 示等离子处理对半导体薄膜的楔形边缘选择性执行的情况。首先,岛形半导体薄膜4603a和4603b在衬底4601上形成(图46A)。岛形半导 体薄膜4603a和4603b可以通过由已知方法(例如溅射,LPCVD或等离子CVD)使用包含硅 (Si)作为主要成分的材料(例如SixGel-x)在预先在衬底4601上形成的绝缘薄膜4602上 形成非晶半导体薄膜,然后结晶化非晶半导体薄膜,以及进一步通过使用抗蚀剂4625a和 4625b作为掩模而选择性地刻蚀半导体薄膜来提供。注意,非晶半导体薄膜的结晶可以由已 知结晶方法,例如激光结晶,使用RTA或退火炉的热结晶,使用促进结晶的金属元素的热结 晶,或它们的组合执行。接下来,岛形半导体薄膜4603a和4603b的边缘在去除用于刻蚀半导体薄膜的抗 蚀剂4625a和4625b之前由等离子处理选择性地氧化或氮化,从而氧化物或氮化物薄膜 4626 (在下文也称作绝缘薄膜4626)在半导体薄膜4603a和4603b的每个上形成(图46B)。 等离子处理使用前述条件执行。另外,绝缘薄膜4626包含在等离子处理中使用的稀有气 体。接下来,栅极绝缘薄膜4604形成以覆盖半导体薄膜4603a和4603b (图46C)。栅 极绝缘薄膜4604可以与前述类似的方式形成。接下来,通过在栅极绝缘薄膜4604上形成栅电极4605等,具有分别以岛形半导体 薄膜4603a和4603b作为通道区域的η通道晶体管4610a和ρ通道晶体管4610b的半导体 器件可以制造(图46D)。如果半导体薄膜4603a和4603b提供有楔形边缘,在半导体薄膜4603a和4603b 的部分中形成的通道区域的边缘4652a和4652b也是楔形,从而该部分中半导体薄膜和栅 极绝缘薄膜的厚度不同于中心部分中,这可能不利地影响晶体管的特性。因此,因通道区域的边缘而对晶体管引起的这种效应可以通过这里由等离子处理选择性地氧化或氮化通道区域的边缘而在半导体薄膜的边缘,也就是,通道区域的边缘上形成绝缘薄膜来减小。虽然图46A 46D显示半导体薄膜4603a和4603b的仅边缘由等离子处理氧化或氮化的实例,栅极绝缘薄膜4604也可以由等离子处理氧化或氮化,如图45C中所示(图 48A)。接下来,参考附图描述不同于前述的半导体器件制造方法。特别地,显示等离子处理对具有楔形的半导体薄膜执行的情况。首先,岛形半导体薄膜4603a和4603b以与前述类似的方式在衬底4601上形成 (图 47A)。接下来,半导体薄膜4603a和4603b由等离子处理氧化或氮化,从而在半导体薄膜 4603a和4603b的表面上形成氧化物或氮化物薄膜4627a和4627b (在下文也称作绝缘薄膜 4627a和4627b)(图47B)。等离子处理可以使用前述条件执行。例如,当Si用于半导体薄 膜4603a和4603b时,氧化硅(SiOx)或氮化硅(SiNx)形成为绝缘薄膜4627a和4627b。另 夕卜,在由等离子处理氧化半导体薄膜4603a和4603b之后,等离子薄膜4603a和4603b可以 再次经历等离子处理以氮化。在这种情况下,氧化硅(SiOx)或氧氮化硅(SiOxNy) (χ > y)首 先在半导体薄膜4603a和4603b上形成,然后氮氧化硅(SiNxOy) (x > y)在氧化硅或氧氮化 硅上形成。因此,绝缘薄膜4627a和4627b包含在等离子处理中使用的稀有气体。注意,半 导体薄膜4603a和4603b的边缘通过执行等离子处理同时氧化或氮化。接下来,栅极绝缘薄膜4604形成以覆盖绝缘薄膜4627a和4627b (图47C)。栅极绝 缘薄膜4604可以由已知方法(例如溅射、LPCVD或等离子CVD)形成以具有包含氧或氮的绝 缘薄膜,例如氧化硅(SiOx),氮化硅(SiNx),氧氮化硅(SiOxNy) (χ > y)或氮氧化硅(SiNxOy) (x>y)的单层结构或堆叠层结构。例如,当Si用于半导体薄膜4603a和4603b,并且半导 体薄膜4603a和4603b的表面由等离子处理氧化以形成氧化硅作为绝缘薄膜4627和4627b 时,氧化硅(SiOx)作为栅极绝缘薄膜在绝缘薄膜4627a和4627b上形成。接下来,通过在栅极绝缘薄膜4604上形成栅电极4605等,具有分别以岛形半导体 薄膜4603a和4603b作为通道区域的η通道晶体管4610a和ρ通道晶体管4610b的半导体 器件可以制造(图47D)。如果半导体薄膜提供有楔形边缘,在半导体薄膜的部分中形成的通道区域的边缘 4653a和4653b也是楔形,这可能不利地影响半导体元件的特性。对半导体元件的这种效应 可以通过由等离子处理氧化或氮化半导体薄膜而减小,因为通道区域的边缘因此也可以氧 化或氮化。虽然图47A 47D显示仅半导体薄膜4603a和4603b由等离子处理氧化或氮化的 实例,栅极绝缘薄膜4604也可以由等离子处理氧化或氮化,如图45B中所示(图48B)。在 这种情况下,在氧气氛下由等离子处理氧化栅极绝缘薄膜4604之后,栅极绝缘薄膜4604可 以再次经历等离子处理以氮化。在这种情况下,氧化硅(SiOx)或氧氮化硅(SiOxNy) (x>y) 首先在半导体薄膜4603a和4603b上形成,然后氮氧化硅(SiNxOy) (x > y)形成以与栅电极 4605接触。通过以前述方式执行等离子处理,附着于半导体薄膜或绝缘薄膜的杂质例如灰尘 可以容易地去除。通常,由CVD、溅射等形成的薄膜可能在其表面具有灰尘(也称作颗粒)。例如,如图49A中所示,存在灰尘4673附着于由CVD、溅射等在薄膜4671例如绝缘薄膜,导 电薄膜或半导体薄膜上形成的绝缘薄膜4672的情况。甚至在这种情况下,氧化物或氮化物 薄膜4674 (在下文也称作绝缘薄膜4674)通过由等离子处理氧化或氮化绝缘薄膜4672而 在绝缘薄膜4672的表面上形成。绝缘薄膜4674以这种方式氧化或氮化,即不仅不存在灰尘 的部分而且灰尘4673下面的部分都氧化或氮化;因此,绝缘薄膜4674的体积增加。同时, 因为灰尘4673的表面也由等离子处理氧化或氮化以形成绝缘薄膜4675,灰尘4673的体积 也因此增加(图49B)。此时,灰尘4673处于通过简单的清洗例如刷洗而容易从绝缘薄膜4674的表面去 除的状态中。这样,通过执行等离子处理,甚至已经附着于绝缘薄膜或半导体薄膜的细微灰 尘可以容易地去除。注意,该效应通过执行等离子处理而获得;因此,同样不仅对于该实施 方式,而且对于其他实施方式而成立。这样,通过由使用等离子处理的氧化或氮化修改半导体薄膜或绝缘薄膜的表面, 致密且高质量绝缘薄膜可以形成。另外,已经附着于绝缘薄膜表面的灰尘等可以通过清洗 容易地去除。因此,缺陷例如针孔可以防止,甚至当绝缘薄膜做得薄时,从而半导体元件例 如晶体管的微型制造和高性能可以实现。虽然该实施方案显示等离子处理对半导体薄膜4603a和4603b或栅极绝缘薄膜 4604执行以便氧化或氮化半导体薄膜4603a和4603b或栅极绝缘薄膜4604的实例,经历等 离子处理的层并不局限于这些。例如,等离子处理可以对衬底4601或绝缘薄膜4602,或者 对绝缘薄膜4607而执行。注意,该实施方案可以结合实施方案1或2适当地实现。[实施方案4]在该实施方案中,描述作为制造包含例如晶体管的半导体器件的处理的半色调处理。图50显示包括晶体管、电容器和电阻器的半导体器件的横截面。图50显示η通 道晶体管5401和5402,电容器5404,电阻器5405和ρ通道晶体管5403。每个晶体管具有 半导体层5505,绝缘层5508,和栅电极5509。栅电极5509形成以具有第一导电层5503和 第二导电层5502的堆叠结构。图51Α 51Ε是图50中所示晶体管、电容器和电阻器的顶 视图,其可以与图50结合参考。参考图50,η通道晶体管5401在半导体层5505中通道区域的另一侧上具有杂质 区域5507 (也称作低浓度漏极LDD区域),其以比形成用于形成与导线5504的接触的源极 和漏极区域的杂质区域5506更低的浓度掺杂杂质。在形成η通道晶体管5401时,杂质区 域5506和5507掺杂磷,作为授予η型导电型的杂质。LDD区域形成以抑制热电子退化和短 通道效应。如图51Α中所示,第一导电层5503在η通道晶体管5401的栅电极5509中比第二 导电层5502宽。在这种情况下,第一导电层5503比第二导电层5502做得薄。第一导电层 5503形成以具有对于使用10 IOOkV的电场加速的离子种类足够穿过的厚度。杂质区域 5507形成以覆盖栅电极5509的第一导电层5503。也就是,覆盖栅电极5509的LDD区域形 成。在这种结构中,杂质区域5507通过使用第二导电层5502作为掩模,经由栅电极5509 的第一导电层5503,使用具有一种导电型的杂质掺杂半导体层5505以自定位方式形成。也就是,覆盖栅电极的LDD区域在自定位方式形成。再次参考图50,η通道晶体管5402在半导体层5505中通道区域的一侧上具有杂 质区域5507,其以比杂质区域5506低的浓度掺杂杂质。如图51Β中所示,第一导电层5503 在η通道晶体管5402的栅电极5509中比第二导电层5502的一侧宽。同样在这种情况下, LDD区域可以通过使用第二导电层5502作为掩模经由第一导电层5503使用具有一种导电 型的杂质掺杂半导体层5505以自定位方式形成。在通道区域的一侧上具有LDD区域的晶体管可以用作仅正电压或负电压施加在 源和漏电极之间的晶体管。特别地,这种晶体管可以适用于部分地构成逻辑栅极例如反相 电路,NAND电路,NOR电路或闩锁电路的晶体管,或者部分地构成模拟电路例如传感放大 器,恒定电压产生电路或VCO的晶体管。再次参考图50,电容器5404通过使用第一导电层5503和半导体层5505夹住绝 缘层5508而形成。用于形成电容器5404的半导体层5505提供有杂质区域5510和5511。 杂质区域5511在覆盖第一导电层5503的位置中在半导体层5505中形成。杂质区域5510 形成与导线5504的接触。杂质区域5511可以通过经由第一导电层5503使用具有一种导 电型的杂质掺杂半导体层5505而形成;因此,包含在杂质区域5510和5511中具有一种导 电型的杂质的浓度可以设置成相同或不同。在任何一种情况下,因为电容器5404中的半导 体层5505用作电极,优选地通过添加具有一种导电型的杂质而减小电阻。此外,第一导电 层5503可以通过利用第二导电层5502作为辅助电极而完全用作电极,如图51C中所示。这 样,通过形成第一导电层5503与第二导电层5502组合的复合电极结构,电容器5404可以 自定位的方式形成。再次参考图50,电阻器5405由第一导电层5503形成。第一导电层5503形成以具 有30 150nm的厚度;因此,电阻器可以通过适当地设置第一导电层5503的宽度或长度而 形成。电阻器可以由包含高浓度杂质元素的半导体层或薄金属层而形成。金属层是优选 的,因为其电阻值由薄膜自身的厚度和质量来确定,从而具有少的变量,然而半导体层的电 阻值由薄膜的厚度和质量,杂质的浓度和激活率等来确定。图51D显示电阻器5405的顶视 图。再次参考图50,ρ通道晶体管5403中的半导体层5505具有杂质区域5512。该杂 质区域5512形成用于形成与导线5504的接触的源极或漏极区域。栅电极5509具有第一 导电层5503和第二导电层5502彼此重叠的结构。ρ通道晶体管5403是具有不提供LDD区 域的单漏极结构的晶体管。在形成P通道晶体管5403时,杂质区域5512掺杂有硼等作为 授予P型导电型的杂质。另一方面,具有单漏极结构的η通道晶体管也可以形成,如果杂质 区域5512掺杂有磷。图51Ε显示ρ通道晶体管5403的顶视图。半导体层5505和栅极绝缘层5508的一个或两个可以在微波激发,2eV或更少的电 子温度,5eV或更少的离子能以及大约1 X IO11 1 X 1013cm_3的电子密度的条件下由高密度 等离子处理氧化或氮化。此时,通过使用设置为300 450°C的衬底温度在氧气氛(例如O2 或队0)或氮气氛(例如N2或NH3)中处理层,半导体层5505和栅极绝缘层5508之间分界面 的缺损程度可以降低。通过对栅极绝缘层5508执行这种处理,栅极绝缘层5508可以致密。 也就是,缺损电荷的产生可以抑制,从而晶体管的阈电压的波动可以抑制。另外,在使用3V或更小的电压驱动晶体管的情况下,由前述等离子处理氧化或氮化的绝缘层可以用作栅极 绝缘层5508。同时,在使用3V或更大的电压驱动晶体管的情况下,栅极绝缘层5508可以通 过组合由前述等离子处理在半导体层5505表面上形成的绝缘层和由CVD (等离子CVD或热 CVD)沉积的绝缘层来形成。类似地,这种绝缘层同样可以用作电容器5404的介电层。在这 种情况下,由等离子处理形成的绝缘层是具有1 IOnm厚度的致密膜;因此,具有高容量的 电容器可以形成。如参考图50 51E描述的,具有各种结构的元件可以通过组合具有各种厚度的导 电层而形成。仅第一导电层形成的区域以及第一导电层和第二导电层都形成的区域可以使 用光掩模或具有辅助图案的标线形成,其由衍射光栅图案或半透射薄膜形成并且具有减小 光强的功能。也就是,待显影的抗蚀剂掩模的厚度通过控制在光刻处理中将抗蚀剂曝光时 光掩模传输的光的量而改变。在这种情况下,具有前述复杂形状的抗蚀剂可以通过提供光 掩模或具有分辨极限或更窄的裂缝的标线来提供。此外,由抗蚀剂材料形成的掩模图案可 以通过在显影之后在200°C烘培来转换。通过使用由衍射光栅图案或半透射薄膜形成并且具有减小光强功能的具有辅助 图案的光掩模或标线,仅第一导电层形成的区域以及第一导电层和第二导电层堆叠的区域 可以连续地形成。如图51A中所示,仅第一导电层形成的区域可以选择性地在半导体层上 形成。尽管这种区域比半导体层有效,它在其他区域(提供连接到栅电极的导线区域)中 不需要。使用这种光掩模或标线,仅第一导电层形成的区域在导线部分中不需要;因此,导 线的密度可以基本上增加。在图50和5IA 5IE中,第一导电层使用高熔点材料例如钨(W),铬(Cr),钽(Ta), 氮化钽(TaN)或钼(Mo),或者包含这种金属作为主要成分的合金或化合物以30 50nm的 厚度形成,而第二导电层使用高熔点金属例如钨(W),铬(Cr),钽(Ta),氮化钽(TaN)或钼 (Mo)或者包含这种金属作为主要成分的合金或化合物以300 600nm的厚度形成。例如, 第一导电层和第二导电层由不同导电材料形成,使得每个导电层的刻蚀速率可以在随后执 行的刻蚀处理中改变。例如,TaN可以用于第一导电层,而钨薄膜可以用于第二导电层。该实施方案显示每个具有不同电极结构的晶体管、电容器和电阻器可以由相同的 图像形成处理,使用由衍射光栅图案或半透射薄膜形成并且具有减小光强功能的具有辅助 图案的光掩模或标线同时形成。因此,具有不同方式的元件可以根据电路所需的特性形成 和集成,而不增加制造步骤的数目。注意,该实施方案可以结合实施方案1 3的任何一个适当地实现。[实施方案5]在该实施方案中,参考图52A 54B描述制造包含例如晶体管的半导体器件的实例掩模图案。图52A中所示的半导体层5610和5611优选地由硅或包含硅作为主要成分的结晶 半导体形成。例如,通过由激光退火等结晶硅薄膜而获得的单晶硅、多晶硅可以使用。作为 选择,金属氧化物半导体,非晶硅,或有机半导体可以使用,只要它表现出半导体特性。在任何情况下,首先形成的半导体在具有绝缘表面的衬底的整个表面,或其一部 分(具有比定义为晶体管的半导体区域的面积更大面积的区域)上提供。然后,掩模图案 由光刻技术在半导体层上形成。通过使用掩模图案刻蚀半导体层,每个具有特定岛形的半导体层5610和5611形成,其包括源极和漏极区域以及晶体管的通道形成区域。半导体层 5610和5611根据布局设计而确定。形成图52A中所示半导体层5610和5611的光掩模提供有图52B中所示的掩模图 案5630。该掩模图案5630的形状依赖于用于光刻处理的抗蚀剂是正型还是负型而不同。 在使用正抗蚀剂的情况下,图52B中所示的掩模图案5630用作光阻挡部分。掩模图案5630 具有多边形的定点A去除的形状。另外,转角B具有多个转角被提供以便不形成直角转角 的形状。在该光掩模的图案中,转角被去除使得每个去除转角(直角三角形)的一边具有 10 μ m或更小的长度,例如。图52A中所示的半导体层5610和5611反应图52B中所示的掩模图案5630。在这 种情况下,掩模图案5630可能以这种方法转印,即与原始图案类似的图案形成或者转印图 案的转角比原始图案的那些圆。也就是,具有比掩模图案5630的那些略圆和更平滑形状的 转角部分可以提供。至少部分包含氧化硅或氮化硅的绝缘层在半导体层5610和5611上形成。形成该 绝缘层的一个目的是形成栅极绝缘层。然后,栅极导线5712,5713和5714形成以便部分地 覆盖半导体层,如图53A中所示。栅极导线5712对应于半导体层5610而形成。栅极导线 5713对应于半导体层5610和5611而形成。栅极导线5714对应于半导体层5610和5611 而形成。栅极导线通过在绝缘层上沉积金属层或高导电半导体层,然后通过光刻技术将图 案印刷到层上来形成。
形成这种栅极导线的光掩模提供有图53B中所示的掩模图案5731。该掩模图案 5731以这种方式去除其转角,即每个去除的转角(直角三角形)具有ΙΟμπι或更小的一边, 或具有导线宽度的1/5 1/2的一边。图53Α中所示的栅极导线5712,5713和5714反应图 53Β中所示的掩模图案5731的形状。在这种情况下,虽然掩模图案5731可以这种方式转印, 即与原始图案类似的图案形成或者转印图案的转角比原始图案的那些更圆。也就是,具有 比掩模图案5731的那些略圆和更平滑形状的转角部分可以提供。特别地,栅极导线5712, 5713和5714的每个转角通过去除边缘而形成得略圆,使得去除的转角(直角三角形)具 有ΙΟμπι或更小的一边,或者具有导线宽度1/5 1/2的一边。通过将凸出部分的转角形 成得略圆,因过量放电而引起的颗粒的产生可以在使用等离子的干刻蚀中抑制。另外,通过 将凹陷部分的转角形成得略圆,这种效应可以获得,即甚至当颗粒在清洗中产生时,它们可 以被冲走而不聚集在转角中。这样,成品率可以显著提高。层间绝缘层是在栅极导线5712,5713和5714之后形成的层。层间绝缘层由无机 绝缘材料例如氧化硅或有机绝缘材料例如聚酰亚胺或丙烯酸树脂而形成。另一个绝缘层例 如氮化硅或氮氧化硅可以提供在层间绝缘层与栅极导线5712,5713和5714之间。此外,绝 缘层例如氮化硅或氮氧化硅同样可以提供在层间绝缘层上。这种绝缘层可以防止半导体层 和栅极绝缘层受将不利地影响晶体管的杂质,例如外部金属离子或湿气所污染。开口在层间绝缘层的预先确定位置形成。例如,开口在与位于层间绝缘层下面的 栅极导线和半导体层相对应的位置中提供。具有单层或多层金属或金属化合物的导线层由 使用掩模图案的光刻,然后刻蚀成期望的图案而形成。然后,如图54Α中所示,导线5815 5820形成以部分地覆盖半导体层。导线将特定元件连接到彼此,这意味着导线不是线性地 连接特定元件而是连接以便包括因布局限制而引起的转角。另外,导线的宽度在接触部分和其他部分中不同。关于接触部分,如果接触孔的宽度等于或宽于导线宽度,接触部分中的 导线做得宽于其他部分的宽度。用于形成导线5815和5820的光掩模具有图54B中所示的掩模图案5832。同样在 这种情况下,每个导线形成以具有这种图案,即L型边缘处的转角(直角三角形)被去除, 在去除的三角形的一边是10 μ m或更小,或者具有导线宽度1/5 1/2的长度的条件下,使 得转角变圆。也就是说,当从上面看时,导线层的转角的外圆周弯曲。特别地,为了将转角 的外圆周形成得略圆,导线层的一部分去除,其对应于具有彼此成直角以形成边缘的两个 第一直线,以及与两个第一直线成大约45度角的第二直线的直角等腰三角形。在去除该三 角形之后,两个钝角在剩余导线层中形成。因此,通过适当地调节掩模设计或刻蚀条件来刻 蚀导线层以便在钝角部分中形成与各自第一直线和第二直线接触的曲线是优选的。注意, 彼此相等的直角等腰三角形两边的每个具有导线层宽度的1/5 1/2的长度。另外,转角 的内圆周也沿着转角的外圆周而变得略圆。通过将凸出部分的转角形成得略圆,因过量放 电而引起的颗粒的产生可以在使用等离子的干刻蚀中抑制。另外,通过将凹陷部分的转角 形成得略圆,这种效应可以获得,即甚至当颗粒在清洗中产生时,它们可以被冲走而不聚集 在转角中。这样,成品率可以显著提高。当导线转角形成得略圆时,电导可以期望被维持。 此外,当多个导线并行形成时,灰尘可以容易地冲走。在图54A中,η通道晶体管5821 5824和ρ通道晶体管5825和5826形成。η通 道晶体管5823和ρ通道晶体管5825,以及η通道晶体管5824和ρ通道晶体管5826分别构 成反相器5827和5828。注意,包括六个晶体管的电路构成SRAM。绝缘层例如氮化硅或氧 化硅可以在这些晶体管上形成。
注意,该实施方式可以结合实施方案1 4的任何一个适当地实现。[实施方案6]在该实施方案中,参考附图描述用于制造场致发光元件(EL元件)在每个像素中 使用的显示设备的汽相沉积装置。显示板通过在像素电路和/或驱动电路由晶体管构成的元件衬底上形成EL层来 制造。EL层形成以至少部分地包含表现出场致发光的材料。EL层可以由具有不同功能的 多个层形成。在这种情况下,EL层可以通过组合空穴注入/传输层,发光层,电子注入/传 输层等而形成。图55显示在晶体管形成于其上的元件衬底上形成EL层的汽相沉积装置的结构。 该汽相沉积装置包括每个连接多个处理室的传递室60和61。处理室包括用于装载衬底的 装载室62,用于卸载衬底的卸载室63,热处理室68,等离子处理室72,用于汽相沉积EL材 料的薄膜沉积室69 75,以及用于形成包含铝或包含铝作为主要成分的导电薄膜作为EL 元件的一个电极的薄膜沉积室76。闸阀77a 77m提供在传递室和各个处理室之间,并且 每个处理室的压力可以独立控制以防止处理室之间的相互污染。从装载室62引入到传递室60的衬底使用具有机械臂的可自由旋转传递装置66 传递到预先确定的处理室。另外,衬底使用传递装置66从一个处理室传递到另一个处理 室。传递室60和61通过薄膜沉积室70连接,并且衬底由传递装置66递送到传递装置67。与传递室60或61连接的每个处理室保持在减小的电压。因此,EL层的薄膜沉积 处理在该汽相沉积装置中连续执行而不暴露到空气。EL层的薄膜沉积处理完成的显示板可能因湿气等退化;因此,用于执行密封处理而不暴露到空气的密封处理室65与传递室61 连接以便保持质量。因为密封处理室65设置在大气压或接近大气压的减小压力,中间室64 提供在传递室61和密封处理室65之间。中间室64被提供以便递送衬底并减轻空间中的 压力。装载室、卸载室、传递室和薄膜沉积室的每个提供有用于将室维持在减小压力的 排气系统。各种真空泵可以用作排气系统,例如干封式空气泵,涡轮分子泵或扩散泵。在图55的汽相沉积装置中,与传递室60和61连接的处理室的数目和结构可以根 据EL元件的堆叠结构适当地改变。组合实例在下面显示。在热处理室68中,脱气处理首先通过加热底电极、绝缘隔断墙等形成于其上的衬 底而执行。在等离子处理室72中,基电极的表面经历使用稀有气体或氧气的等离子处理。 该等离子处理执行以便清洁表面,稳定表面状态和稳定表面的物理或化学状态(例如功函 数)。
薄膜沉积室69是用于形成电极缓冲层以与EL元件的一个电极接触的处理室。电 极缓冲层是具有载流子注入性质(空穴注入或电子注入性质)的层,其可以抑制EL元件的 短路和缺陷例如暗点的产生。典型地,电极缓冲层由有机和无机化合物的复合材料形成,以 具有5 X IO4 IXlO6Qcm的电阻率和30 300nm的厚度。薄膜沉积室71是用于沉积空 穴传输层的处理室。包括在EL元件中的发光层的结构依赖于它是发射单色光还是白色光而不同。优 选地,根据各个结构在汽相沉积装置中提供薄膜沉积室。例如,在形成三种EL元件,每种 在显示板中显示具有不同发光颜色的光的情况下,与各个发光颜色相对应的发光层需要沉 积。在这种情况下,薄膜沉积室70可以用于沉积第一发光层,薄膜沉积室73可以用于沉积 第二发光层,以及薄膜沉积室74可以用于沉积第三发光层。通过为各个发光层独立地提供 薄膜沉积室,具有不同发光材料的处理室之间的相互污染可以防止,导致薄膜沉积处理的 生产量的提高。作为选择,每种显示具有不同颜色的光的三种EL材料可以在薄膜沉积室70,73和 74中顺序地汽相沉积。在这种情况下,使用荫罩使得汽相沉积通过在每个区域上移动掩模 来执行以使用EL材料汽相沉积。在形成显示白色光的EL元件的情况下,显示具有不同颜色的光的发光层从底部 开始垂直堆叠。同样在这种情况下,每个发光层可以通过将元件衬底顺序移动通过薄膜沉 积室来沉积。作为选择,不同的发光层可以在同一薄膜沉积室中连续沉积。在薄膜沉积室76中,电极沉积在EL层上。虽然电极可以由电子束汽相沉积或溅 射形成,经由电阻加热的汽相沉积优选地使用。处理直到电极形成完成的元件衬底通过中间室64传递到密封处理室65。密封处 理室65填充用惰性气体例如氦、氩、氖或氮,并且密封通过在惰性气体气氛下将密封衬底 附加到EL层形成于其上的元件衬底的一侧上而执行。在密封状态下元件衬底与密封衬底 之间的空间可以用惰性气体或树脂材料填充。密封处理室65提供有用于吸入密封材料的 分配器,机械组件例如固定密封衬底以面向元件衬底的臂或固定台,用于使用树脂材料填 充空间的分配器或旋转涂膜机等。图56显示薄膜沉积室的内部结构。薄膜沉积室保持在减小压力。在图56中,顶板91和底板92的内侧对应于室的内部,其保持在减小压力。处理室提供有一个或多个蒸发源。这是因为在沉积每个具有不同成分的多个层或 者同时汽相沉积不同材料的情况下,提供多个蒸发源是优选的。在图56中,蒸发源81a,81b 和81c设置在蒸发源固定器80中。蒸发源固定器80由多关节臂83固定。多关节臂83允 许蒸发源固定器80使用伸缩关节在其行进范围内移动。另外,蒸发源固定器80可以提供 有距离传感器82以便通过监控来控制蒸发源81a 81c与衬底89之间汽相沉积的最佳距 离。在这种情况下,多关节臂也能够在垂直方向(Z方向)上行进。衬底台86和衬底夹盘87共同地固定衬底89。衬底台86可以包括加热器以加热 衬底89。衬底89使用衬底夹盘87的伸展和收缩功能载入/载出,同时固定到衬底台86。 在汽相沉积中,具有与汽相沉积的图案相对应的开口的荫罩90可以根据需要使用。在这种 情况下,荫罩90放置在衬底89和蒸发源81a 81c之间。荫罩90由掩模夹盘88固定以 接近衬底89或与衬底89保持固定距离。在需要荫罩90定位的情况下,照相机放置在处理 室中并且能够在X-Y- θ方向上微动的定位设备提供给掩模夹盘88,从而执行定位。蒸发源81a 81c提供有汽相沉积材料供给单元以便将汽相沉积材料连续地提供 到蒸发源。汽相沉积材料供给单元包括远离蒸发源81a 81c而提供的汽相沉积材料供给 源85a 85c,以及用于连接蒸发源和汽相沉积材料供给源的材料供给管84。典型地,材料 供给源85a 85c分别对应于蒸发源81a 81c而提供。在图56中,材料供给源85a对应 于蒸发源81a,材料供给源85b对应于蒸发源81b,以及材料供给源85c对应于蒸发源81c。作为供给汽相沉积材料的方法,气流携带法、气雾剂法等可以使用。气流携带法是 使用气流输送汽相沉积材料的细微颗粒,例如通过使用惰性气体等将汽相沉积材料输送到 蒸发源81a 81c的方法。气雾剂法是通过输送将汽相沉积材料溶解或分散在溶剂中而形 成的材料液体,使得材料液体使用雾化器变成气雾剂,并且气雾剂中的溶剂被蒸发以汽相 沉积的方法。在任何情况下,蒸发源81a 81c提供有加热器,并且已经输送的汽相沉积材 料蒸发以沉积到衬底89上。在图56中,材料供给管84由甚至在减小压力下可以灵活弯曲 而不改变形状的刚性窄管构造。在使用气流携带法或气雾剂法的情况下,薄膜沉积可以使用设置在大气压或低于 大气压的压力,优选地133 13300Pa的薄膜沉积室来执行。在使用惰性气体例如氦、氩、 氖、氪、氙或氮填充薄膜沉积室之后,室的压力可以通过连续地供给气体(同时排出气体) 来控制。另外,用于形成氧化物薄膜的薄膜沉积室可以通过引入气体例如氧气或氧化亚氮 而设置在氧气氛中。同时,用于汽相沉积有机材料的薄膜沉积室可以通过引入气体例如氢 气而设置在还原气氛中。作为供给汽相沉积材料的备选方法,螺丝可以提供在材料供给管84中,使得汽相 沉积材料可以连续地朝向蒸发源而推出。根据该实施方案中的汽相沉积装置,薄膜沉积可以均勻且连续地甚至在具有大屏 幕的显示板上实施。此外,因为不需要每次蒸发源用尽汽相沉积材料时都供给汽相沉积材 料,生产量可以提高。[实施方案7]在该实施方案中,参考图25A 25C描述由像素形成的衬底被密封的结构。图25A 是由像素形成的衬底被密封的面板的顶视图,而图25B和25C是沿着图25A的线A-A'而获得的横截面。图25B和25C显示密封由不同方法执行的实例。 在图25A 25C中,具有多个像素的像素部分2502在衬底2501上提供,并且密封 材料2506提供以围绕像素部分2502,同时密封材料2507附着到那里。对于像素结构,实施 方式或实施方案1中所示的那些可以使用。在图25B中的显示板中,图25A中的密封材料2507对应于反衬底2521。发光的 反衬底2521使用密封材料2506作为粘结层而连接到衬底2501,因此,封闭空间2522由衬 底2501,反衬底2521和密封元件2506形成。反衬底2521提供有滤色器2520和用于保护 滤色器的保护膜2523。从位于像素部分2502中的发光元件发出的光通过滤色器2520发射 到外部。封闭空间2522用惰性树脂或液体填充。注意,用于填充封闭空间2522的树脂可 以是吸湿剂分散于其中的透光树脂。另外,相同的材料可以用于密封材料2506和封闭空间 2522,使得反电极2521的粘结和像素部分2502的密封可以同时执行。在图25C中所示的显示板中,图25A中的密封材料2507对应于密封材料2524。密 封材料2524使用密封材料2506作为粘结层而连接到衬底2501,并且封闭空间2508由衬底 2501,密封材料2506和密封材料2524形成。密封材料2524预先在其凹陷部分中提供有吸 湿剂2509,并且吸湿剂2509用来通过吸收湿气、氧气等保持封闭空间2508中的清洁气氛, 并且抑制发光元件的退化。凹陷部分用细网覆盖材料2510覆盖。尽管覆盖材料2510传递 空气和湿气,吸湿剂2509不传递它们。注意,封闭空间2508可以用稀有气体例如氮或氩, 以及惰性树脂或液体填充。用于将信号发送到像素部分2502等的输入端子部分2511提供在衬底2501上。信 号例如视频信号经由FPC(软性印刷电路)2512发送到输入端子部分2511。在输入端子部 分2511处,在衬底2501上形成的导线使用导体(各向异性导电树脂ACF)分散于其中的 树脂电连接到在FPC 2512中提供的导线。将信号输入到像素部分2502的驱动电路可以在与像素部分2502相同的衬底2501 上形成。作为选择,用于将信号输入到像素部分2502的驱动电路可以在IC芯片中形成以 便由COG (覆晶玻璃)焊接连接到衬底2501上,或者IC芯片可以由TAB (卷带自动接合) 或使用印刷板放置在衬底2501上。该实施方案可以结合实施方案1 6的任何一个适当地实现。[实施方案8]本发明可以适用于将信号输入到面板的电路安装在面板上的显示模块。图26显示面板2600与电路板2604组合的显示模块。虽然图26显示控制器2605, 信号划分电路2606等在电路板2604上形成的实例,在电路板2604上形成的电路并不局限 于这些。可以产生控制面板的信号的任何电路可以使用。从在电路板2604上形成的电路中输出的信号通过连接导线2607输入到面板 2600。面板2600包括像素部分2601,源极驱动器2602和栅极驱动器2603。面板2600 的结构可以与实施方案1,2等中所示的那些类似。虽然图26显示源极驱动器2602和栅极 驱动器2603与像素部分2601在相同衬底上形成的情况,本发明的显示模块并不局限于此。 这种结构也可以使用,即仅栅极驱动器2603与像素部分2601在相同衬底上形成,而源极驱 动器2602在电路板上形成。作为选择,源极驱动器和栅极驱动器都可以在电路板上形成。
图57显示适用于具有大显示屏的模块的面板2600的实例构造。在图57中显示 的面板中,多个子像素30排列于其中的像素部分21,用于控制通过扫描线33的信号的扫描 线驱动电路22,以及用于控制通过数据线31的信号的数据线驱动电路23在衬底20上形 成。另外,监控电路24可以提供以便补偿包括在每个子像素30中的发光元件37亮度的变 化。发光元件37与包括在监控电路24中的发光元件具有相同的结构。发光元件37具有 表现出场致发光的材料夹在一对电极之间的结构。用于将来自外部电路的信号输入到扫描线驱动电路22的输入端子25,用于将来 自外部电路的信号输入到数据线驱动电路23的输入端子26,以及用于将信号输入到监控 电路24的输入端子29提供在衬底20的外围部分中。每个子像素30包括连接到数据线31的晶体管34,以及串联在电源线32和发光元 件37之间的晶体管35。晶体管34的栅极连接到扫描线33。当晶体管34使用扫描信号选 择时,它将来自数据线31的信号输入到子像素30。输入的信号提供到晶体管35的栅极以 及存储电容器36以充电。响应该信号,电源线32和发光元件37电连接,从而发光元件37 发光。为了控制每个子像素30中的发光元件37发光,电源需要从外部电路提供到那里。 在像素部分21中提供的电源线32在输入端子27处连接到外部电路。因为电源线32的电 阻根据引线的长度而损失,输入端子27优选地在衬底20的外围部分中的多个部分处提供。 输入端子27在衬底20的两端提供,使得亮度不均勻可以在像素部分20的面板中变得较不 引人注意。也就是,可以防止仅显示屏一侧较亮,而另一侧较暗。另外,发光元件37具有一 对电极,并且不连接到电源线32的其反电极作为公用电极而形成以由多个子像素30共享。 该电极也提供有多个端子28以便抑制电极电阻的损失。因为这种显示板中的电源线由低电阻材料例如Cu形成,当显示屏尺寸增加时它 们特别有效。例如,13英寸显示屏具有340mm的对角线,而60英寸显示屏具有1500mm或更 大的对角线。在这种情况下,导线电阻必须考虑,从而低电阻材料例如Cu优选地用于导线。 另外,考虑导线延迟,数据线和扫描线可以类似的方式形成。各种电子设备的显示部分可以通过包括这种显示模块而形成。该实施方案可以结合实施方案1 7的任何一个适当地实现。本发明可以适用于各种电子设备。电子设备包括照相机(例如摄影机或数字照相 机),投影机,头盔显示器(风镜显示器),导航系统,汽车用立体声收音机,计算机,游戏机, 便携式信息终端(例如移动计算机,便携式电话,或电子书),提供有记录介质的图像再现 设备(特别地,用于再现记录介质例如数字化视频光盘(DVD),并且具有显示再现图像的显 示部分的设备)等。图27A 27D显示电子设备的实例。图27A显示计算机,其包括主体2711,外壳2712,显示部分2713,键盘2714,外部 连接端口 2715,定点鼠标2716等。本发明适用于显示部分2713。使用本发明,显示部分的 功耗可以减小。图27B显示提供有记录介质的图像再现设备(特别地,DVD再现设备),其包括主 体2721,外壳2722,第一显示部分2723,第二显示部分2724,记录介质(例如DVD)读取部分 2725,操作键2726,扬声器部分2727等。第一显示部分2723主要显示图像数据,而第二显 示部分2724主要显示文本数据。本发明适用于第一显示部分2723和第二显示部分2724。使用本发明,显示部分的功耗可以减小。图27C显示便携式电话,其包括主体2731,音频输出部分2732,音频输入部分 2733,显示部分2734,操作开关2735,天线2736等。本发明适用于显示部分2734。使用本 发明,显示部分的功耗可以减小。图27D显示照相机,其包括主体2741,显示部分2742,外壳2743,外部连接端口 2744,远程控制部分2745,图像接收部分2746,电池2747,音频输入部分2748,操作键2749 等。本发明适用于显示部分2742。使用本发明,显示部分的功耗可以减小。本实施方案可以结合实施方案1 7的任何一个适当地实现。
本发明基于2005年7月4日提交给日本专利局的日本优先权申请2005-194684 号,在此引用其全部内容作为参考。
权利要求
一种半导体器件,包括多个像素;以及驱动电路,其中多个像素中的每个包括多个子像素,其中多个子像素中的每个包括发光元件和发光元件的亮度确定电路,其中亮度确定电路由驱动电路控制,以及其中具有缺损子像素的像素由驱动电路以使得除缺损子像素之外的子像素用于表示灰度级的方式补偿。
2.一种半导体器件,包括 多个像素;驱动电路; 检测电路; 补偿电路;以及用于将信号输入到驱动电路的信号输入电路, 其中多个像素中的每个包括多个子像素,其中多个子像素中的每个包括发光元件和发光元件的亮度确定电路, 其中亮度确定电路由驱动电路控制;其中检测电路检测包含在缺损子像素中的发光元件中流动的电流的值, 其中补偿电路基于由检测电路获得的结果产生补偿信号,以及 其中具有缺损子像素的像素由驱动电路以使得除缺损子像素之外的子像素用于表示 灰度级的方式补偿。
3.根据权利要求2的半导体器件,其中检测电路是包括电阻器、开关元件和模拟-数字转换电路的电流值检测电路, 其中电流值检测电路通过电源线电连接到发光元件的一个电极, 其中电流值检测电路电连接在发光元件的所述一个电极和电源之间, 其中电阻器的一个端子电连接到电源线和开关元件的一个端子, 其中电阻器的另一个端子电连接到发光元件的另一个电极,开关元件的另一个端子, 以及模拟_数字转换电路的输入,其中当检测到多个子像素中的缺损子像素时开关元件关闭,而在正常驱动时开关元件 导通。
4.根据权利要求2的半导体器件,其中检测电路是包括电阻器、开关元件和模拟_数字转换电路的电流值检测电路, 其中电流值检测电路通过电源线电连接到发光元件的一个电极, 其中电流值检测电路电连接在发光元件的另一个电极和电源之间, 其中电阻器的一个端子电连接到电源线和开关元件的一个端子, 其中电阻器的另一个端子电连接到发光元件的另一个电极,开关元件的另一个端子, 以及模拟-数字转换电路的输入,其中当检测到多个子像素中的缺损子像素时开关元件关闭,而在正常驱动时开关元件 导通。
5.根据权利要求3的半导体器件,其中电阻器的所述另一个端子以及开关元件的所述 另一个端子通过用于减少噪声的降噪电路电连接到模拟-数字转换电路。
6.根据权利要求4的半导体器件,其中电阻器的所述另一个端子以及开关元件的所述 另一个端子通过用于减少噪声的降噪电路电连接到模拟-数字转换电路。
7 根据权利要求3的半导体器件,其中电阻器的所述另一个端子以及开关元件的所述 另一个端子通过放大器电路电连接到模拟_数字转换电路。
8.根据权利要求4的半导体器件,其中电阻器的所述另一个端子以及开关元件的所述 另一个端子通过放大器电路电连接到模拟_数字转换电路。
9.根据权利要求7的半导体器件,其中电阻器的所述另一个端子以及开关元件的所述 另一个端子通过用于减少噪声的降噪电路电连接到放大器电路。
10.根据权利要求8的半导体器件,其中电阻器的所述另一个端子以及开关元件的所 述另一个端子通过用于减少噪声的降噪电路电连接到放大器电路。
11.根据权利要求2的半导体器件,其中检测电路是包括选择器电路、恒流源和模拟-数字转换电路的电流值检测电路; 其中电流值检测电路通过电源线电连接到发光元件的一个电极, 其中电流值检测电路电连接在发光元件的所述一个电极和电源之间, 其中选择器电路的第一端子电连接到电源线,选择器电路的第二端子电连接到发光元 件的另一个电极和模拟-数字转换电路的输入,并且选择器电路的第三端子电连接到恒流 源;其中当检测到多个子像素中的缺损子像素时选择器电路的第二和第三端子电连接,而 在正常驱动时选择器电路的第一和第二端子电连接;以及其中当检测到多个子像素中的缺损子像素时,恒定电流输入到发光元件,从而获得的 电势由模拟-数字转换电路转换成数字值。
12.根据权利要求2的半导体器件,其中检测电路是包括选择器电路、恒流源和模拟_数字转换电路的电流值检测电路; 其中电流值检测电路通过电源线电连接到发光元件的一个电极, 其中电流值检测电路电连接在发光元件的另一个电极和电源之间, 其中选择器电路的第一端子电连接到电源线,选择器电路的第二端子电连接到发光元 件的另一个电极和模拟-数字转换电路的输入,并且选择器电路的第三端子电连接到恒流 源;其中当检测到多个子像素中的缺损子像素时选择器电路的第二和第三端子电连接,而 在正常驱动时选择器电路的第一和第二端子电连接;以及其中当检测到多个子像素中的缺损子像素时,恒定电流输入到发光元件,从而获得的 电势由模拟-数字转换电路转换成数字值。
13.根据权利要求11的半导体器件,其中用于减少噪声的降噪电路电连接在选择器电 路的第二端子和模拟_数字转换电路的输入之间。
14.根据权利要求12的半导体器件,其中用于减少噪声的降噪电路电连接在选择器电 路的第二端子和模拟_数字转换电路的输入之间。
15.根据权利要求11的半导体器件,其中用于放大获得的电势的放大器电路电连接在选择器电路的第二端子和模拟-数字转换电路的输入之间。
16.根据权利要求12的半导体器件,其中用于放大获得的电势的放大器电路电连接在 选择器电路的第二端子和模拟_数字转换电路的输入之间。
17.根据权利要求15的半导体器件,其中降噪电路电连接在选择器电路的第二端子和 放大器电路之间。
18.根据权利要求16的半导体器件,其中降噪电路电连接在选择器电路的第二端子和 放大器电路之间。
19.根据权利要求3的半导体器件,其中电阻器的电阻值被设置使得电压因流到每个 子像素中的发光元件中的电流而降低的电源线的电势具有发光元件的相反电极之间的电 势差的电平,或更低。
20.根据权利要求4的半导体器件,其中电阻器的电阻值被设置使得电压因流到每个 子像素中的发光元件中的电流而降低的电源线的电势具有发光元件的相反电极之间的电 势差的电平,或更低。
21.根据权利要求3的半导体器件,其中模拟-数字转换电路是比较器。
22.根据权利要求4的半导体器件,其中模拟_数字转换电路是比较器。
23.根据权利要求11的半导体器件,其中模拟-数字转换电路是比较器。
24.根据权利要求12的半导体器件,其中模拟_数字转换电路是比较器。
25.根据权利要求1的半导体器件,其中所述多个子像素中的每个包括薄膜晶体管,所 述薄膜晶体管包括金属氧化物半导体。
26.根据权利要求2的半导体器件,其中所述多个子像素中的每个包括薄膜晶体管,所 述薄膜晶体管包括金属氧化物半导体。
全文摘要
半导体器件及其驱动方法,半导体器件包括每一个都包括多个子像素的多个像素,电源线以及用于操作多个像素的多个信号线,用于将信号输出到多个信号线的驱动电路,用于控制驱动电路的信号输入电路,在检测的电流值显示异常值的情况下确定像素是否具有正常状态、缺损亮点或者点缺陷,从而将补偿信号输出到信号输入电路的补偿电路,以及检测当每个子像素点亮时流过电源线的电流值的电流值检测电路。这样,包括当点亮时显示异常电流值的子像素的像素由从驱动电路输出的信号补偿。
文档编号G09G3/32GK101819750SQ20101016310
公开日2010年9月1日 申请日期2006年7月4日 优先权日2005年7月4日
发明者山崎舜平, 木村肇, 梅崎敦司 申请人:株式会社半导体能源研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1