阵列基板及其制备方法、液晶显示装置制造方法

文档序号:2713308阅读:116来源:国知局
阵列基板及其制备方法、液晶显示装置制造方法
【专利摘要】本发明提供一种阵列基板及其制备方法、液晶显示装置,属于液晶显示【技术领域】,其可解决现有的ADS模式阵列基板制造工艺复杂、透过率低、驱动效果不好的问题。本发明的阵列基板制备方法包括:在基底上依次形成第一透明导电材料层、绝缘材料层、半导体材料层、光刻胶层,并通过构图工艺形成包括栅线、栅极、栅绝缘层、半导体层、第一透明电极的图形,该栅绝缘层不超出栅极和栅线上方;形成钝化层,并在钝化层中形成与半导体层相连的源极过孔和漏极过孔;依次形成第二透明导电材料层和源漏金属层,并通过构图工艺形成包括源极、漏极、第二透明电极的图形,其中源极、漏极包括层叠的第二透明导电材料层和源漏金属层。
【专利说明】阵列基板及其制备方法、液晶显示装置

【技术领域】
[0001]本发明属于液晶显示【技术领域】,具体涉及一种阵列基板及其制备方法、液晶显示
>J-U ρ?α装直。

【背景技术】
[0002]高级超维场转换模式(ADS模式)的液晶显示装置具有视角宽、透过率高、清晰度高等诸多优点,故成为液晶显示装置的一种重要模式。
[0003]如图1所示,在ADS模式的阵列基板中,板状的第一透明电极111、薄膜晶体管的栅极21/栅线22均设在基底9上,栅绝缘层31覆盖第一透明电极111、栅极21、栅线22等,栅极21上方设有半导体层41 (半导体层41加上欧姆接触层、过渡层等即构成薄膜晶体管的有源区),钝化层5、平坦化层6依次覆盖半导体层41和栅绝缘层31,平坦化层6上设有数据线Data和第二透明电极121,数据线Data、第二透明电极121分别与薄膜晶体管的源极71、漏极72电连接,且第二透明电极121为狭缝电极,位于第一透明电极111上方。当然,应当理解,虽然以上是以第二透明电极121为像素电极,第一透明电极111为公共电极的情况为例;但若第一透明电极111为像素电极(即其与漏极72电连接),第二透明电极121为公共电极,也是可行的。
[0004]如图1所示,在现有的ADS模式的阵列基板中,栅极21/栅线22、半导体层41、第一透明电极111、源极71/漏极72、第二透明电极121需要分别在不同的构图工艺中制造,即为制造这些结构至少需要进行6次光刻,因此其制备工艺复杂。
[0005]同时,栅绝缘层31覆盖了整个基底9,即栅绝缘层31在第一透明电极111和第二透明电极121间也有分布,而该位置的栅绝缘层31 —方面增大了两电极间的距离,降低了电场强度和电容,影响了驱动效果;另一方面,该栅绝缘层31也会影响透光,降低阵列基板的透过率。


【发明内容】

[0006]本发明所要解决的技术问题包括,针对现有的ADS模式阵列基板制造工艺复杂、驱动效果不好、透过率低的问题,提供一种制造工艺简单、驱动效果好、透过率高的阵列基板及其制备方法、液晶显示装置。
[0007]解决本发明技术问题所采用的技术方案是一种阵列基板制备方法,其包括:
[0008]步骤1:在基底上依次形成第一透明导电材料层、绝缘材料层、半导体材料层、光刻胶层,并通过构图工艺形成包括栅线、栅极、栅绝缘层、半导体层、第一透明电极的图形;其中,所述栅绝缘层不超出所述栅极和栅线上方;
[0009]步骤2:在所述基底上形成钝化层,并在所述钝化层中形成与所述半导体层相连的源极过孔和漏极过孔;
[0010]步骤3:在所述基底上依次形成第二透明导电材料层和源漏金属层,并通过构图工艺形成包括源极、漏极、第二透明电极的图形,其中所述源极、漏极分别通过源极过孔、漏极过孔与所述半导体层电连接,且所述源极、漏极包括层叠的第二透明导电材料层和源漏金属层。
[0011]优选的是,所述步骤I具体包括:
[0012]步骤11、在基底上依次形成第一透明导电材料层、绝缘材料层、半导体材料层、光刻胶层;
[0013]步骤12、对所述光刻胶层阶梯曝光并显影,使栅极位置保留第一厚度的光刻胶层,栅线位置保留第二厚度的光刻胶层,第一透明电极位置保留第三厚度的光刻胶层,其余位置无光刻胶层,其中第一厚度大于第二厚度,第二厚度大于第三厚度;
[0014]步骤13、除去无光刻胶区域的所述半导体材料层、绝缘材料层、第一透明导电材料层;
[0015]步骤14、除去第三厚度的光刻胶层,使第一透明电极位置的所述半导体材料层暴露;
[0016]步骤15、除去第一透明电极位置的所述半导体材料层、绝缘材料层,形成第一透明电极的图形;
[0017]步骤16、除去厚度等于栅线位置剩余光刻胶层厚度的光刻胶层,使栅线位置的所述半导体层暴露;
[0018]步骤17、除去栅线位置的所述半导体材料层,形成栅线的图形;
[0019]步骤18、除去剩余的光刻胶层,形成栅极、栅绝缘层、半导体层的图形。
[0020]优选的是,所述步骤3具体包括:
[0021]步骤31、在所述基底上依次形成第二透明导电材料层、源漏金属层、光刻胶层;
[0022]步骤32、对所述光刻胶层阶梯曝光并显影,使源极、漏极位置保留第四厚度的光刻胶层,第二透明电极位置保留第五厚度的光刻胶层,其余位置无光刻胶层,其中第四厚度大于第五厚度;
[0023]步骤33、除去无光刻胶区域的所述第二透明导电材料层和源漏金属层;
[0024]步骤34、除去第五厚度的光刻胶层,使第二透明电极位置的所述源漏金属层暴露;
[0025]步骤35、除去第二透明电极位置的所述源漏金属层,形成第二透明电极的图形;
[0026]步骤36、除去剩余的光刻胶层,形成源极、漏极的图形。
[0027]优选的是,所述半导体层由金属氧化物半导体材料制成。
[0028]优选的是,所述第一透明电极为公共电极;所述第二透明电极为像素电极,并与所述漏极中的第二透明导电材料层连为一体。
[0029]优选的是,所述第一透明电极为像素电极,所述第二透明电极为公共电极;且所述步骤2还包括:在钝化层中形成与所述第一透明电极相连的过孔,所述漏极通过过孔与第一透明电极电连接。
[0030]解决本发明技术问题所采用的技术方案是一种阵列基板,其包括栅极、栅线、栅绝缘层、半导体层、第一透明电极、第二透明电极、源极、漏极、钝化层;且
[0031]所述钝化层覆盖所述栅线、栅极、栅绝缘层、半导体层、第一透明电极;
[0032]所述第二透明电极位于所述钝化层上方;
[0033]所述源极、漏极位于所述钝化层上方,分别通过所述钝化层中的源极过孔、漏极过孔与所述半导体层电连接;
[0034]所述栅极、栅线包括第一透明导电材料层,所述第一透明导电材料层与所述第一透明电极同层;
[0035]所述栅绝缘层不超出所述栅极和栅线上方;
[0036]所述源极、漏极包括第二透明导电材料层和设在第二透明导电材料层上的源漏金属层,其中,所述第二透明导电材料层与所述第二透明电极同层。
[0037]优选的是,所述半导体层由金属氧化物半导体制成。
[0038]优选的是,所述第二透明电极为像素电极,与所述漏极中的第二透明导电材料层连为一体;所述第一透明电极为公共电极。
[0039]优选的是,所述第一透明电极为像素电极,并通过所述钝化层中的过孔与所述漏极电连接;所述第二透明电极为公共电极。
[0040]解决本发明技术问题所采用的技术方案是一种液晶显示装置,其包括上述的阵列基板。
[0041]其中,“构图工艺”包括形成膜层、涂布光刻胶、曝光、显影、刻蚀、剥离光刻胶等步骤中的一步或多步,其可通过上述步骤除去膜层中不需要的部分,从而使膜层的剩余部分形成所需图形。
[0042]其中,“阶梯曝光”是指对光刻胶层的不同位置进行不同程度的曝光,从而使显影后的光刻胶层在不同位置的厚度不同,以便完成后续的构图工艺。
[0043]其中,两个结构“同层”是指这两个结构是通过同一个完整的层经构图工艺后形成的,即两个结构在构图工艺前是一个层;其并不代表这两个结构在高度上相等。
[0044]本发明的阵列基板制备方法中,栅线/栅极、栅绝缘层、半导体层、第一透明电极在同一次构图工艺中同时形成,且其源极/漏极、第二透明电极也在一次构图工艺中同时形成,这样,原本需要6次曝光(6Mask)的工艺变为只需要二次曝光(2Mask),因此其制备工艺简单;而且,其源极、漏极均为包括金属层的双层结构,从而其导电性好;同时,由于其阵列基板的栅绝缘层不超出栅极和栅线上方,故其第一透明电极、第二透明电极间没有栅绝缘层,因此两电极间的距离短,电场强度高,电容大,驱动效果好;且栅绝缘层也不会对光的透过产生影响,故透过率高。

【专利附图】

【附图说明】
[0045]图1为现有的ADS模式阵列基板的剖面结构示意图;
[0046]图2为本发明的实施例2的阵列基板在制备过程中的一个俯视结构示意图;
[0047]图3为图2的沿AA’面的剖面结构示意图;
[0048]图4为本发明的实施例2的阵列基板在制备过程中的一个俯视结构示意图;
[0049]图5为图4的沿AA’面的剖面结构示意图;
[0050]图6为本发明的实施例2的阵列基板在制备过程中的一个俯视结构示意图;
[0051]图7为图6的沿AA’面的剖面结构示意图;
[0052]图8为本发明的实施例2的阵列基板在制备过程中的一个俯视结构示意图;
[0053]图9为图8的沿AA’面的剖面结构示意图;
[0054]图10为本发明的实施例2的阵列基板在制备过程中的一个俯视结构示意图;
[0055]图11为图10的沿AA’面的剖面结构示意图;
[0056]图12为本发明的实施例2的阵列基板在制备过程中的一个俯视结构示意图;
[0057]图13为图12的沿AA’面的剖面结构示意图;
[0058]图14为本发明的实施例2的阵列基板在制备过程中的一个俯视结构示意图;
[0059]图15为图14的沿AA’面的剖面结构示意图;
[0060]图16为本发明的实施例2的阵列基板在制备过程中的一个俯视结构示意图;
[0061]图17为图16的沿AA’面的剖面结构示意图;
[0062]图18为本发明的实施例2的阵列基板在制备过程中的一个俯视结构示意图;
[0063]图19为图18的沿AA’面的剖面结构示意图;
[0064]图20为本发明的实施例2的阵列基板在制备过程中的一个俯视结构示意图;
[0065]图21为图20的沿AA’面的剖面结构示意图;
[0066]图22为本发明的实施例2的阵列基板在制备过程中的一个俯视结构示意图;
[0067]图23为图22的沿AA’面的剖面结构示意图;
[0068]图24为本发明的实施例2的阵列基板的俯视结构示意图;
[0069]图25为图24的沿AA’面的剖面结构示意图;
[0070]图26为本发明的实施例2的另一种阵列基板的剖面结构示意图;
[0071]其中附图标记为:11、第一透明导电材料层;111、第一透明电极;12、第二透明导电材料层;121、第二透明电极;2、栅金属层;21、栅极;22、栅线;3、绝缘材料层;31、栅绝缘层;4、半导体材料层;41、半导体层;5、钝化层;6、平坦化层;7、源漏金属层;71、源极;72、漏极;8、光刻胶层;9、基底;Data、数据线;Q1、栅极位置;Q2、栅线位置;Q3、第一透明电极位置;Q4、其余位置。

【具体实施方式】
[0072]为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和【具体实施方式】对本发明作进一步详细描述。
[0073]实施例1:
[0074]本实施例提供一种阵列基板制备方法,其包括:
[0075]步骤1:在基底上依次形成第一透明导电材料层、绝缘材料层、半导体材料层、光刻胶层,并通过构图工艺形成包括栅线、栅极、栅绝缘层、半导体层、第一透明电极的图形;其中,栅绝缘层不超出栅极和栅线上方;
[0076]步骤2:在基底上形成钝化层,并在钝化层中形成与半导体层相连的源极过孔和漏极过孔;
[0077]步骤3:在基底上依次形成第二透明导电材料层和源漏金属层,并通过构图工艺形成包括源极、漏极、第二透明电极的图形,其中源极、漏极分别通过源极过孔、漏极过孔与半导体层电连接,且源极、漏极包括层叠的第二透明导电材料层和源漏金属层。
[0078]本实施例的阵列基板制备方法中,栅线/栅极、栅绝缘层、半导体层、第一透明电极在同一次构图工艺中同时形成,且其源极/漏极、第二透明电极也在一次构图工艺中同时形成,这样,原本需要6次曝光(6Mask)的工艺变为只需要二次曝光(2Mask),因此其制备工艺简单;而且,其源极、漏极均为包括金属层的双层结构,从而其导电性好;同时,由于其阵列基板的栅绝缘层不超出栅极和栅线上方,故其第一透明电极、第二透明电极间没有栅绝缘层,因此两电极间的距离短,电场强度高,电容大,驱动效果好;且栅绝缘层也不会对光的透过产生影响,故透过率高。
[0079]实施例2:
[0080]本实施例提供一种阵列基板的制备方法,如图2至图26所示,其包括以下步骤:
[0081]S101、依次形成第一透明导电材料层11、绝缘材料层3、半导体材料层4,并在半导体材料层4上涂布光刻胶层8。
[0082]优选的,在第一透明导电材料层11和绝缘材料层3之间,还可形成栅金属层2。
[0083]其中,第一透明导电材料层11是由透明且导电的材料形成的,例如氧化铟锡(ITO),其用于形成第一透明电极111、栅极21、栅线22。
[0084]栅金属层2通常由钥、铝等金属或合金构成,主要用于与第一透明导电材料层11共同形成栅极21、栅线22,从而改善栅极21、栅线22的导电性能。
[0085]显然,由于具有第一透明导电材料层11,因此理论上也可不形成栅金属层2,而直接用第一透明导电材料层11形成栅极21、栅线22。应当理解,若本步骤中未形成栅金属层2,则后续步骤中“除去栅金属层2”的操作也相应的不再进行。
[0086]绝缘材料层3可为氮化硅或氧化硅等,其主要用于形成栅绝缘层31,从而使栅极21与半导体层41绝缘并形成载流子的运动界面。
[0087]半导体材料层4是由半导体材料形成的,其主要用于形成半导体层41。优选的,所述半导体层41 (或半导体材料层4)由金属氧化物半导体制成,例如氧化镓铟锌(IGZO)、氧化锡铟锌(ΙΤΖ0)、氧化锌(ZnO)等;当然,半导体材料层4也可采用多晶硅、非晶硅等其他半导体材料。
[0088]其中,在基底9上还可预先形成有缓冲层等已知结构;各层也可采用其他已知的材料;形成各层的方法可为溅射、蒸镀、化学气相沉积、涂覆等已知的工艺。由于上述的形成各种膜层的材料、工艺、参数等均是已知的,故对这些内容在本实施例中均不再详细描述。
[0089]S102、如图2、图3所示,对光刻胶层8阶梯曝光并显影,在栅极位置Ql保留第一厚度的光刻胶层8,栅线位置Q2保留第二厚度的光刻胶层8,第一透明电极位置Q3保留第三厚度的光刻胶层8,其余位置Q4无光刻胶层8,其中第一厚度大于第二厚度,第二厚度大于第三厚度。
[0090]也就是说,通过对光刻胶层8的不同位置进行不同程度的曝光,使显影后的光刻胶层8如图3所示分为三种不同的厚度,另外还有部分区域无光刻胶层8。
[0091]优选的,阶梯曝光可通过灰度掩膜板或半色调掩膜板实现。
[0092]S103、除去无光刻胶区域的半导体材料层4、绝缘材料层3、栅金属层2、第一透明导电材料层11,得到如图4、图5所示的结构。
[0093]也就是说,通过刻蚀等方法,依次除去无光刻胶区域Q4的半导体材料层4、绝缘材料层3、栅金属层2、第一透明导电材料层11,从而将第一透明电极区域Ql的第一透明导电材料层11与其他区域的第一透明导电材料层11隔开。
[0094]其中,刻蚀可采用已知的方法进行,依照各层材料和刻蚀工艺的不同,可以是在一次刻蚀中同时除去多个膜层,也可以是每次刻蚀只除去一个膜层;由于刻蚀工艺、刻蚀参数等均是已知的,故对这些内容在本实施例中均不再详细描述。
[0095]S104、除去第三厚度的光刻胶层8,使第一透明电极位置Q3的半导体材料层4暴露,得到如图6、图7所示的结构。
[0096]也就是说,通过灰化(Ashing)工艺除去第三厚度的光刻胶层8,这样第一透明电极位置Q3的光刻胶层8被彻底除去,其半导体材料层4暴露,而栅极位置Ql和栅线位置Q2的光刻胶层8只是相应减薄,从而得到如图6、图7所示的结构。
[0097]其中,由于灰化工艺的特性,故栅极位置Ql和栅线位置Q2的光刻胶层8面积实际也会稍微缩小,但因其对最终产品的结构不会产生实质影响,故图中未示出。
[0098]S105、如图8、图9所示,除去第一透明电极位置Q3的半导体材料层4、绝缘材料层
3、栅金属层2,形成第一透明电极111 (板状电极)的图形。
[0099]此时,由于第一透明电极位置Q3的光刻胶层8已被除去,故可通过刻蚀工艺依次除去该位置的半导体材料层4、绝缘材料层3、栅金属层2,使第一透明导电材料层11暴露,形成透明第一透明电极111。
[0100]S106、除去厚度等于栅线位置Q2剩余光刻胶层8厚度的光刻胶层8,使栅线位置Q2的半导体层41暴露,得到如图10、图11所示的结构。
[0101]也就是说,通过灰化工艺除去栅线位置Q2剩余的光刻胶层8 (其厚度可等于第二厚度减去第三厚度),使该处的半导体层41暴露,同时,栅极位置Ql的光刻胶层8继续减薄,从而得到如图10、图11所示的结构。
[0102]S107、除去栅线位置Q2的半导体材料层4,并优选同时除去该位置的绝缘材料层3,形成栅线22的图形,得到如图12、图13所示的结构。
[0103]也就是说,通过刻蚀工艺依次除去栅线位置Q2的半导体材料层4、绝缘材料层3,使栅金属层2暴露,形成栅线22的图形。
[0104]其中,本步骤中将栅线位置Q2的绝缘材料层3也一起除去了,从而最终产品中栅线22上方没有栅绝缘层31,栅绝缘层31与半导体层41的图形重合,且均只位于栅极21上方;这种工艺的优点在于,可选用一定的腐蚀剂直接一次将半导体材料层4和绝缘材料层3除去,从而简化工艺。
[0105]但是,应当理解,如果在本步骤中,只除去栅线位置Q2的半导体材料层4,而保留绝缘材料层3也是可行的;这样,在最终产品中,在栅线22上方仍有栅绝缘层31 (但半导体层41仅位于栅极21上方),该栅绝缘层31可增大栅线22与数据线间距离,从而降低二者间的耦合电容。
[0106]其中,本实施例是以具有栅金属层2的情况为例子的,即栅线22由栅金属层2和第一透明导电材料层11共同组成,从而改善栅线22的导电性能;但应当理解,如果步骤SlOl中未形成栅金属层2,则此时栅线位置Q2仅剩余第一透明导电材料层11,即栅线22也可直接由透明导电材料构成。
[0107]同时,在本实施例中,还可同时形成公共电极线等其他的结构,在此不再详细描述。
[0108]S108、如图14、图15所示,除去全部剩余的光刻胶层8,形成栅极21、栅绝缘层31、半导体层41的图形。
[0109]也就是说,剥离全部剩余的光刻胶层8 (即栅极位置Ql的光刻胶层8),使半导体层41暴露,形成栅极21、栅绝缘层31、半导体层41。
[0110]可见,在本实施例中,只通过一次曝光就同时制备出了栅线22/栅极21、栅绝缘层31、半导体层41、第一透明电极111的图形,故其曝光次数明显减少,制备方法简单。
[0111]同时,在本实施例的阵列基板中,半导体层41不超出栅极21和栅线22上方,即其第一透明电极111和第二透明电极121间没有栅绝缘层31,因此第一透明电极111和第二透明电极121间的距离短,电场强度和电容大,驱动效果好,同时栅绝缘层31也不会对光的透过产生影响,因此透过率高。
[0112]S109、形成钝化层5 (PVX),并在钝化层5中形成与半导体层41相连的源极过孔和漏极过孔。
[0113]其中,钝化层5可由氮化硅、氧化硅等材料构成,其主要作用是保护半导体层41,并使第一透明电极111与上方的其他结构绝缘。
[0114]S110、依次形成第二透明导电材料层12、源漏金属层7、光刻胶层8。
[0115]其中,第二透明导电材料层I可采用与第一透明导电材料层11相同的材料制成,而源漏金属层7可采用与栅金属层2相同的材料制成。
[0116]S111、对光刻胶层8阶梯曝光并显影,使源极71、漏极72位置保留第四厚度的光刻胶层,第二透明电极121位置保留第五厚度的光刻胶层,其余位置无光刻胶层,其中第四厚度大于第五厚度。
[0117]也就是说,用灰度掩膜板、半色调掩膜板等对光刻胶层8进行阶梯曝光,之后显影,从而使对应源漏极的位置保留较厚的光刻胶层8,对应第二透明电极121的位置保留较薄的光刻胶层8,其余位置无光刻胶层8,得到如图16、17所示的结构。
[0118]当然,由于数据线Data是与源极71连在一起的,故其可在本步骤中一同形成,若要形成数据线Data,则需要使对应数据线Data的位置也保留较厚的光刻胶层8 (也可看作源极71的图形包括数据线Data部分)。
[0119]S112、除去无光刻胶区域的第二透明导电材料层12和源漏金属层7。
[0120]也就是说,通过刻蚀除去暴露的第二透明导电材料层12和源漏金属层7,得到如图18、19所示的结构。
[0121]S113、除去第五厚度的光刻胶层8,使第二透明电极位置121的源漏金属层7暴露。
[0122]也就是说,通过灰化工艺除去第二透明电极位置121的光刻胶层8,使该位置的源漏金属层7暴露,同时对应源漏极位置的光刻胶层8减薄,从而得到如图20、图21所示的结构。
[0123]SI 14、除去第二透明电极121位置的源漏金属层7,形成第二透明电极121的图形。
[0124]也就是说,将暴露的源漏金属层7除去,从而使剩余的第二透明导电材料层12形成第二透明电极121,得到如图22、图23所示的结构。其中,第二透明电极121位于第一透明电极111上方,并为狭缝电极,从而构成ADS模式的阵列基板。
[0125]此时,该第二透明电极121与漏极72中的第二透明导电材料层12连为一体,也就是说,从图案上说,第二透明电极121与漏极72中的第二透明导电材料层12是一体的,并未断开;由此,该第二透明电极121即为像素电极,而相应的,第一透明电极111为公共电极。
[0126]S115、除去剩余的光刻胶层8,形成源极71、漏极72的图形。
[0127]也就是说,将对应源极71、漏极72位置的剩余的光刻胶层8除去,从而使该位置剩余的第二透明导电材料层12和源漏金属层7形成源极71、漏极72(同时还可形成数据线Data),得到如图24、25所示的阵列基板。
[0128]本实施例中,源极71、漏极72、第二透明电极121在一次光刻工艺中形成,从而其制备工艺简单;同时,源极71、漏极72均是由第二透明导电材料层12和源漏金属层7层叠而成的,其中源漏金属层7的导电性好,故源极71、漏极72的导电性也较好。
[0129]S116、继续形成配向膜等其他已知的结构(图中未示出),完成阵列基板的制备。
[0130]在本实施例中,以第一透明电极111为公共电极,第二透明电极121为像素电极为例进行说明。但应当理解,作为本实施例的另一种方式,也可以是第一透明电极111为像素电极,而第二透明电极121为公共电极;此时,阵列基板的结构如图26所示,漏极72 (具体为漏极72中的第二透明导电材料层12)通过钝化层5中的过孔与第一透明电极111相连,而第二透明电极121的图形则与漏极72中剩余的第二透明导电材料层12断开相连;当制备这种方式的阵列基板时,要在钝化层5中形成用于使漏极72和第一透明电极111相连的过孔,且第二透明电极121的图案需要改变。
[0131]当然,以上实施例的阵列基板还可进行许多的变化。
[0132]例如,在形成源极、漏极后,还可继续形成平坦化层,平坦化层可由树脂等材料制成,其主要用于将薄膜晶体管等结构引起的段差“填平”,使阵列基板的表面整体上趋于平坦,以便于后续取向膜膜层均匀形成,并利于摩擦取向工艺的均匀摩擦。
[0133]或者,上述平坦化层也可在形成钝化层之后立即形成,从而上述的源极、漏极、第二透明电极等可形成在平坦化层之上。
[0134]再如,上述的数据线、公共电极线等也可在其他步骤中形成。
[0135]实施例3:
[0136]如图25、图26所示,本实施例提供一种阵列基板,其包括栅极21、栅线22、栅绝缘层31、半导体层41、第一透明电极111、第二透明电极121、源极71、漏极72、钝化层5 ;其中
[0137]钝化层5覆盖栅线22、栅极21、栅绝缘层31、半导体层41、第一透明电极111 ;
[0138]第二透明电极位于钝化层上方121 ;
[0139]源极71、漏极72位于钝化层5上方,分别通过钝化层5中的源极过孔、漏极过孔与半导体层41电连接;
[0140]栅极21、栅线22包括第一透明导电材料层11,第一透明导电材料层11与第一透明电极111同层;
[0141]栅绝缘层31不超出栅极21和栅线22上方;
[0142]源极71、漏极72包括第二透明导电材料层12和设在第二透明导电材料层12上的源漏金属层7,其中,第二透明导电材料层12与第二透明电极同层121。
[0143]优选的,半导体层41由金属氧化物半导体制成。
[0144]优选的,第二透明电极121为像素电极,与漏极72中的第二透明导电材料层12连为一体;第一透明电极111为公共电极。
[0145]优选的,作为本实施例的另一种方式,第一透明电极111为像素电极,并通过钝化层5中的过孔与漏极72电连接;第二透明电极121为公共电极。
[0146]当然,本实施例的阵列基板中还应包括公共电极线、数据线Data、配向膜等其他已知结构,在此不再详细描述。
[0147]实施例4:
[0148]本实施例提供了一种液晶显示装置,其包括上述的阵列基板。所述液晶显示装置可以为:液晶显示面板、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
[0149]本实施例的液晶显示装置包括上述阵列基板,故其制备工艺简单、驱动性能好、透过率高。
[0150]可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。
【权利要求】
1.一种阵列基板制备方法,其特征在于,包括: 步骤1:在基底上依次形成第一透明导电材料层、绝缘材料层、半导体材料层、光刻胶层,并通过构图工艺形成包括栅线、栅极、栅绝缘层、半导体层、第一透明电极的图形;其中,所述栅绝缘层不超出所述栅极和栅线上方; 步骤2:在所述基底上形成钝化层,并在所述钝化层中形成与所述半导体层相连的源极过孔和漏极过孔; 步骤3:在所述基底上依次形成第二透明导电材料层和源漏金属层,并通过构图工艺形成包括源极、漏极、第二透明电极的图形,其中所述源极、漏极分别通过源极过孔、漏极过孔与所述半导体层电连接,且所述源极、漏极包括层叠的第二透明导电材料层和源漏金属层。
2.根据权利要求1所述的阵列基板制备方法,其特征在于,所述步骤I具体包括: 步骤11、在基底上依次形成第一透明导电材料层、绝缘材料层、半导体材料层、光刻胶层; 步骤12、对所述光刻胶层阶梯曝光并显影,使栅极位置保留第一厚度的光刻胶层,栅线位置保留第二厚度的光刻胶层,第一透明电极位置保留第三厚度的光刻胶层,其余位置无光刻胶层,其中第一厚度大于第二厚度,第二厚度大于第三厚度; 步骤13、除去无光刻胶区域的所述半导体材料层、绝缘材料层、第一透明导电材料层;步骤14、除去第三厚度的光刻胶层,使第一透明电极位置的所述半导体材料层暴露;步骤15、除去第一透明电极位置的所述半导体材料层、绝缘材料层,形成第一透明电极的图形; 步骤16、除去厚度等于栅线位置剩余光刻胶层厚度的光刻胶层,使栅线位置的所述半导体层暴露; 步骤17、除去栅线位置的所述半导体材料层,形成栅线的图形; 步骤18、除去剩余的光刻胶层,形成栅极、栅绝缘层、半导体层的图形。
3.根据权利要求1所述的阵列基板制备方法,其特征在于,所述步骤3具体包括: 步骤31、在所述基底上依次形成第二透明导电材料层、源漏金属层、光刻胶层; 步骤32、对所述光刻胶层阶梯曝光并显影,使源极、漏极位置保留第四厚度的光刻胶层,第二透明电极位置保留第五厚度的光刻胶层,其余位置无光刻胶层,其中第四厚度大于第五厚度; 步骤33、除去无光刻胶区域的所述第二透明导电材料层和源漏金属层; 步骤34、除去第五厚度的光刻胶层,使第二透明电极位置的所述源漏金属层暴露; 步骤35、除去第二透明电极位置的所述源漏金属层,形成第二透明电极的图形; 步骤36、除去剩余的光刻胶层,形成源极、漏极的图形。
4.根据权利要求1所述的阵列基板制备方法,其特征在于, 所述半导体层由金属氧化物半导体材料制成。
5.根据权利要求1至4中任意一项所述的阵列基板制备方法,其特征在于, 所述第一透明电极为公共电极; 所述第二透明电极为像素电极,并与所述漏极中的第二透明导电材料层连为一体。
6.根据权利要求1至4中任意一项所述的阵列基板制备方法,其特征在于, 所述第一透明电极为像素电极,所述第二透明电极为公共电极; 且所述步骤2还包括:在钝化层中形成与所述第一透明电极相连的过孔,所述漏极通过所述过孔与所述第一透明电极电连接。
7.—种阵列基板,其包括栅极、栅线、栅绝缘层、半导体层、第一透明电极、第二透明电极、源极、漏极、钝化层;其特征在于, 所述钝化层覆盖所述栅线、栅极、栅绝缘层、半导体层、第一透明电极; 所述第二透明电极位于所述钝化层上方; 所述源极、漏极位于所述钝化层上方,分别通过所述钝化层中的源极过孔、漏极过孔与所述半导体层电连接; 所述栅极、栅线包括第一透明导电材料层,所述第一透明导电材料层与所述第一透明电极同层; 所述栅绝缘层不超出所述栅极和栅线上方; 所述源极、漏极包括第二透明导电材料层和设在第二透明导电材料层上的源漏金属层,其中,所述第二透明导电材料层与所述第二透明电极同层。
8.根据权利要求7所述的阵列基板,其特征在于, 所述半导体层由金属氧化物半导体制成。
9.根据权利要求7或8所述的阵列基板,其特征在于, 所述第二透明电极为像素电极,与所述漏极中的第二透明导电材料层连为一体; 所述第一透明电极为公共电极。
10.根据权利要求7或8所述的阵列基板,其特征在于, 所述第一透明电极为像素电极,并通过所述钝化层中的过孔与所述漏极电连接; 所述第二透明电极为公共电极。
11.一种液晶显示装置,其特征在于,包括: 如权利要求7至10中任意一项所述的阵列基板。
【文档编号】G02F1/1333GK104133313SQ201410272714
【公开日】2014年11月5日 申请日期:2014年6月18日 优先权日:2014年6月18日
【发明者】刘圣烈, 宋泳锡, 金熙哲, 崔承镇 申请人:京东方科技集团股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1