侧入式背光模组和显示装置的制作方法

文档序号:14750682发布日期:2018-06-22 13:11阅读:220来源:国知局
本发明涉及显示装置
技术领域
,特别涉及一种侧入式背光模组和显示装置。
背景技术
:目前,超窄超薄的LCD显示器件已成为LCD显示行业近期发展的重点,特别是针对手机、PAD、电脑显示屏、液晶屏等产品的薄型化需求来说,使用更薄的侧入式背光模组即成为解决显示器件超窄超薄化的关键技术。然而,对于侧入式背光模组的设计而言,其导光板的膨胀间隙、膜片的膨胀间隙、膜片与导光板网点边缘的配合程度、混光距离、以及LED与导光板厚度的配合程度等均成为制约LCD显示器件实现超窄超薄化的瓶颈,具体表现为以下几点:第一、现有的侧入式背光模组需要很大混光距离以实现线光源,而较小的混光距离则易出现明显的入光侧灯颗影问题;第二、由于灯条SMT公差等原因会导致灯颗与导光板的对位问题,从而出现入光侧亮带,而目前解决该问题的主要方法是通过增加一张入光侧丝印的膜片来进行遮蔽,如此不但增加成本且降低光效;第三、容易出现因入光侧灯条混BIN而导致局部偏色的问题;第四、现有的显示器中,LED灯珠的数目不能随意减少,否则容易因A/P值比例的问题而出现灯颗影,并造成相关导光板不能共用,从而影响产品标准化的实现;第五、容易出现因LED封装尺寸问题而无法使用更多LED数量的问题。技术实现要素:本发明的主要目的是提供一种侧入式背光模组,旨在使显示装置更加超窄超薄化。为实现上述目的,本发明提出的侧入式背光模组包括导光板以及光源组件,所述导光板具有面向侧方的入光面;所述光源组件包括长条状的发光单元、及设于所述发光单元与所述入光面之间的荧光粉条,或者,所述光源组件包括沿所述入光面的长度方向排列的多个白光光源,且每一白光光源的沿所述入光面长度方向相对的两侧面均为发光侧面。优选地,所述发光单元包括长条状的基板和设于所述基板上的多个串联及/或并联的呈短型设置的第一晶片,所述第一晶片的沿所述基板长度方向相对的两侧面均为发光侧面;或者,所述发光单元包括能形成线型出光面的呈长型设置的第二晶片。优选地,所述光源组件还包括支架,所述支架上开设有面向所述入光面开口的容置槽,所述发光单元适配内置于所述容置槽中,且所述荧光粉条填充于所述容置槽中以覆盖所述发光单元。优选地,所述基板为金属基印刷电路板,所述第一晶片以COB方式固定于所述基板上,所述荧光粉条一体式密封覆盖所有所述第一晶片。优选地,所述荧光粉条粘接于所述入光面。优选地,所述荧光粉条为内部均匀混有荧光粉的长条形荧光胶体,或者,所述荧光粉条包括透光本体以及涂覆在所述透光本体上的荧光材料。优选地,所述第一晶片上沿所述基板宽度方向相对的两侧面均设置有反射层。优选地,所述反射层呈白色,且所述反射层的光反射率大于95%,耐高温温度大于150℃。优选地,两所述反射层之间的距离小于所述入光面沿前后方向的宽度。本发明还提出一种显示装置,包括侧入式背光模组,该侧入式背光模组包括导光板以及光源组件,所述导光板具有面向侧方的入光面;所述光源组件包括长条状的发光单元、及设于所述发光单元与所述入光面之间的荧光粉条,或者,所述光源组件包括沿所述入光面的长度方向排列的多个白光光源,且每一白光光源的沿所述入光面长度方向相对的两侧面均为发光侧面。本发明的技术方案中,由于光源组件包括长条状的发光单元、及设于发光单元与入光面之间的荧光粉条,或者,光源组件包括沿入光面的长度方向排列的多个白光光源,且每一白光光源的沿入光面长度方向相对的两侧面均为发光侧面,故本侧入式背光模组能实现真正的均匀线光源作为背光模组的发光源,而不需要进入导光板前混光的过程,这样,就可以在极小混光距离或零混光距离下,不出现灯颗影的问题,然后再使用现有的彩色微电子印刷技术以及够窄的液晶面板,从而可实现显示装置极窄边框的设计。同时,由于发光单元呈长条状,其中包含的发光晶片的数量和规格就可以随意调整以满足产品的不同需求,且导光板不需要对应调整,即更换光源组件时不受导光板版本的制约,从而可提高产品的标准化程度。此外,一体化设置的发光单元和荧光粉条还可以杜绝因混色造成的偏色问题以及降低SMT的精度要求,进而不容易出现偏色问题。附图说明为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。图1为本发明侧入式背光模组第一实施例的处于装配状态时的部分剖面结构示意图;图2为图1中的发光单元的结构示意图;图3为图1中的光源组件与导光板的部分剖面结构示意图;图4为本发明侧入式背光模组第二实施例的光源组件与导光板的部分剖面结构示意图;图5为本发明侧入式背光模组第三实施例的光源组件与导光板的部分剖面结构示意图图;图6为本发明侧入式背光模组第四实施例的光源组件的剖面结构示意图图;图7为本发明侧入式背光模组第五实施例的光源组件的剖面结构示意图图;图8为本发明侧入式背光模组第六实施例的光源组件的剖面结构示意图图;图9为本发明侧入式背光模组第七实施例的光源组件的剖面结构示意图图;图10为本发明侧入式背光模组第八实施例的光源组件的剖面结构示意图图。附图标号说明:标号名称标号名称1导光板11入光面2光源组件21白光光源22发光侧面23发光单元231第一晶片232基板233反射层24荧光粉条241透光本体242荧光材料243荧光胶体25支架3散热片本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。具体实施方式下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。本发明提出一种侧入式背光模组以及具有该侧入式背光模组的显示装置。参照图1至图3,在本发明第一实施例中,该侧入式背光模组包括导光板1和光源组件2。导光板1具有面向侧方的入光面11;光源组件2包括沿入光面11的长度方向排列的多个白光光源21,且每一白光光源21的沿入光面11长度方向相对的两侧面均为发光侧面22;或者,在如图4至图10所示的第二实施例至第八实施例中,光源组件2包括长条状的发光单元23、及设于发光单元23与入光面11之间的荧光粉条24。在此,导光板1的入光面11可设于导光板1的某一侧边缘或相对两侧或某三侧或四侧的边缘等,通常,导光板1的左右两侧边缘的端面即为入光面11。在此需说明的是,本侧入式背光模组可具体应用于液晶屏背光领域,例如但不限于手机、IPad、电脑显示屏、液晶电视、以及广告机等。在目前常见的显示装置例如液晶屏中,传统的白光LED通常采用蓝光晶片和黄色荧光粉,其发光原理为通过蓝光晶片发出的蓝光激发荧光粉生成的黄光,然后再由蓝光和黄光混合成为白光。同时,在目前常见的侧光式模组上大多使用LED灯条,且LED灯条上间隔固设有多颗LED灯颗,然而,出于封装尺寸、LED焊盘的安全距离、散热以及成本等方面考虑,各个LED灯颗之间具有一定间距,且又因为LED灯颗发光的角度通常为120度左右,故在导光板1上与LED灯颗对应的位置一般发亮,而在导光板1上与两LED灯颗之间对应的位置发暗,这种亮暗的差异为灯颗影,通常需要对导光板1网点进行处理才能解决;此外,LED的封装和贴片安装的精度会直接造成LED灯条与导光板1之间的对位差异从而容易出现因局部透光造成的亮带问题。在本发明的技术方案中,由于光源组件2包括长条状的发光单元23、及设于发光单元23与入光面11之间的荧光粉条24,或者,光源组件2包括沿入光面11的长度方向排列的多个白光光源21,且每一白光光源21的沿入光面11长度方向相对的两侧面均为发光侧面22,故本侧入式背光模组能实现真正的均匀线光源作为背光模组的发光源,而不需要进入导光板1前混光的过程,这样,就可以在极小混光距离或零混光距离下,不出现灯颗影的问题,然后再使用现有的彩色微电子印刷技术以及够窄的液晶面板,从而可实现显示装置极窄边框的设计。同时,由于发光单元23呈长条状,其中包含的发光晶片(主要为LED晶片)的数量和规格就可以随意调整以满足产品的不同需求,且导光板1不需要对应调整,即更换光源组件2时不受导光板1版本的制约,从而可提高产品的标准化程度。此外,一体化设置的发光单元23和荧光粉条24还可以杜绝因混色造成的偏色问题以及降低SMT的精度要求,进而不容易出现偏色问题。参照图4所示的第二实施例中,进一步地,发光单元23包括长条状的基板232和设于基板232上的多个串联及/或并联的呈短型设置的第一晶片231,第一晶片231的沿基板232长度方向相对的两侧面均为发光侧面22,当然在如图1至图3所示的第一实施例中,多个白光光源21也可设置于长条状的基板232上;或者,于其他实施例中,发光单元23包括能形成线型出光面的呈长型设置的第二晶片(未图示);如此,就可实现均匀线光源作为侧入式背光模组的发光源。其中,第一晶片231和第二晶片可以是现行量产的LED晶片,例如但不限于蓝光LED晶片、蓝绿LED晶片,蓝红LED晶片,红绿蓝LED晶片等。可以理解,本发明技术方案中的发光单元23的特殊结构设置具有以下优点:第一、在满足散热的前提下,本发光单元23的基板232上可排布较多的第一晶片231,进而可有效提升亮度;第二、有利于实现LED通用一体化,即所有项目的LED规格都一致,只有荧光粉条24的差异;第三、可降低LED晶片的SMT精度要求,从而不容易出现SMT后LED灯颗高低不平的问题;第四、针对RGB晶片组成的LED可以实现光色的内部混合,从而有效解决各种偏色问题。进一步地,参照图2,在第一实施例中,为增强光效,优选地,第一晶片231上沿基板232宽度方向相对的两侧面均设置有反射层233。具体地,反射层233呈白色,且反射层233的光反射率大于95%,耐高温温度大于150℃,然后在COB上涂布有荧光粉胶体。进一步地,两反射层233之间的距离小于入光面11沿前后方向的宽度,换言之,两反射层233之间的距离即为LED的发光面开口高度。由于本发明的技术方案能真正实现进入导光板1的是线光源,故在本发明中可以通过适当减少发光面的开口高度来匹配薄型化的导光板1,而无需拘泥于传统的LED的发光面开口高度,如此,就可有效实现超薄超窄的模组设计,且同时具有不增加成本、不降低光效以及不易出现漏光问题等优点。进一步地,对于发光单元23的固定与散热问题,可以但不限于由以下几种方式解决。在如图6所示的第四实施例中,光源组件2还包括支架25,支架25上开设有面向入光面11开口的容置槽(未标示),发光单元23适配内置于容置槽中,且荧光粉条24填充于容置槽中以覆盖发光单元23。特别地,该支架25的光反射率应较高,且耐高温温度优选大于150℃。同时,发光单元23与支架25之间优选焊接或者粘接,例如在如图6所示的第四实施例中,发光单元23的第一晶片231可粘接于容置槽的槽底;而在如图7所示的第五实施例中,发光单元23的第一晶片231可焊接于容置槽中,荧光粉条24也填充于容置槽中以覆盖发光单元23。而在如图4所示第二实施例中,发光单元23则不需要设置支架25,发光单元23包括基板232与第一晶片231,其中,基板232优选为金属基印刷电路板,基板232背离入光面11的外侧面与散热片3贴合连接,第一晶片231以COB方式固定于基板232上,荧光粉条24一体式密封覆盖所有第一晶片231。然本设计不限于此,在如图5所示的第三实施例中,其与第二实施例的主要不同之处在于,荧光粉条24还可以粘接于导光板1的入光面11,如此,也可实现均匀线光源。在此需特别说明的是,荧光粉条24可以为内部均匀混有荧光粉的长条形荧光胶体243,或者,荧光粉条24包括透光本体241以及涂覆在透光本体241上的荧光材料242。具体地,透光本体241优选光透过率高达99%,且耐高温150℃以上的材料,在实际装配时,将荧光粉材料涂布在透光本体241上,同时,透光本体241上还背有耐高温的OCA胶体以粘接于LED晶片上或者导光板1的入光面11,从而使得进入导光板1的是均匀的线光源。可以理解,在本发明的技术方案中,本侧入式背光模组可以应用LED晶片与经印刷或涂布荧光材料242制成的荧光粉条24来混合混光,从而具有能实现自由组合搭配、有利于产量化应用的优点,换言之,在产品设计中,设计人员可以针对LED晶片的发光颜色而随意调整荧光粉条24的颜色种类,从而能更容易地实现色域的切换,且降低LED上游厂家的规格种类,进而在最大程度上有利于产品的批量化生产。在如图4所示的第二实施例、图5所示的第三实施例图、图6所示的第四实施例、以及图7所示的第五实施例中,荧光粉条24均为内部均匀混有荧光粉的长条形荧光胶体243;而图6所示的第四实施例与图8所示的第六实施例的主要区别在于,在第六实施例中,填充于容置槽的是透光本体241,透光本体241的顶面再涂覆荧光材料242。同样地,在图7所示的第五实施例与图9所示的第七实施例之间,以及图4所示的第二实施例与图10所示的第八实施例之间,其主要区别在于,第七实施例和第八实施例中使用的荧光粉条24均是透光本体241加上涂覆于透光本体241表面的荧光材料242。以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的
技术领域
均包括在本发明的专利保护范围内。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1