带有介电阻碍电极的气体放电灯的制作方法

文档序号:2964726阅读:205来源:国知局
专利名称:带有介电阻碍电极的气体放电灯的制作方法
技术领域
本发明涉及一种如权利要求1前序中所述的气体放电灯。该种气体放电灯有一只含有充填气体的放电容器,其中放电容器至少局部对于所要求光谱范围的光线是透明的。一些阳电极和阴电极在合适的供电情况下在充填气体内产生放电,这种放电要么直接产生所要求的光线,要么借助于通过放电发射出来的光线激发气体放电灯内的荧光材料,再由荧光材料产生所要求的光线。
在本场合考虑,一种用于所谓介电阻碍放电的气体放电灯,灯内至少阳电极、可能还有阴电极被介电性的中间层与充填气体隔开。此外本发明以阳极与阴极的几何结构出发,它们具有基本上互相平行地延伸的条。这里条形状的概念不必隐含有互相平行地延伸的边缘的意思。在这里用条表示了狭长,与其长度相比薄而窄的形状。这种条还可以沿着它的长度方向拥有某种构造,这还要在下文中详细说明,而且不必是笔直的构造。
阳极与阴极的概念严格来说只有在气体放电灯的单极工作时才是有意义的。但这里并没有排除双极性工作,那么在这种情况下阳极和阴极之间的区别便消失了,而且电极基本上必须被介电中间层与充填气体隔开。与此相应,“阳极”与“阴极”的概念在权利要求以及在下文中也包括用于双极放电的电极,它们有时各自起到阳极或阴极的作用。
还要进一步阐明的是,介电中间层不必是专门为上述目的而铺设在电极上的薄层,而例如还可以由某种放电容器壁组成,如果电极被设置在壁的外侧或内部。
技术现状所列举的下述文献反映了技术现状EP0363832展示了一种功率紫外线辐射器,带有成对地供应高压电的狭长电极。电极被介电中间层与充填气体隔开。阳极和阴极以交替的顺序紧邻布置,这样在相对扁平的放电容器内得到一种单独放电结构的总体平面类型配置。
WO94/23442为这种放电灯推荐了一套工作过程。其中供电功率的某种脉冲序列专门与介电阻碍的放电过程相一致,并且在阳极与阴极之间形成全部典型的三角形放电结构。在一盏气体放电灯内存在着大量这样的单独放电结构,它们沿着条状的电极形成串儿,并且在某种合适的、设计的脉冲工作方式以很高效率产生所要求的光线。
DE19548003A1展示了相应的电路布置。
在DE-OS19526211.5与WO94/04625中介绍了上面提到的工艺可以以怎样的方式用在此前介绍的大功率紫外线辐射器上。
此外EP0607453展示了一种带有平面照明装置的液晶显示,平面照明装置由一只平面形状的光导体和一只棒状的荧光灯组成。荧光灯在这里是弯曲的,它能够被设置紧贴在光导板的两条或几条互紧邻接的边棱上。来自荧光灯的光线可以因此而被输入到光导板内,而且紧贴至少两条边棱,并且通过光导板的表面引导到液晶显示器。由于尽可能仅应用一盏荧光灯,发光的均匀性应该因此而得以改善。
本发明的描述本发明以下述技术问题为基础,即进一步改进开头时所介绍的、如权利要求1的前序所述的气体放电灯。同时本发明还针对着该种气体放电灯的生产工艺以及带有该种气体放电灯和供电装置的照明系统。还针对着屏幕系统,按照本发明的气体放电灯与一块屏幕一起被装配在屏幕系统内。
总体作为对技术问题的解决,给出一盏气体放电灯,它带有一只至少局部透明、并且被充填气体填充的放电容器,一些基本上呈条形状、在放电容器的壁面上基本互相平行地延伸的阳极和阴极,放电灯在至少是阳极与充填气体之间的介电中间层,用于在紧邻的阳极和阴极之间的放电容器内进行的介电阻碍的放电过程,这时在两个各自与阳极对中的一个阳极紧邻的阴极之间设置至少一个阳极对。
此外,本发明包括如权利要求20所述的生产工艺,如权利要求21所述的照明系统,和如权利要求22所述的平面屏幕系统,以及在从属权利要求中所述的各种实施形式。
在紧邻阴极之间设置阳极对的优点首先在于,阳极对的两个阳极当中只有一个各自作为紧邻阳极附属于阴极中的一个。因此就不可能产生下述情况,即从一个阳极出发存在两个等同的紧邻阴极。已经证明,在这种情况下单独放电过程以不能准确预料的方式在阳极和两个合适的阴极之间发生。这种两侧之一的选择经常在电极的整个条长度范围内不一致,并且还可能随时间而变动。因此采用传统的电极几何结构,放电分布不可能出现时间与空间上广泛的均匀性,并且因此不可能实现对灯内亮度分布的完全准确的控制。
作为附加的方面,采用本发明也能够产生单独放电结构的“紧密排列”,从而得到改善的功率密度。
如果双极性工作,这时阳极与阴极的概念总是涉及到供电极性的电极。通过在双极情况下极性的可互换性得出无论如何对于重复的电极条布置来说,两个极性的电极最好被成对地配置。
不必给整个气体放电灯实现电极的成对配置,而是例如可以在边缘区域内将成对布置取消,这既适合于单极又适合于双极的情况。此外应该注意,对于相同极性的电极对与变更的极性按照本发明的交替设置来说,总是存在这样的电极对,在它们之间不设置其它极性的电极对(也就是说根本不存在电极)。
除了改善双极工作的性能之外,由于典型的三角形放电结构的尖端位于电极上,而且拆开电极避免了两个放电尖端在相同阴极的相同位置上集中,这可能是阴极也成对地设置的另一个优点。这样就能够在某些应用场合下避免可能出现的发热问题与稳定性问题。
本发明首先针对气体放电灯,它采用不导电材料制造的、并且采用平面辐射器几何结构的放电容器。恰恰对于平面的放电容器几何结构来说,由本发明获得的提高可实现功率密度以及改善均匀性等优点发挥着重要作用。
换句话说,本发明尤其涉及到一种平面辐射器,它带有一个至少局部透明、并且用填充气体填充封闭。或者由气体或气体混合物流通经过的敞开的、用不导电材料制作的放电容器,并且带有设置在放电容器壁面上的狭长电极,其中阴极与阳极交替地紧邻布置,并且其中至少阳极被介电材料从放电容器的内部隔开,因此本发明的特征在于,在紧邻的阴极之间各设置一只附加的阳极,也就是说在紧邻阴极之间各设置一个阳极对。
为了利于提高气体放电灯内的功率密度,电极对的电极之间的相互距离可以小于与其它极性紧邻电极的各段距离。电极对的电极相互距离的最佳范围在这种情况下处于单个电极宽度值的一半与一倍之间。
然而本发明还可应用到灯应该在小功率工作的情况下。这时选择电极对的电极间距离大于它们各自与其它极性紧邻电极间的距离,更可合适。对电极对的电极间距离的合理定义,涉及到放电过程的放电距离。通过放电距离来表达,电极对内电极间距最好处于的放电距离的200%以下。在功率密度应该增长的应用情况下,电极对内电极间距的合理下限位于放电距离的10%。其它优选下限为放电距离的20%和40%,而合理上限为放电距离的100%和70%。
对本发明一种合适的变体来说,一种电极类型被设置在放电容器的内壁上,最好所有的电极都这样安装。与介电层由放电容器壁构成这种情况相反,分开铺设的介电层的特性,尤其是它的厚度作为放电过程中引弧电压与触发电压的参数,仅仅在放电这方面被优化。在其它情况下,机械方面的观点首先起到根本性作用。
当然,气密性的电流导入问题基本上与放电容器或封闭的灯泡壳内部的载流部件相联系。所要求的工序由于引线所需密封性而总体上复杂化,并且肯定还要求其它的加工步骤。本发明作如下设计,即电极的条形本身被似乎用作引线,或者,换句话说,完全放弃单独引线,并且导引电极作为延长部分穿过放电容器。
尤其在平面放电容器或带有至少一块平板的放电容器中会出现这一情况,这时电极被铺装在平板上,也就是说在放电容器的内壁上。电极构造这时具有下述效果,即通过电极在平板上沉积或装配的一个统一的生产过程,既生产出来原本的放电容器内的电极段,又生产出来引线和可能有的外部接线段。平面放电容器、平面幅射器或者平板等概念在本专利中并不局限于刚好为平面几何结构,而是还包括拱形面。
当一只用于平面辐射器的放电容器由两块平板以及一个与平板连接的外框构成时,那么就例如干脆把外框放在安装在平板上的电极上,并与其气密性连接,这时平面的电极条不会麻烦地起决定作用。因此,就废止传统气密性电流引线(穿过平板或外框)专业生产步骤而言不仅仅是简化了生产过程。
此外还有可能,在放电容器内部的电极几何结构完全与放电几何结构的最佳化相一致,并且例如放弃电极汇集到共用的传统电流导入端。采用按照本发明的解决方法,电极可以确切地说单独地或者以较小的分组形式导入。
这里防备性地着重指出,专利申请人保留对权利要求4特征的保护要求,它有时联系到与它有引用关系的相关权利要求的特征,这些权利要求与权利要求1前序中的特征相联系,而没有权利要求1的特征部分的特征。
一种按照本发明简化的实施方式的合适改进方案出发点在于,放电容器拥有至少一块平板。因此不见得一定涉及到平面辐射器,它总的来说基本上呈平面形状,而位于平板对面的放电容器侧面还可以拥有其它形状。无论如何,放电容器的平板自动效力于把电极按下述方式设置在平板上,即在平板上延伸、穿过放电容器的边缘。这可以例如通过下述情况实现,即把电极印到平板上,然后大体上借助于某种玻璃焊接层把平板与放电容器的其余部分装配到一起。
对于平板上的电极条按照本发明导引通过放电容器的边际来说,其技术难点可能在于,尽可能避免热或机械负荷中断电极导电线路。这种中断将导致电极或电极组发生故障。并且,因此至少使产生辐射的均匀性恶化。尤其对于另一种在下面介绍的本发明的合适的实施方式,作为平面形状的后发光灯用于屏幕或类似物时,这更加危险。在这种或具有可比性的应用过程中,电极中断即使在电极数较多时也不能容忍。
按照本发明作如下设计,即对于阳极和/或者阴极基本上呈矩形的横断面来说,条的厚度,也就是说垂直于平板方向所呈现的矩形高度,位于3-50μm、并且最好在超过5或8μm的范围内。同时,条宽度最好位于0.3~1.5mm之间,并且在0.5~1.2mm之间更合适。
条厚度的下限通过下述方法确定,即对于过小的厚度来说不能够实现足够的载流能力,那么电极的电阻值将会太大,或者由于电流(也许是逐点的)的焦耳损耗热而造成的热负荷将会太大,并且因此可能导致材料断裂。最后这种观点尤其还适合于下述位置,在那里通过在周围环境中灼烧的放电结构或放电端头,附加地出现热负荷。
另一方面,层厚适宜于不超过规定数值,其原因是条的延伸极限基本以大约正比于条厚度的平方根倒数形式得到估计。过厚的电极条在较小的机械或热负荷情况下就会导致断裂。此外还表明,规定值以良好的近似水平适用于不同的可选用材料(如金、银、铝、铜等)。
规定的条宽度的起因在于,某种范围的电极宽度对于防止不利的空间放电效应是必要的。规定的厚度值应同样尤其与条的宽度相关地理解。这里采用矩形横截面形式在许多情况下自然仅表达了一种粗略的近似轮廓,并且在这里几乎仅作为模型用于解释宽度与厚度的概念。其它形状只要宽度与厚度的概念能够被合理地定义,那么当然也可与这里提供的尺寸相关联。
按照本发明的规定,自然不仅阳极而且阴极都可以安装在内壁上或者在不同的内壁上,并且以介绍过的方式按它们的条延长部分的形式被引出。
已经指出,条的这种在生产技术上尤其没有问题的穿引形式具有下述优点,即单独电极并不必要必须在放电容器的内部汇集为阳极引线与阴极引线的唯一接头。也就是说也可能毫无困难地进行单独电极或者电极组的多根引线,它们直到在放电容器的外侧才汇集到一起。尤其合适的是,所有的单独电极在放电容器的外侧附属于一条共用的供电总线。
对电极条形式的另一种按照本发明的观点在于,阳极条的宽度不是常量,而是与在一个比放电容器的中间区域相比在边缘区域内更宽。因此由于放电的电流密度随着加宽而增加,电极总布局内的光密度能够受到改变。
同时加宽部分按照下述方式实施是合适的,即它主要朝阳极对中每个另外的阳极延伸。这拥有在阳极与电极之间很少改变或者不改变的距离所带来的优点,这样触发条件沿着电极条基本保持恒定。当触发条件明显地表现出不均匀性时,往往存在下述危险,即不沿着整个电极长度也形成放电结构。总之力求达到,目标明确地控制已制备好的气体放电灯的光密度,以便大体实现均匀化,或按照例如平面屏幕的有时不均匀的透射性质来进行调整。边缘光暗可以因此而得以克服。由于其它在下面介绍的定距支撑件所引起的遮蔽,也能够相应地得到减轻,准确地尤其与气体放电灯内光的发射侧面上的漫射光学部件共同作用,效果更好。因此,加宽部分必须位于定距支撑件的周围。
如果气体放电灯的发射效率是一个决定性因素,下述布置方式被证明更加合适,即阳极与阴极并没有被设置在放电容器的相同内壁上。这尤其与平面辐射器的情况有关,对于它们来说,存在着放电容器平板的两块对面的内壁。如果把阳极设置在一块平板上,而把阴极设置在另一块平板上,那么阳极条和阴极条适于在某个平行于平板的平面上的投影如此地错开,使得在各紧邻的阳极与阴极之间一条想象中的直线连线中,总体上出现在条方向内可以看到的基本上对称的V形构造。
因此放电过程是从放电容器的一块平板经过放电空间到达另一块平板。借助于这种转移布置,放电距离大于平板间的距离。这种几何形式展示出高额的放电效率,它也许又回过头来减小壁面损失与电极损失。由于在单极情况下,阳极条经常被设计得窄于阴极条,所以阳极条经常适于设置在光线透射侧面上,目的是把遮蔽减至最小。但借助于倍增阳极,相反的情况可能也是合适的。
开始时已经着重指出,条形沿着它的长度方向可以拥有确定的构造。对此最合适的例子是,在阴极条的长度方向内拥有相对较短的伸出部分用于在局部固定单独的放电结构。借助于该伸出部分,局部地略微缩短了它与紧邻阳极间的距离。这样放电结构的尖端就落到了伸出部分上。对于足够的功率输入来说,在所有的伸出部分上都有单独的放电结构。
采用上述措施,为了有利于改善均匀性,或者为了控制光密度分布,给放电结构的平面分布施加影响。还可以借助于热对流或者由于局部不稳定的放电结构分布造成的随时间的起伏,避免偏移。
尤其有可能把突出部分与中央区域相比更加紧密地布置在放电空间的边缘区域内,这样正如采用已介绍过的阳极条的扩展那样,实现一种具有可比拟的效果。
本发明的另一方面涉及到平面辐射器的放电容器两块平板之间的定距支撑件,以及定距支撑件的几何设置方式。对于平面辐射器放电容器来说,两块平板,一块底板和一块盖板,采用与它们的长度或宽度膨胀相比相对较小的间距,被设计为基本上相互平行。为了在平板的整个平面内确保平板相互之间尽可能准确的距离,并且/或者为了把整个平面辐射器放电容器制造得在机械方面更加牢固,可以在平板之间提供定距支撑件,它们各自能够与底板或顶板牢固地联接。当然即使没有这种固定,定距支撑件在稳定性方面也会效果更好。
这种定距支撑件在放电容器尽可能大的机械强度方面特别有利,而且在前面表述过的按照本发明的电流引线形式方面也具有很大意义。当生产与工作时,放电容器弯曲移动的概率与尺度越小,电极条而且尤其在导入区域内的电极条的机械应力越小。定距支持件为了有利于机械稳定性,在这种情况下应该尽可能紧密地布置。
另一方面,每个附加的定距支持件基本与光线产生时的损耗量提高相联系。这一方面涉及到本身由定距支持件的附加侧面导致壁面损失,附加另一方面通过从来没有完全避免的光线吸收与散射。
因此本发明为定距支持件的相互距离提供了合适的范围,它们紧邻布置。在这种情况下两个数值是有意义的,它们各自与平面辐射器放电容器的几何结构建立联系。
首先电极条的机械容许负荷,取决于它的厚度。电极条越厚,放电容器应该越具有刚性。相应地由电极厚度(当厚度有偏差时采用最薄的厚度值)与定距支持件的紧邻间距之间的乘积,是一个很有意义的基本数据,而且最好位于5×10-8m2~6.8×10-7m2的区域内,最合适的下限为107m2,而最合适的上限为5×10-7m2。
第二个很有意义的数据是定距支持件的紧邻间距与底板和/或顶板厚度之间的比例,根据其中较小的值而定。最好的范围位于8和20之间,最合适的下限大约为10,而最合理的上限大约为15。其出发点在于,放电容器平板的待选材料,尤其是特种玻璃,基本上具有可作对比的弹性。因此,平板厚度在这里已完全足够作为参数用于大概的表述。
这两个几何标准中的哪一个是决定性的,取决于实际情况。总之,如果定距支持件在它的布置方面既取决于平板厚度,又取决于采用上面所规定方式的条厚度,这最好。
本发明另一种可能的改进涉及到已经叙述过的情况,即至少部分电极被安装在放电容器壁内或壁上,它采用透明方式实施,并且供反射所产生的光线用。(光线的概念在这里首先涉及到可视光线,然而并不排除其它光谱范围,尤其是紫外线)。对于最合适的构造来说提供下述电极结构,它在其中第一个能良好导电的部分,展示了绝大部分载流能力,并且此外还拥有第二个部分,它在比第一部分更大宽度的情况下虽然只有微小的导电能力,但因此至少由局部透明的材料组成(考虑到所要求的光线)。这两个部分导电时互相联通,它在气体放电灯高频工作时也能够实现纯粹的电容耦合。
这种结构的意义一方面在于,相对较窄的第一部分可以由一种考虑到载流能力而挑选出来的材料,例如象银、金、铝或铜进行实施,而较小的宽度则考虑到了在透明的放电容器壁内特别微小的遮蔽效应。另一方面由于强大的场密度导致并不希望的空间电荷效果,因此任意窄小的电极在介电阻碍的放电过程中,只能在存在困难的情况下得到应用。与此相应地借助于电耦合的第二个部分,第一部分的电势被“分布”到一个更加宽大的面内,这样第二部分的更大的宽度在放电物理方面生效。
电极的两个部分互相拥有直接联系,这在这里为了生产简单是合适的,但并不必要。尤其合适的是,电极部分被在相同平面内沉积,而且第二部分位于首先被沉积的第一部分之上,这样在总体上提供一个基本上呈矩形的横截面形式(它可能由于第一部分而略微“鼓出”)。
除了单独的气体放电灯之外,本发明还涉及到一种由采用前面所述类型的灯与一个脉冲功率电源组成的照明系统。脉冲功率电源考虑到灯内的介电阻碍放电过程而被优化设计,并且由确定长度的间隔使其彼此分隔的、确定长度的有效功率脉冲输入到灯内,在这种情况下,提供灯的连续发光工作,而没有可见的闪光。“连续”的概念在这里当然涉及到人眼的分辨能力。
由于这里介绍的灯作为平面辐射器特别适合于指示器,例如平面屏幕的后发光形式,因此本发明此外还涉及到平面屏幕系统。为此平面辐射灯与平面屏幕基本上互相平行地布置。在实施例中展示了一个例子。本发明尤其涉及到前面叙述的脉冲功率电源能够被包括在内的平面屏幕系统。
对于平面屏幕系统一个特别的观点涉及到设置在平面屏幕与灯之间的所谓光增强膜(或者光增强板)。这种膜包括一个至少一个侧面的棱镜构造表面,并且因此能够把来自用于平面屏幕后发光的平面辐射器灯的光发射立体角区域至少限制到一维,并且最合适(例如借助于两块光增强膜)为两维。因此将实现更佳的亮度。
附图的说明下面将借助于不同的具体实施例,按照它们各自不同的实施例描述本发明,在各实施例中表现的特征也可能按照本发明存在于其它的组合。在图中表现了实施例以及出于技术现状的对比例。图中详细地展示了

图1阳极对的示意图;图2根据技术现状的图1的对比例子;图3a和3b分别为按照本发明的平面辐射器的俯视平面图与横截面图;
图4一个带有两种极性成对电极与外部总线构成的按照本发明的电极结构俯视平面图;图5一个带有拥有突出部分的阴极、以及成对安装的阳极的按照本发明的电极结构俯视平面图;图6a和6b一个带有可与图5进行对比的电极结构、然而没有总线构造、并且附加地带有阳极的边缘扩展部分的按照本发明的平面辐射器灯的局部剖面图与侧视图;图7a和7b对应于图6a、并与其相比略有改动、带有外部总线构造的实施例的俯视平面图,以及对应于图6b的侧视图;图8用于解释在前面两个实施例中出现的双阳极导入方式的横截面图;图9a和图9b在底顶和顶板上带有电极的按照本发明的平面辐射灯,更确切地说采用了类似于图6b和7b的侧视图,以及与侧视图对比放大了的、对来自类似于图8的灯局部所作的横截面;图10一个按照本发明、用于解释定距支持件的平面辐射灯的从光的发射一侧看到的横截面图;图11按照本发明、用于解释分成两部分的阴极的平面辐射器的局部横截面视图;图12对应图11、对分成两部分的阴极其它可能性的横截面图;图13对于按照本发明,带有脉冲功率电源的照明系统的俯视平面图;图14按照本发明的平面屏幕系统的剖面图。
图1和图2首先展示了与技术现状对比、按照本发明成对地布置阳极的构造与功能。图各自就纵向来说仅仅展示了电极布置的局部,它们大约被局限在单个放电结构的长度上。在图2中首先看到,单独的放电结构1、2、3、4各自从阴极K朝阳极A延伸,然而其中从每个阴极与每个阳极出发各自只能触发一个放电结构。与此相应地存在着不能使用的间隙,也就是说在阳极A1与阴极K2之间、在阳极A2与阴极K3之间、在阳极A3与阴极K4之间、在这些间隙内不能触发放电。
这里采用带有和不带放电机构的间隙交替或序列的规则性并不是绝对必要的,而仅是许多可能性中的一种。发明者肯定从没有注意到,向一个单独的阳极触发两个放电结构。在一个阴极K上绝对可以终结两个放电结构。
因而,按照本发明的布置方式在图1中提供了带阳极A与A′各自成对地紧邻设置的阳极条。对于与阴极与阳极间距相比阳极对内的两个阳极明显减小的间距来说,与如图2所示的构造相比,就垂直于阳极条方向的长度单位而言,得到了更大数量的放电结构。其原因在于,在每个由阳极A以及A′组成的紧邻阳极对与阴极K之间触放一个放电结构。图1中的比例关系(当然还有在图2中的比例关系)人们当然必须在电极条的方向上成倍地推荐选择。可以说,在电极条的方向内仅表现了一个长度单位。
实际上,图2的阳极A在图1内各自成对地作为阳极A和A′存在,这样就给图2附加地补充了在A′和K2之间,在A2′和K3之间以及在A3′和K4之间的放电结构。对于保持相同的阳极和阴极间距,以及在阳极对的阳极A和A′之间相对较小的间距来说,这样在垂直于电极条的方向上,每个长度单位内的放电结构数几乎加倍。为了图面直观,在图1中表示了在阳极A与A′之间相对较大的间距。
对于图2内的构造要说明的是,它除了相对较小的放电结构密度外,还未允许预测,从某一特定的阳极出发的哪一侧构成一个放电结构。例如可以在阴极K3与阳极A3之间存在可激发放电结构,也可以在阳极A3与阴极K4之间存在放电结构。这种不可预测性与单位面积的光发射的统计均值的严重不均一性,以及随时间的起伏的基本可能性组合到了一起。上述缺点虽然可能借助于减小某些紧邻阳极与阴极之间的距离,也就是说例如在图2中与具有不同足码的电极对相比减小足码相同的阳极和阴极的距离,得以补救,但在这种情况下垂直于电极条方向的单位长度内放电机构的密度还将被更加显著地减小。
图3a和3b展示一种按照本发明,具有与图1有可比性的电极几何结构的平面辐射器。该平面辐射器既可用于产生紫外线或VUV,当使用合适的材料时也可用于发出可见光。在图3a和3b中,平面辐射器用4标注,其中图3展示了它由一个具有矩形基面的平面放电容器5组成。放电容器5拥有一块底板8,而在光线发射的侧面(在图3b的上部)拥有一个确切地说呈盆形,中间为平板形状的盖9,这在图3a中没有表现出来。整个放电容器5由玻璃制成,并且填充了约13kpa的氙气作为填充气体。
在底板8上交替地布置了简单条形的阴极6以及成对地加倍的阳极7a和7b。它们在固定盖5之前借助于丝网印刷被印到底板8上。在图3a的俯视平面图中展示了,电极在底板8的一个侧面上超出过边缘。然后它们在盖9与底板8间气密性连接(借助于玻璃焊接)下穿过,而那里的电极几何结构并没被改变。电极条确切地说很平坦,这样当安装盖9时,盖9就可以用玻璃焊粘贴到电极条上。
图3b展示了盖9的侧面一直达到底板8的边缘,这样图3a中的电极条紧贴着下侧在盖9的下面伸出来。其中的阳极对7a和7b采用叉的形状在末端7c汇集到一起(在所展示的情况下,还局部地位于玻璃焊接接头之下)。
在图3b中阴极与阳极的间距d总计10mm,紧邻阳极7a和7b之间的距离g为4mm。
阳极在它的周围覆盖了约150μm厚的玻璃层10作为电介质,用于介电阻碍的放电过程,在这里它铺设在底板8上。
在工作过程中,通过放电结构形成模式如图1所示的单独放电过程。这里在这个具体实施例中,与传统的实施例相比,在相同面积单位上可输入功率这方面所得到的收获约为75%。
在图3a和3b中所表现的平面辐射灯的其它细节未在图中进一步表现出来,这些细节涉及到作为用于带可见光的显示器背面照明的平面辐射灯,其中放电容器5的内壁被涂覆了合适的组合荧光材料,它把在放电过程中产生的VUV转化为可见光线。它可以是一种三频带组合荧光材料用于产生白色色感,或者是其它组合荧光材料。对于可使用的荧光材料的最合适的实施例出现在专利“信号灯及其所用荧光材料”的申请中(1997年12月23日在欧洲专利局中请,申请号AZ97122800.2,附带副本)。底板8上的内壁此外用反光层例如Al2O3或TiO2涂覆。因此就附加地把在位于底板8上方的荧光材料涂层内所产生的光线向上反射给透明顶盖5的一侧。
总之,用于平面屏幕背面照明的平面辐射灯4按下述方式设计,即保证尽可能均匀的平面类型的光发射。此外,光功率应尽可能高,已介绍过的双阳极构造即为此服务。
图4以简图形式展示了一种适合于双性工作、介电阻碍的放电的电极构造。其中两个极性的电极被设置为成对,并且被电介质涂覆。这样每个电极可以交替地用作阳极和用作阴极。用100标注的构造首先由第一部分101和第二部分102组成。每个部分101和102在各对里都包括一些带有单个电极103a和103b(给101部分)以及104a和104b(给102部分)的双电极条。除了边缘区域(在这里也不存在电极对)以外,这种构造就两个极性的电极方面而言是对称的。
以同样对称的方式,每个部分101以及102的各成对地设置的电极汇集为供电总线结构105及106。这样,每个电极组(一种极性)都有一种带有双“齿”的类似于梳子的构造。这里的梳形构造互相交叉。在该例中,电极对内的电极间距以及电极对间距总是相同。因此放电灯与更小的间距相比就能够在更小的功率下工作,这在某些应用场合属于优点。
图5与图4相比作如下变动,即图中所示的电极构造虽然由107和112两个部分组成,然而部分112并没有被成对地设计,并且因此阴极111设计用于单极工作。与此相反,阳极部分107的阳极条108a和108b采用已介绍过的方式成对地实施。只不过单独的阳极条109和110各自用作外连接端。
在说明书的开头中已提到过的用于局部固定放电结构的突出部分,在本实施例中借助于阴极部分112的阴极111上的半圆状凸起得以实现。它们也可按另一种方式各自附属于两个紧邻阳极中的一个上。通过电场的局部增强,仅仅在被凸起固定的位置上引发单独放电。
除了已经提到过的关于光密度分布的均匀性或有目的地施加影响之外,当所述放电灯在不平衡工作时,单独放电的对流偏移也受到抑制。
总线类型的供电线107和112符合前面已为此提供的解释。
在图4和5中所表现的布置方式各自对应于对角线6.8英寸,用于平面屏幕背面照明的平面辐射灯。然而在本发明中所表现结构的一个特别的优点在于,不论是电极对还是按照本发明设计的电流输入线(以后还要涉及到此)、还是特别的电极形状(如在图5中或在后面图内采用其它方式),都能够通过简单的生产工艺,如通常的厚膜技术,如丝网印刷与后续的烘烤处理进行制作。尤其这时可以借助于有时在空间上连续地彼此串联的过程,在实践中生产出任意大小的规格,所以这里表现的构造仅仅是些例子,它们在实际上还可能拥有比这多数倍的单独电极。
图6a和6b展示了另一种采用具有矩形基面的平面放电容器202的平面辐射灯201′。图中所使用的电极几何结构类似于图5。不过这里的阴极203与204向上伸出,并且不经过电流输入总线进行连接。阴极203仍拥有突出部分220,它们绝大部分不再交错,而是各自成对地布置。对于最外面的阴极204来说,这些突出部分在单独阴极204的外侧区域内以更高的密度设置(在那里又在局部地交错),目的是提高在矩形角落里的光密度。边缘与角落区域由于缺少紧邻电极及其贡献,其靠外侧部分在许多情况下与位于平面辐射灯中央的光密度相比变暗。
阳极条205采用已讨论过的方式成对地实施。最外侧的阳极当然单独存在。这里阳极对内的阳极条205朝向矩形各边的部分,与位于矩形中央的部分相比被加宽,准确地说各自与阳极对中的其它阳极相靠近,正如都采用205a和205b表示一样。因此与紧邻阴极203及204的距离是常数,矩形边缘的变暗也附加地得到纠正。阳极对205内两个阳极条之间的最大距离处于条中央,总计约4mm,位于边缘的最小距离约3mm。
突出部分准确地说凸起220的直径约2mm,并把与紧邻阳极条的间距减小到约6mm。
用215标注了一种作为电介质覆盖了阳极205和206,厚度大约为250μm的玻璃层。它存在于放电容器内部所有的阳极条205与206的上。
放电容器202在图6b内以侧视图方式展示。它由一块底板207、一块盖板208、以及一个连接二者的框子209组成。在框209与平板208与207之间的连接由玻璃焊接层210产生。在图6b的下部可以看出,电极条穿过这种玻璃焊接层布设。采用标引代码214例如表现了在图6b中最左边阳极206的外部接线区域。阴极203和204朝着在图6b中看不到的另一侧以相同的方式布设。为此在平面内由盖板208与框子209构成的矩形,朝着至少在图6a内上面或下面的一侧,小于底板207的矩形平面。在所形成的台阶上形成对应于被引出来的电极条213(阴极204)与214的接线端。
放电容器202的长方形形状的内腔完全被某种组合荧光材料覆盖,荧光材料它未在图中表现出来,并且把在放电过程中所产生的VUV转变为可见的白光。它涉及到一种三频带荧光材料,其中有蓝色组分BAM(BaMgAl10O17:Ea2+),绿色组分LAP(LaPO4:[Tb3+,Ce3+])以及红色组分YOB([Y,Gd]BO3:Eu3+)。对于荧光材料,正如已提过的那样,请参阅专利申请“信号灯及其所用荧光材料”。
已介绍过位于底板207台阶上的电极条的接线端213和214,采用未在图中表现出来的插塞以及连接线各自互相连接,并且与单极的脉冲电压源的电极连接到一起。
如图6a和6b所示,用于15英寸对角线监视器背面照明的平面放电灯的实施形式,可例如由14个双阳极条和15个阴极组成,并且在最外侧的边缘各自带有一块单独的阳极条。每块阳极条203和204可能在这里朝每个长侧面各自拥有32个凸起220。一种这样的平面辐射灯当底板207与盖板8的壁厚各自为2.5mm时,其规格为约315mm×239mm×10mm。框子209可以由一种直径约5mm的玻璃管构成,所以作为定距支持件的48个精密制做的玻璃球(后面还要详细讨论),适于采用5mm的直径。
图7a和7b继续对应于图6a和6b。这里表现的平面辐射灯201与前面介绍过的201′之间的区别在于下述内容已经介绍过、并且用相同的标引码标注的外部接线端213和214,在这里作为外侧总线类型的电流供应线方式汇集到一起,并且继续导出。相应地有一根共用的、越过底板207的边缘凸出来、位于图7左上角的阴极接线端213,以及一根相应共用的、位于左下角的阳极接线端214。阳极的这根外侧电流输入总线214也可以在图7b的侧视图中看到。结构其余部分符合前面所述灯,并且相应地用标引码标注出来。
图8为在图6a、6b、7a和7b中所表现的构造(不考虑电流输入总线部分)展示了一幅局部剖视图。它涉及到在图6a中用直线A-A表示出的横截面视图的局部,该局部包括两个阳极条,准确地说位于它们的引线212a和212b穿过放电容器边缘的区域内的阳极条。已经知道,这两个阳极引线212a和212b不同于传统的引线,并且与沿着阳极条剩余长度完全一样,被直接铺装在底板207上,并且在该区域内还要完全被构成了介电阻碍放电的电介质的玻璃层覆盖。
每块阳极条都有一个基本呈矩形的断面,并且因此,在图中所展示的情况下还包括玻璃层215,完全被玻璃焊接层210包围,玻璃焊接层连接玻璃框子209与底板207,并且有效力于气密性封闭。一个等同的玻璃焊接层210也位于玻璃框子209与盖板208之间。如果在这个区域内的玻璃层215已经被删去,那么下面的玻璃焊接层210必须几乎不比上面那层厚。
在这里所表现的双阳极引线212a和212b示范性地代表其它阳极引线。对于阳极203和204到另一侧的引线来说,原则上存在着相同的状况,只是阴极203和204单独出现,并且没有玻璃层215。
图9a和9b再次以简图方式展示了在图6a、6b、7a和7b以及8中所表现的平面辐射灯的另一种变体。图9a在这里对应于在图6b和7b中的侧视图,而图9b则对应于图8展示了一幅局部剖面图。
与前面所表现的灯的一个根本性区别在于,在图9a和9b的变体中,阴电极224被铺装在盖板208的内壁上。然而阳极对225a、225b和阴极224的交替序列准确地说由下述构造形成,即阴极224与各紧邻阳极225a和225b(来自不同的阳极对)的想要的连接,呈现为一个倒置、对称的V形。这里在这种情况下,阴极224的间距约22mm,阳极对中的单个阳极225a、225b的间距约4mm,而同阳极对的紧邻阳极间距约18mm。
图9b此外隐约地展示了阴极224上已经介绍过的凸起形突出部分226a和226b。这些突出部分在条约方向上相互间排列间距约10mm。
在图9b中表现的构造又一次示范性代表平面辐射灯的整个宽度。采用这种布置方式,在底板207与盖板208之间得到的放电结构,它的放电距离大于底板207与盖板208之间的距离。结果表明,采用这种布置方式能够比所有电极仅位于一块平板上的布置方式,获得更高的紫外线发射率。原因可能在于壁损耗与电极损耗的减小。
图9a还展示了,不仅阴极224而且阳极225a、225b各自都连接到了外部总线类型的电流输入端227及214上,它们的连接点在图9a中越过盖板208以及底板207伸出到左侧。
该实施例的另一个特点在于,不仅阴极224、而且阳极225a和225b都完全被介电玻璃层229及228覆盖,它此外还覆盖了盖板208及底板209的所有各个内壁。电极同样几乎被埋置到玻璃壁内。
在底板207的介电玻璃层228上此外还涂覆了一个Al2O3材质的反光层230。反光层的上面完全和盖板208上的介电玻璃层一样,都有一层用BAM-LAP-YOB的混合物制成的组合荧光材料层231及232。
图10展示了平面辐射灯由于直观性原因而在图6a-9b中未被表现的另一个特征。在一个穿过玻璃框209所在平面切割的底板207俯视平面图内,以平表现了方点阵方式布置的定距支持件250。灯的其它细节,尤其是电极构造,出于表现清晰度的考虑而被省略。
定距支持件的方形点阵的紧邻间距251为34mm。正好已经实施的那样,涉及到48个各自直径为5mm的精密制做的玻璃球,它们通过玻璃焊接剂及热处理与底板207和盖板208牢固连接。每粒玻璃球采用已介绍过的反光层230和荧光材料层231涂覆,目的是把损耗减小到最低程度。这里表现的紧邻间距为34mm的方形点阵,提供了在平面辐射器整体良好的机械强度与在产生光线过程中不算过大的损耗之间良好的妥协。此外,在定距支持件250的布置方式这里可以注意到,它们按照下述方式布置,即尽可能小地干扰放电结构。例如存在这样一种可能性,即把它们设置在各电极条之间的中央位置上。
图11涉及到图9,并且与在图9中所表现的构造相对比,又展示了电极224构造的一个变体。出于对画面清晰度的考虑,来表现突起(在图9b中用226a和226b标注)。然而,它们在该实施例中可能出现并且很有意义。
在电极构造方面的基本变化在于分成两部分。每个阴极224也就是由第一部分224-1和第二部分224-2组成,其中224-1与供电系统相连接。第一部分224-1在图11内被画在第二部分224-2的左上角内,并且由银制得。而在截面积方面大得多的第二部分224-2与此不同,由ITO(氧化锡铟)这种能导电、但透明的材料组成。
借助于这种分隔,在实现第二部分224-2相对较大的有效阴极宽度的同时,还使由于不透明的第一部分224-1造成的遮暗降至最小。这种较大的阴极宽度有助于避免在阴极224的前面发生不利的空间电荷效应。另一方面也消除了在图9b中构造的下述缺点即由于电极设置在透明的盖板8的上面确切地说下侧而产生光线的遮暗。这首先涉及到下述情况,即通常略微更宽的阴极应该位于放容器的透明侧上。在图9b中,成双的阳极225a和225b似乎又导致了一种更加加重的遮暗。当然成双阳极采用上面已介绍过的方式也可各自分为两个部分。
为了表明在阴极的两个部分224-1和224-2之间直接的实体接触对于电连接来说并不是绝对必要,图12展示了一个阴极的两部分在其中分开的实施例。这一结果通过下述方式实现,即首先把第一部分224-1沉积到盖板208上,然后用介电层229的第一部分229-1覆盖224-1,把阴极的第二部分224-2沉积于其上。随后是介电层229的第二部分229-2保留。借助于在阴极的两个部分224-1和224-2之间的电容耦合,对于这里所应用的脉冲电压源的高工作频率来说,在两个阴极部分之间保证了足够好的电连接。
为了第二部分224-2更大的有效阴极宽度也能对放电过程起到好作用,阴极的第二部分224-2布置第一部分224-1的放电一侧。从放电角度看的顺序是放电-荧光材料层232-第二介电层229-2-阳极的第二部分224-2-第一介电层229-1-阴极的第二部分224-2-第一介电层229-1阴极的第一部分224-1-盖板208。在对底板208的投影图中,更窄的阴极第一部分224-1这时适于存在于阴极第二部分224-2的中央。
图13展示了图7a的构造与脉冲电压源223相连接作为实施例。已经介绍过的阴极203和204、阳极205和206的电流导入总线213和214,各自连接到一个相应的电极221及222上。这里这台内部构造未作详细表示的脉冲电压源223,供应规定持续时间的电压脉冲,并在持续时间之间又带有规定持续时间的间歇,这可查阅德国专利19548003.1。供电的这种特殊形式在阴极203和204的突起220以及相应地紧邻的阳极205和206之间,产生大量单独的三角形放电结构(未在图中表现)。按照本发明的灯借助于这种脉冲电压源223,将扩充为一套照明系统。
图14展示了另一种实施例,这时带有脉冲电压源223的相同的灯201作为背景照明系统,用于采用液晶技术的平面屏幕235。在平面屏幕235和灯201之间存在着放电灯的一侧光漫射器236,它用于遮盖在灯201内、尤其是由于已经介绍过的定距支持件的作用、在产生光线的过程中存在的点状不均匀性。在光漫射器236背对着灯的侧面上,存在着两张交叉的光增强薄膜237和238(3M公司的所谓“增亮膜”)。交叉的光增强薄膜237和238各自在背对着灯的侧面上拥有棱镜构造的表面(其中在薄膜面棱镜的纵向棱内重合),这样,光增强薄膜237和238就把灯20光发射的相对较大的立体角区域缩小为一维,立体角附加地由光漫射器236放大。
这种构造被固定在壳的一个框子内。壳的后壁240此外还为平面屏幕235承载着冷却装置241和控制电子仪器242。在某种特殊的实施形式中,冷却装置241被实施为薄板,它与灯的后壁保持着良好的热接触,而在其它侧面上拥有散热片,或者与冷却器的散热片保持良好的热接触。这样对于大功率系统来说,也能形成平面屏幕系统的直接的后壁。控制电子仪器242与平面屏幕235的细节例如由EP0604453获得。
在图14中所展示的平面屏幕系统是本发明优选的应用情况。这里采用一盏特别的平面灯能够实现很明亮、很均匀的背面照明。不合水银的并且与周围环境相合谐的填充系统,采用惰性气体,最合适是氙,以及也许一种或几种缓冲气体,例如氩或氖,在从大约10kpa直到大约100kpa的压力作用下,允许瞬时起动而不带有起动特性。由于为了节能可以使屏幕断电,而不会因此在重新接通后损耗它的功率,所以,这对于工作间隙来说特别合适。没有必要用外部的反光或光导设备去协助把整个屏幕系统的构造尺寸减至最小,以及使构造降低成本和简化。按照本发明的平面屏幕系统的基本优点在于,就灯而言,相对于目前的技术现状具有明显更长的使用寿命。它能够毫无困难地实现远远超过20000工作小时值,这相当于比传统值高出一倍以上。
权利要求
1.气体放电灯,带有一个至少局部透明、并且充填了填充气体的放电容器(5、202),一些基本上呈条状的阳极(A,7,103,104,108、109、110、205、206、225)和阴极(K、6、103、104、111、203、204、224),阴极和阳极在放电容器的壁上并且基本上互相平行地延伸,放电灯还至少在阳极与填充气体之间带有一个介电层(10、215、228、229),它用于在放电容器内紧邻阳极和阴极之间的介电阻碍放电,其特征在于,在两个各自与阳极对中的一个阳极紧邻的阴极(K、6、103、104、111、203、204、224)之间,设置至少一个阳极对(A、A′、7ab、103ab、104ab、108ab、205、225ab)。
2.如权利要求1所述的灯作为平面辐射器。
3.如权利要求1或2所述的灯,其中,放电容器(5、202)由不导电材料组成。
4.如前述权利要求之一所述的灯,其中阳极对(A、A′、7a、7b、103ab、104ab、108ab、205、225ab)中的阳极相互间距离,小于阳极对中的每个阳极与紧邻阴极(K、b、103、104、111、203、204、224)之间的距离。
5.如前述权利要求之一所述的灯,其中,阳极对(A、A′、7a、7b、103ab、104ab、108ab、205、225ab)中的阳极相互间距离达到在放电过程中放电距离的20%与100%之间。
6.如前述权利要求之一所述的灯,其中,至少阳极(A、7、103、104、108、109、110、205、206、225)或者阴极(K、6、103、104、111、203、204、224)铺设在放电容器(5、202)的内壁上,而且在它们条形的延长部分内,直接穿过放电容器包围填充气体的边界。
7.如权利要求6所述的灯,其中,放电容器(5、202)拥有至少一块平板(8、207),它越过放电容器的边界(209)突出出来,而且阳极(A、7、103、104、108、109、110、205、206、225)或阴极(K、6、103、104、111、203、204、224)按照下述方式铺设在平板上,即它们在平板上到达边界后穿过放电容器。
8.如权利要求6或7所述的灯,其中,阳极(A、7、103、104、108、109、110、205、206、225)或者阴极(K、6、103、104、111、203、204、224)的条形状拥有基本上呈矩形的横截面,条的厚度在3-50μm的范围内,最合适为超过5或8μm;条的宽度为0.3~1.5mm,最合适为0.5~1.2mm。
9.如权利要求6、7或8所述的灯,其中,不仅阳极(A、7、103、104、108、109、111、205、206、225)而且阴极(K、6、103、104、111、203、204、224)被铺设在内壁上,并且在它们条形状的延长部分内直接穿过放电容器(5、202)的边界(209)。
10.如前述权利要求之一所述的灯,其中,阳极对(7ab、103ab、104ab、108ab、205、225ab)至少在放电容器(5、202)的外部汇集为一个共用的连接端(7c、105、106、114、115、214)。
11.如权利要求9或10所示的灯,其中,阳极(103、104、108、109、110、205、206)和阴极(103、104、111、203、204)至少在放电容器(5、202)的外部,各自汇集为一根电流导入总线(105、106、213、214、227)。
12.如前述权利要求之一所述的灯,其中,条状的阳极(205)在放电容器(5、202)的边缘区域内,与位于放电容器中央部位相比被加宽,或者在放电容器具有不均匀性的环境内被加宽。
13.如权利要求13所述的灯,其中,阳极(205)的加宽是不对称的,并且由此主要或完全朝向阳极对子中另一阳极(205)加宽。
14.如前述权利要求之一所述的灯,其中,阳极(225)与阴极(224)各自被按下述方式设置在放电容器另一个内壁上,即朝条方向看,在阴极和两个紧邻阳极之间所假想的连接线,构成一个基本上对称的V形。
15.如前述权利要求之一所述的灯,其中,阳极(113、203、204、224)沿着它们的条长度方向侧面上拥有用于定点地确定单独放电结构的突出部分(113、220、226)。
16.如权利要求15所述的灯,其中,突出部分(220)为实现灯在放电容器的边缘区域内的均匀,与放电容器中央区域相比布置得更紧密,或者在放电容器内不均匀的区域中布置得更加紧密。
17.如前述权利要求之一所述的灯,其中,放电容器(202)被设计为平板形,并且拥有一块底板(207)和一块盖板(208),与它们的长度或宽度相比,它们以相对较小的距离基本上互相平行地设置,同时在底板和顶板之间还设置了定矩支点(250)。
18.如权利要求17所述的灯,其中,定距支持件(250)以紧邻间距(251)互相间隔设置,它与条状阳极(205、206、225)或阴极(203,204、224)的厚度的乘积,处于从5×10-8m2到6.8×10-7m2的范围内,最好超过1×10-7m2或者在5×10-7m2以下。
19.如权利要求17或18所述的灯,对它来说,定距支持件(250)以紧邻间距(251)互相间隔布置,它与底板(207)和盖板(208)较小厚度比处在从8到20的范围内,最好超过10或低于15。
20.如前述权利要求之一所述的灯,对它来说,电极(224-1,224-2)被安装在灯的透明的发射光的侧面(208)的内壁上或者内壁内,而且这个电极拥有一个具有良好导电能力的第一部分(224-1),和一个具有小的导电能力并且宽度比第一部分更大的第二部分,这里的第二部分在光线发射的方向内基本透明,并且在灯的工作频率方向与第一部分导电连接。
21.如权利要求20所述的灯,其中,电极(224-1、224-2)在透明的发射光的侧面(208)的内壁上或内壁内,拥有一个基本上呈矩形的横截面,而且第一部分(224-1)被包括在第二部分(224-2)基本上呈矩形的横截面内。
22.如前述权利要求之一至少权利要求6所述的灯的生产工艺,其中,至少穿过放电容器(202)的边界(209)导入的电极(203~206)包括引线(212),在一个共同结构化加工与沉积工艺中进行铺设,最好采用厚膜工艺,例如丝网印刷。
23.如权利要求1至18所述,带有灯和脉冲电压源(223)的照明系统作如下设计,用通过间隙互相分开的电压脉冲给灯供电,跨过分离的电压脉冲提供连续的照明工作。
24.平面屏幕系统,带有平面屏幕(235)用于显示信息,并带有一个基本上平行于平面屏幕安装、用于屏幕背面照明、如权利要求1-18所述的灯。
25.如权利要求24所述的平面屏幕系统,带有如权利要求23所述的照明系统。
26.如权利要求24或25所述的平面屏幕系统,其中,在平面屏幕(235)与灯之间至少设置一层光增强薄膜(237、238)。
全文摘要
介绍一种用于防介电放电过程的气体放电灯,灯内阳电极成对设置。本发明还涉及一套相应的带有脉冲电压源的照明系统,以及一套带有平面屏幕的平面屏幕系统。
文档编号H01J65/04GK1220767SQ98800335
公开日1999年6月23日 申请日期1998年3月20日 优先权日1997年3月21日
发明者F·福尔科默, L·希兹施克, J·米克, R·西鲍尔, S·杰雷比斯 申请人:电灯专利信托有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1