具有低电阻电极的太阳能电芯的模块制造

文档序号:10517994阅读:550来源:国知局
具有低电阻电极的太阳能电芯的模块制造
【专利摘要】本发明的一个实施例提供了一种太阳能模块。该太阳能模块包括:前侧盖、后侧盖、以及位于所述前侧盖和所述后侧盖之间的多个太阳能电芯。每个太阳能电芯包含:多层半导体结构、位于所述多层半导体结构上的前侧电极、以及位于所述多层半导体结构下的后侧电极。其中所述前侧电极和所述后侧电极各自包括金属网格。每个金属网格包括多个指状件线和耦接到所示多个指状件线的单个总线条。该单个总线条被构造成收集来自所述多个指状件线的电流。
【专利说明】
具有低电阻电极的太阳能电芯的模块制造
技术领域
[0001 ]本公开总的涉及太阳能电芯的制造。更具体地说,本公开涉及双面隧穿结太阳能电芯的模块制造。
【背景技术】
[0002]化石燃料的负面环境影响和它们不断提高的成本导致对于更清洁、廉价的替代能源的迫切需求。在各种形式的替代能源中,太阳能由于其清洁性和广泛可获得性而受青睐。
[0003]太阳能电芯使用光生伏打效应把光转换成电。具有若干种基本的太阳能电芯结构,包括单个p-n结、p-1-n/n-1-p和多结。典型的单个p-n结结构包括P型掺杂层和η型掺杂层。具有单个ρ-η结的太阳能电芯可以是同质结太阳能电芯或异质结太阳能电芯。如果P掺杂层和η掺杂层都由相同的材料(具有相等带隙的材料)制成,则该太阳能电芯被称为同质结太阳能电芯。相反,异质结太阳能电芯包括至少两层不同带隙的材料。p-1-n/n-1-p结构包括P型掺杂层、η型掺杂层以及夹在P层和η层之间的本征(未掺杂的)半导体层(i层)。多结结构包括不同带隙的多个单结结构堆叠在彼此上。
[0004]在太阳能电芯中,光在p-n结附近被吸收,从而生成载流子。载流子扩散到p-n结中并且被内建电场分开,从而在器件和外部电路上产生电流。确定太阳能电芯的一个重要度量就是其能量转换效率,被定义为当太阳能电芯连接到电路时被转换的电力(从吸收光转换成电能)和收集的电力的比例。
[0005]图1示出了一个示例性的太阳能电芯(现有技术)的图。太阳能电芯100包括η型掺杂的Si基板102,ρ+硅发射器层104,前电极网格106,以及Al背电极108。图1中的箭头表示入射的太阳光。从图1可以看出,Al背电极108覆盖太阳能电芯100的整个后侧,从而阻止背侧吸收光。此外,前电极网格106经常包括对太阳光不透明的金属网格,从而在太阳能电芯100的前表面上形成阴影。对于传统的太阳能电芯,前电极网格可以阻挡高达8%的入射太阳光,从而显著地减小了转换效率。

【发明内容】

[0006]本申请的一个实施例提供了一种太阳能模块。该太阳能模块包括:前侧盖;后侧盖;以及位于所述前侧盖和所述后侧盖之间的多个电芯。每个太阳能电芯包含:多层半导体结构;位于所述多层半导体结构上的前侧电极;以及位于所述多层半导体结构下的后侧电极,其中所述前侧电极和所述后侧电极各自包括金属网格,每个金属网格包括多个指状件线和耦接到所示多个指状件线的单个总线条,该单个总线条被构造成收集来自所述多个指状件线的电流。
[0007]在本实施例的一个变形例中,所述单个总线条位于所述太阳能电芯的对应表面的中心。
[0008]在进一步的变形例中,两个相邻的太阳能电芯被从太阳能电芯的前表面到相邻太阳能电芯的后表面穿行的串接条带串接到一起。所述串接条带被焊接到所述前表面和所述后表面上的单个总线条,所述串接条带的宽度大致等于所述单个总线条的宽度。
[0009]在本实施例的一个变形例中,太阳能电芯的前表面和后表面的单个总线条位于相对的边。
[0010]在进一步的变形例中,通过金属接片把两个相邻的太阳能电芯親接到一起,所述金属接片被焊接到位于太阳能电芯的边缘的第一单个总线条以及位于相邻太阳能电芯的相邻边缘的第二单个总线条。所述金属接片的宽度大致等于所述第一和第二单个总线条的长度。
[0011]在进一步的变形例中,所述第一单个总线条位于所述太阳能电芯的前表面上,所述第二单个总线条位于相邻的太阳能电芯的后表面上。
[0012]在进一步的变形例中,所述第一单个总线条和所述第二单个总线条位于两个太阳能电芯的表面的相同侧。
[0013]在进一步的变形例中,通过金属接片把多个太阳能电芯耦接成串,多个串串联或并联地电耦接。
[0014]在进一步的变形例中,所述金属接片的长度在3和12mm之间。
[0015]在进一步的变形例中,通过把两个相邻的太阳能电芯的边缘重叠而把该两个相邻的太阳能电芯耦接到一起。该两个相邻的太阳能电芯被重叠成使得第一太阳能电芯的上边缘总线条耦接到相邻的第二太阳能电芯的下边缘总线条,从而便于两个相邻的太阳能电芯之间的串联。
[0016]在进一步的变形例中,通过把边缘重叠以形成串而耦接多个太阳能电芯,多个串串联或并联地电耦接。
[0017]在实施例的一个变形例中,所述多层半导体结构包括:基层,前侧发射器或后侧发射器,以及前表面场层或后表面场层。
[0018]在进一步的变形例中,所述多层半导体结构包括位于所述基层两侧的量子隧穿势皇QTB层。
[0019]在实施例的一个变形例中,所述金属网格至少包括电镀的Cu层。
[0020]在实施例的一个变形例中,所述单个总线条的宽度在0.5和3_之间。
[0021]在实施例的一个变形例中,所述太阳能模块还包括多个最大功率点跟踪MPPT装置。对应的MPPT装置耦接到单独的太阳能电芯,从而便于电芯水平的最大功率点跟踪。
[0022]在进一步的变形例中,所述太阳能模块还包括多个最大功率点跟踪MPPT装置,其中对应的MPPT装置耦接到一串太阳能电芯,从而便于串水平的最大功率点跟踪。
[0023]在实施例的一个变形例中,所述前侧盖和所述后侧盖是透明的,以便所述太阳能模块的双面构造。
[0024]在实施例的一个变形例中,所述多个太阳能电芯至少包括以下之一:5英寸太阳能电芯;6英寸太阳能电芯;以及5英寸或6英寸太阳能电芯的1/8、1/6、1/4、1/3或1/2。
[0025]本发明的一个实施例提供了一种太阳能电芯耦接系统。该系统包括:第一太阳能电芯和第二太阳能电芯。每个太阳能电芯包括前侧电极和后侧电极。每个电极包括多个指状件线和耦接到所述多个指状件线的单个总线条,所述总线条位于对应的太阳能电芯的边缘。该系统还包括:金属接片,把所述第一太阳能电芯的前侧电极耦接到所述第二太阳能电芯的后侧电极。
[0026]本发明的一个实施例提供了一种太阳能电芯耦接系统。该系统包括:第一太阳能电芯和第二太阳能电芯。每个太阳能电芯包括前侧电极和后侧电极。每个电极包括多个指状件线和耦接到所述多个指状件线的单个总线条,所述总线条位于对应的太阳能电芯的边缘。所述第一太阳能电芯的边缘与第二太阳能电芯的边缘重叠,使得所述第一太阳能电芯的前侧电极的总线条耦接到所述第二太阳能电芯的后侧电极的总线条。
【附图说明】
[0027]图1是表示示例性太阳能电芯(现有技术)的视图。
[0028]图2是表示根据本发明的一个实施例的示例性双侧遂穿结太阳能电芯的视图。
[0029]图3A是表示传统的太阳能电芯(现有技术)的电极网格的视图。
[0030]图3B是表示根据本发明的一个实施例的每个表面具有单个中心总线条的示例性双面太阳能电芯的前面或背面的视图。
[0031]图3C是表示根据本发明的一个实施例的每个表面具有单侧中心总线条的双面太阳能电芯的截面的视图。
[0032]图3D是表示根据本发明的一个实施例的示例性双面太阳能电芯的前表面的视图。
[0033]图3E是表示根据本发明的一个实施例的示例性双面太阳能电芯的背面的视图。
[0034]图3F是表示根据本发明的一个实施例的每个表面具有单个边缘总线条的双面太阳能电芯的截面的视图。
[0035]图4是表示对于不同的长宽比,电力损失百分比根据网格线(指状件线)长度变化的视图。
[0036]图5A是包括多个传统的双总线条太阳能电芯的典型太阳能面板的视图(现有技术)。
[0037]图5B是表示根据本发明的一个实施例的包括在中心具有单个总线条的多个太阳能电芯的示例性太阳能面板的视图。
[0038]图5C是表示根据本发明的一个实施例的每个表面具有单个边缘总线条的两个相邻太阳能电芯之间的串联连接的视图。
[0039]图5D是表示根据本发明的一个实施例的一串太阳能电芯的视图,其中相邻电芯的前侧电极具有相同的极性。
[0040]图5E是表示根据本发明的一个实施例的一串太阳能电芯的视图,其中相邻电芯的前侧电极具有相反的极性。
[0041]图5F是表示根据本发明的一个实施例的每个表面具有单个边缘总线条的两个相邻太阳能电芯之间的串联连接的视图。
[0042]图5G是表示根据本发明的一个实施例的一串相邻的边缘重叠太阳能电芯的侧视图。
[0043]图5H是表示根据本发明的一个实施例的两个相邻的边缘重叠太阳能电芯的顶视图。
[0044]图51是表示根据本发明的一个实施例的两个相邻的边缘重叠太阳能电芯的底视图。
[0045]图5J是表示根据本发明的一个实施例的包括在边缘具有单个总线条的多个太阳能电芯的示例性太阳能面板的视图。
[0046]图6A是表示对于不同类型电芯、不同条带厚度和不同面板构造的双总线条(DBB)以及单总线条(SBB)构造的基于条带电阻的电力损失的视图。
[0047]图6B是表示针对不同条带/接片厚度比较串接的条带和单个接片之间的电力损失差异的视图。
[0048]图7A是表示根据本发明的一个实施例的具有双总线条太阳能电芯的太阳能面板中设置最大功率点跟踪(MPPT)集成电路(I C)的示例性视图。
[0049]图7B是表示根据本发明的一个实施例的具有单中心总线条太阳能电芯的太阳能面板中设置最大功率点跟踪(MPPT)集成电路(IC)的示例性视图。
[0050]图7C是表示根据本发明的一个实施例的具有单边缘总线条太阳能电芯的太阳能面板中设置最大功率点跟踪(MPPT)集成电路(IC)的示例性视图。
[0051]图7D是表示根据本发明的一个实施例的实现电芯水平的MPPT的示例性太阳能模块的视图。
[0052]图8是表示根据本发明的一个实施例制备太阳能电芯模块的过程的流程图。
[0053]在附图中,相似的附图标记表示相同的附图元素。
【具体实施方式】
[0054]给出下述描述以便本领域技术人员能够制造和使用各个实施例,并且在特定应用及其要求的语境中提供这些实施例。所公开的实施例的各种修改例对于本领域技术人员是显而易见的,在不脱离本公开的精神和范围的情况下,本文中公开的普遍原理可以应用于其他实施例和应用。因此,本发明不限于所示出的实施例,而是根据与本文公开的原理和特征一致的最宽泛的范围。
[0055]
[0056]本发明的实施例提供了一种高效率的太阳能模块。该太阳能模块包括双面隧穿结太阳能电芯,其中电镀的Cu网格线用作前侧电极和后侧电极。为了减小遮挡和成本,单个总线条或接片被布置在太阳能电芯的前侧和后侧的中心。为了减小遮挡,在一些实施例中,单个Cu总线条或接片被布置在太阳能电芯的前侧和后侧的相对边缘。指状件和总线条都使用生成无遮挡电极的技术来制备。另外,指状件和总线条可以包括大的长宽比铜网格线以确保低电阻。当多个太阳能电芯被串接或接在一起以形成太阳能面板时,基于总线条的位置修改传统的串接/接片处理。与传统的基于单面、双总线条太阳能电芯的太阳能模块相比,本发明的实施例提供了电力增益高达18%的太阳能模块。此外,通过在电芯水平上应用最大功率点跟踪(MPPT)技术,由于部分遮挡的太阳能面板而丢失的功率的30%可以被弥补。
[0057]双面遂穿结太阳能电芯
[0058]图2是表示根据本发明的一个实施例的示例性双侧遂穿结太阳能电芯的视图。双侧遂穿结太阳能电芯200包括基底202、覆盖基底202的两个表面并且使表面缺陷状态钝化的量子隧穿势皇(QTB)层204和206、形成前发射器208的前侧掺杂的a-Si层、形成BSF层210的后侧掺杂的a-Si层、前透明导电氧化物(TCO)层212、后TCO层214、前金属网格216、以及后金属网格218。注意,还可以在太阳能电芯的后侧具有发射器层并且在前侧具有前表面场(FSF)层。在2010年 11 月12 日提交的、发明人为Jiunn Benjamin Heng、Chentao Yu、ZhengXu和Jianming Fu、名称为 “Solar Cell with Oxide Tunneling Junct1ns” 的美国专利申请如.12/945,792(律师档案号如.55?10-10021^)中可以找到有关双侧遂穿结太阳能电芯200的细节和制作方法。该申请的公开通过引用而全部包含在此。
[0059]如图2所示,双侧遂穿结太阳能电芯200的对称结构确保了双侧遂穿结太阳能电芯200在背侧暴露给光的情况下可以是双面的。在太阳能电芯中,金属触点(例如前金属网格216和后金属网格218)对于收集太阳能电芯产生的电流是必要的。总的来说,金属网格包括两种类型的金属线:总线条和指状件。更具体地说,总线条是直接连接到外部引线(例如金属接片)的较宽的金属带,而指状件是收集电流以传递给总线条的指状金属区域。金属网格设计的关键设计权衡是与更宽间隔的网格相关联的电阻损失的增大和由表面高比例的金属覆盖导致的反射和遮挡的增加。在传统的太阳能电芯中,为了防止由于指状件的串联电阻导致的电力损失,至少两个总线条被布置在太阳能电芯的表面以从指状件收集电流,如图3A所示。对于标准的5英寸太阳能电芯(其可以是5X5平方英寸的方形或者具有圆角的伪方形),通常在每个表面具有两个总线条。对于更大的6英寸太阳能电芯(其可以是5 X 5平方英寸的方形或者具有圆角的伪方形),可能需要三个或更多个总线条,取决于电极材料的电阻。注意,在图3A中,太阳能电芯300的表面(其可以是前表面或后表面)包括多个典型的指状件线,例如指状件线302和304;以及布置成与指状件线垂直的两个总线条306和308。注意,总线条被布置成确保从指状件上任意一点到总线条的距离足够小,以使电力损失最小化。这两个总线条和后续焊接到这些总线条以用于电芯间链接的金属条带能够产生大量遮挡,从而降低了太阳能电芯的性能。
[0060]在本发明的一些实施例中,前金属网格和后金属网格(诸如指状件线)可以包括电镀的Cu线(与传统的Ag网格相比具有减小的电阻)。例如,使用电镀或无电极电镀技术,可以获得电阻等于或小于5 X 10—6 Ω.cm的Cu网格线。在2010年7月13日提交的、发明人为JiunnBenjamin Heng、Chentao Yu、Zheng Xu和Jianming Fu、名称为“Solar Cell with MetalGrid Fabricated by Electroplating” 的美国专利申请N0.12/835,670 (律师档案号N0.SSP10-1001US)、以及在 2011 年8 月 29 日提交的、发明人为 Jiunn Benjamin Heng、Chentao Yu、Zheng Xu和Jianming Fu、名称为“Solar Cell with Electroplated MetalGrid”的美国专利申请N0.13/220,532(律师档案号N0.SSP10-1010US)中,可以找到有关电镀铜网格的细节,它们的公开通过引用而全部包含与此。
[0061]电阻减小的Cu指状件使得能够通过减少太阳能电芯表面上的总线条的数量来最大化总的太阳能电芯效率的金属网格设计。在本发明的一些实施例中,使用单个总线条来收集指状件的电流。由于从指状件到总线条的距离增大而导致的电力损失可以由减小的遮挡而得到平衡。
[0062]图3B是表示根据本发明的一个实施例的每个表面具有单个中心总线条的示例性双面太阳能电芯的前表面或后表面的视图。在图3B中,太阳能电芯310的前表面或后表面包括单个总线条312和若干指状件线,例如指状件线314和316。图3C是表示根据本发明的一个实施例的每个表面具有单个中心总线条的双面太阳能电芯的截面的视图。图3C中所示的半导体多层结构可以与图2所示的半导体多层结构类似。注意,图3C中没有示出指状件线,因为截面位于两个指状件线之间。在图3C所示的例子中,总线条312垂直于纸面进出,指状件线从左向右延伸。像前面讨论的那样,因为每个表面只具有一个总线条,所以从指状件线的边缘到总线条的距离更远。但是,消除一个总线条减少了遮挡,这不仅补偿了由于增大的指状件到总线条距离导致的电力损失,而且还提供了额外的电力增益。对于标准尺寸的太阳能电芯,使用位于电芯中心的单个总线条替换两个总线条可以产生1.8%的电力增益。
[0063]图3D是表示根据本发明的一个实施例的示例性双面太阳能电芯的前表面的视图。在图3D中,太阳能电芯320的前表面包括多个水平的指状件线和垂直的单个总线条322,该单个总线条322被布置在太阳能电芯320的右边缘。更具体地说,总线条322接触所有指状件线的最右侧边缘,并且从所有指状件线收集电流。图3E是根据本发明的一个实施例的示例性双面太阳能电芯的后表面的视图。在图3E中,太阳能电芯320的后表面包括多个水平的指状件线和垂直的单个总线条324,该单个总线条324布置在太阳能电芯322的左边缘。类似于总线条322,单个的总线条324接触所有指状件线的最左边缘。图3F表示根据本发明的实施例的每个表面具有单个边缘总线条的双面太阳能电芯的截面的视图。图3F中所示的半导体多层结构类似于图2中所示的半导体多层结构。与图3C类似,在图3F中,指状件线(未示出)从左向右延伸,总线条垂直纸面进出。根据图3D-3F,可以看出在该实施例中,位于双面太阳能电芯的前表面和后表面上的总线条被布置在电芯的相对的边缘。这种构造能够进一步改善电力增益,因为总线条导致的遮挡出现在能量产生效率较小的位置。总的来说,边缘总线条的构造能够提供至少2.1 %的电力增益。
[0064]注意,每个表面单个总线条的构造(中心总线条或边缘总线条)不仅能够提供电力增益,而且能够减小制造成本,因为总线条带需要更少的金属。此外,在本发明的一些实施例中,面对太阳的前表面上的金属网格可以包括并行的金属线(例如指状件),每个金属线具有弯曲参数的截面,以确保入射到这些金属线上的阳光能够被反射到太阳能电芯的前表面上,从而进一步减小遮挡。通过使用良好受控的、成本有效的图案化方案电镀涂覆有Ag或Sn的Cu,能够实现这种无遮挡的前电极。
[0065]还可以通过增大指状件线的长宽比来增加从指状件边缘到总线条的距离,从而减小电力损失效应。图4是表示对于不同的长宽比,电力损失的百分比随网格线(指状件)长度变化的视图。在图4所示的例子中,网格线(或指状物)假定具有60μπι的宽度。从图4可以看出,对于长宽比为0.5的网格线,随着网格线长度从30mm增加到100mm,电力损失从3.6%变成7.5%。但是,在例如1.5的更高长宽比的情况下,对于网格线长度同样的增加,电力损失从3.3%变成4.9%。换言之,使用高长宽比的网格线可以进一步改善太阳能电芯/模块性能。可以使用电镀技术来实现这种高长宽比的网格线。在2011年3月15日提交的、发明人为Jiunn Benjamin Heng、Chentao Yu、Zheng Xu和Jianming Fu、名称为“Solar Cell with aShade-Free Front Electrode” 的美国专利申请N0.13/048,804(律师档案号N0.SSPlO-1003US)中可以找到有关具有高长宽比的无遮挡电极的细节,其公开通过引用而全部包含在此。
[0066]双面太阳能面板
[0067]通过典型的面板制备过程(微小改动),每个表面具有单个总线条(在电芯中心或电芯边缘)的多个太阳能电芯可以被组装以形成太阳能模块或面板。基于总线条的位置,需要对串接/接片过程进行不同的改动。在传统的太阳能模块制备中,使用焊接到总线条上的两个串接条带(也成为接片条带)把双总线条太阳能电芯串到一起。更具体地说,串接条带从一个电芯的前表面延伸到相邻电芯的后表面,以把电芯串联。对于电芯中心构造中的单个总线条,串接过程非常类似,除了只需要一个串接条带从一个电芯的前表面延伸到另一个电芯的后表面。
[0068]图5A是表示包括多个传统的双总线条太阳能电芯的典型的太阳能面板的视图。在图5A中,太阳能面板500包括太阳能电芯的6 X 12阵列(具有6行并且每行中有12个电芯)。一行中的相邻太阳能电芯通过两个串接条带彼此串联,例如串接条带502和串接条带504。更具体地说,串接条带把一个太阳能电芯的上电极连接到下一个太阳能电芯的下电极。在每行的末尾,串接条带通过更宽的总线条带(例如总线条带506)与下一行的串接条带连接到一起。在图5A所示的例子中,各行串联连接,其中相邻的两行在一端彼此连接。可替换的,各行可以并联方式彼此连接到一起,其中相邻的行在两端彼此连接。注意,图5A仅示出了太阳能电芯的上侧,太阳能面板的下侧可以非常类似,因为太阳能电芯的双面特性。为了简明,图5A中没有示出垂直于太阳能电芯行(或串接条带)的方向延伸的指状件。
[0069]图5B是表示根据本发明的一个实施例的包括在中心具有单个总线条的多个太阳能电芯的示例性太阳能面板的视图。在图5B中,太阳能面板510包括太阳能电芯的6 X 12阵列。一行中的相邻的太阳能电芯通过单个串接条带(例如条带512)彼此串联连接到一起。像在太阳能面板500中那样,在相邻行末端的单个串接条带通过更宽的总线条带(例如总线条带514)连接到一起。因为只需要一个串接条带来连接相邻的电芯,因此与图5A中的太阳能面板500相比,可以显著减少在制备太阳能面板510中使用的总线条带的总长度。对于6英寸的电芯,连接两个相邻电芯的单个串接条带的长度可以为大约31cm,相比之下,双总线条构造需要62cm的串接条带。注意,这种长度的减小还能够进一步减小串联电阻和制造成本。与图5A类似,在图5B中,各行串联连接。实际上,太阳能电芯行也可以并联连接。同样与图5A类似,指状件线沿垂直于太阳能电芯行(或串接条带)的方向延伸并且没有在图5B中示出。
[0070]把图5B与图5A相比,可以看出,为了把具有单个中心总线条的太阳能电芯组装成太阳能面板,只需要在串接/接片过程中进行微小的改动。但是,对于每个表面具有单个边缘总线条的太阳能电芯,需要更多的改动。图5C示出了根据本发明的一个实施例的每个表面具有单个边缘总线条的两个相邻太阳能电芯之间的串联连接。在图5C中,太阳能电芯520和太阳能电芯522通过单个接片524彼此耦接。更具体地说,单个接片524的一端被焊接到位于太阳能电芯520的前表面上的边缘总线条,该单个接片524的另一端被焊接到位于太阳能电芯522的后表面上的边缘总线条,从而把太阳能电芯520和522串联。根据图5C,可以看出,单个接片524的宽度沿着边缘总线条的长度(在垂直于指状件线的方向上),并且大致与边缘总线条的长度相同,并且单个接片524的两端被焊接到沿着其长度的边缘总线条。在一些实施例中,单个接片524的宽度可以在12和16cm之间。另一方面,单个接片524的长度由封装密度或相邻太阳能电芯之间的距离决定,并且可以相当短。在一些实施例中,单个接片524的长度可以在3和12_之间。在进一步的实施例中,单个接片524的长度可以在3和5mm之间。这种几何构造(更大的宽度和更短的长度)确保了单个接片524具有非常低的串联电阻。指状件线(例如指状件线526)沿着单个接盘524的长度方向延伸。注意,这不同于传统的双总线条构造和单中心总线条构造,其中指状件垂直于连接两个相邻太阳能电芯的串接条带。因此,需要修改传统的标准串接过程,把每个电芯旋转90度,以便如图5C所示把两个太阳能电芯串接。
[0071]注意,当所有电芯的前侧电极的极性相同并且所有电芯的后侧电极的极性都是相反极性时,边缘总线条构造能够利用从一个太阳能电芯的前边缘到相邻的太阳能电芯的后边缘延伸的边缘接片良好地工作。此外,当相邻电芯的前侧电极具有不同的极性(并且类似地,相邻电芯的后侧电极也具有不同的极性)时,边缘接片可以把一个太阳能电芯的前侧边缘耦接到相邻的太阳能电芯的前侧边缘,或者把一个太阳能电芯的后侧边缘耦接到相邻的太阳能电芯的后侧边缘。
[0072]可以按照这种方式耦接多个太阳能电芯以形成一串,并且多个串可以串联或并联地电耦接。图5D是表示根据本发明的一个实施例的一串太阳能电芯的示意图,其中相邻电芯的前侧电极具有相同的极性。在图中,一串太阳能电芯(例如电芯511和513)夹在前玻璃盖501和后盖503之间。更具体地说,这样布置太阳能电芯,使得允许所有电芯的前侧电极为一个极性,并且它们的后侧电极为另一个极性。金属接片(例如接片515和517)通过把太阳能电芯的前边缘总线条及其相邻太阳能电芯的后边缘总线条耦接到一起而把相邻的太阳能电芯串联耦接。在图5D所示的示例中,金属接片515把太阳能电芯511的前边缘总线条507耦接到太阳能电芯513的后边缘总线条509。
[0073]图5E是表示根据本发明的一个实施例的一串太阳能电芯的示意图,其中相邻太阳能电芯的前侧电极具有相反的极性。在图5E中,这样布置一串太阳能电芯(例如电芯521和523),使得允许相邻的电芯的前侧电极具有交替的极性,并且类似地,相邻太阳能电芯的后侧电极也具有交替的极性。金属接片(例如接片525和527)通过把两个相邻的前边缘总线条彼此耦接并且把两个相邻的后边缘总线条彼此耦接而串联耦接相邻的太阳能电芯。在图5E所示的例子中,金属接片525把太阳能电芯521的前边缘总线条531耦接到太阳能电芯523的前边缘总线条533(其极性与边缘总线条531的极性相反)。
[0074]除了使用单个接片串联连接两个相邻的单总线条太阳能电芯以外,还可以通过重叠对应的边缘总线条而在相邻的太阳能电芯之间建立串联连接。图5F是表示根据本发明的一个实施例的在每个表面具有单个边缘总线条的两个相邻太阳能电芯之间的串联连接的示意图。在图5F中,通过位于太阳能电芯530的上表面的边缘总线条534和位于太阳能电芯532的下表面的边缘总线条536把太阳能电芯530和太阳能电芯532耦接。更具体地说,太阳能电芯532的下表面与太阳能电芯530的上表面在边缘处部分重叠,使得下边缘总线条536被布置在上边缘总线条534的上面并且与之接触。在一些实施例中,边缘总线条534和536可以包括镀覆(使用电镀或无电极镀覆技术)的金属堆叠,其包括多层金属,例如N1、Cu、Sn、以及Ag。在2010年7月 13 日提交的、发明人为Jiunn Benjamin Heng、Chentao Yu、Zheng Xu和Jianming Fu、名称为 “Solar Cell with Metal Grid Fabricated by Electroplating” 的美国专利申请N0.12/835,670(律师档案号N0.SSP10-1001US)、以及在2011年8月29日提交的、发明人为Jiunn Benjamin Heng、Chentao Yu、Zheng Xu和Jianming Fu、名称为“SolarCell with Electroplated Metal Grid” 的美国专利申请N0.13/220,532(律师档案号N0.SSPlO-lOlOUS)中,可以找到镀覆金属堆叠的详细描述,其公开通过引用而被全部包含于此。
[0075]在一些实施例中,彼此接触的边缘总线条被焊接到一起,以实现相邻太阳能电芯之间的串联电连接。在进一步的实施例中,焊接可以通过层压处理同时进行,在该层压处理中,边缘重叠的太阳能电芯以及适当的密封剂材料被放置在前侧盖和后侧盖之间,密封剂材料可以包括粘合剂聚合物,例如乙烯乙酸乙烯酯(EVA)。在层压期间,可以施加热和压力以固化密封剂,把太阳能电芯密封在前侧盖和后侧盖之间。同样的热和压力还可以导致接触的边缘总线条(例如总线条534和536)被焊接到一起。注意,如果边缘总线条包括上Sn层,则在相邻太阳能电芯的上总线条和下总线条(例如总线条534和536)之间不必插入额外的焊接或粘接材料。还要注意,因为太阳能电芯是相对柔韧的5英寸或6英寸Si片,在层压处理期间使用的压力可以较大而不必担心电芯会在这种压力下损坏。在一些实施例中,在层压处理期间施加的压力可以大于1.0个大气压,例如1.2个大气压。
[0076]图5G是表示根据本发明的一个实施例的一串相邻的边缘重叠的太阳能电芯的侧视图。在图5G中,太阳能电芯540与相邻的太阳能电芯542部分地重叠,后者还与太阳能电芯544部分地重叠(在其相对端)。这样的一串太阳能电芯形成了与屋顶瓦片类似的图案。注意,重叠应当保持为最小,以最小化由于重叠导致的遮挡。在一些实施例中,在太阳能电芯的最边缘(在上表面和下表面二者)布置单个总线条(如图5G所示),从而使遮挡最小化。
[0077]因为太阳能电芯是双面的(意味着光从太阳能电芯的上表面和下表面二者进入),所以希望在太阳能电芯的上表面和下表面具有对称布置。图5H是表示根据本发明的一个实施例的两个相邻的边缘重叠的太阳能电芯的顶视图。在图5H中,太阳能电芯550和552在太阳能电芯550的右边缘彼此重叠。太阳能电芯550的上表面(其是示图中的表面)包括彼此平行的多个指状件线(例如指状件线554和556)以及垂直于指状件线的边缘总线条。注意,图5H中没有示出边缘总线条,因为它被太阳能电芯552的左边缘覆盖。类似的,太阳能电芯552的上表面包括彼此平行的多个指状件线(例如指状件线558和560)以及垂直于该指状件线的边缘总线条562。图51是表示根据本发明的一个实施例的两个相邻的边缘重叠的太阳能电芯的底视图。在图51中,太阳能电芯550和552在太阳能电芯550的右边缘彼此部分重叠。太阳能电芯550的下表面(其是示图中的表面)包括彼此平行的多个指状件线(例如指状件线564和566)以及与该指状件线垂直的边缘总线条568。类似地,太阳能电芯552的下表面包括彼此平行的多个指状件线(例如指状件线570和572)以及与该指状件线垂直的边缘总线条。注意,图51中未示出边缘总线条,因为它被太阳能电芯550的右边缘覆盖。在太阳能电芯的上表面和下表面具有相同的金属网格确保了双面的功能性。
[0078]图5J是表示根据本发明的一个实施例的包括在边缘具有单个总线条的多个太阳能电芯的不例性太阳能面板的不意图。在图5J中,太阳能面板580包括太阳能电芯的6 X 12阵列。一行中的太阳能电芯通过单个接片(例如接片582)或通过瓦片图案的边缘重叠而彼此串联连接。在行的末端,不使用更宽的总线条带把来自相邻电芯的串接条带连接到一起(类似于图5A和图5B中所示的例子),这里我们简单地使用充分宽的接片延伸通过相邻行的两个端部电芯的边缘。例如,特别宽的接片584延伸通过电芯586和588的边缘。对于串联连接,特别宽的接片584可以把位于电芯586上表面的总线条与位于电芯588的下表面的总线条连接,这意味着太阳能电芯586和588被布置为使得电芯586的上边缘总线条与电芯588的下边缘总线条对准。注意,如果一行中的太阳能电芯被布置成瓦片图案,则相邻的行可以具有相对的瓦片图案,比如右侧在上或左侧在上。对于并联连接,特别宽的接片584可以连接电芯586和588的两个上总线条/下总线条。如果一行中的太阳能电芯布置成瓦片图案,则所有行的瓦片图案保持相同。与图5A和图5B所示的例子不同,在图5J中,指状件线(未示出)沿着太阳能电芯行的方向延伸。
[0079]串接条带或接片还会由于其串联电阻而引入电力损失。总的来说,通过串接条带的串联电阻的分散的电力损失随着电芯的尺寸而增加。此外,使用单个串接条带来替代两个串接条带也增大了这种串联电阻导致的电力损失,因为单个条带的构造意味着每个条带具有更大的电流,而电力损失与电流的平方成比例。为了减小这种电力损失,需要减小串接条带的串联电阻。对于单个的中心总线条构造,通过总线条的宽度确定条带的宽度,其可以在0.5和3_之间。这样,减小条带的电阻的一种方式是增大其厚度,因为更厚的条带具有更低的电阻。图6A示出了对于不同类型的电芯、不同条带厚度和不同面板构造,双总线条(DBB)构造和单总线条(SBB)构造的基于条带电阻的电力损失的百分比。在图6A所示的例子中,条带被假设为Cu条带。
[0080]根据图6A,可以看出,对于200μπι厚度的条带,对于具有单总线条(SBB)(位于中心)构造的5英寸电芯的条带电阻导致的电力损失为2.34%,相比之下,双总线条(DBB)构造具有1.3%的电力损失。为了把电力损失限制到小于2%以利用从消除一个总线条减小遮挡而获得的1.8%电力增益,单个串接条带的厚度必须至少为250μπι。对于更大的电芯,例如6英寸电芯,情况可能更糟。对于单个中心总线条构造,需要400μηι厚度的条带来确保在6英寸电芯中的电力损失小于3%,如电芯602和604所示。注意到,面板中电芯的数量也影响电力损失的量。
[0081]400μπι是条带厚度的上限,因为更厚的条带会在焊接处理中对电芯造成伤害。更具体地说,更厚的条带会导致电芯的翘曲,这是由于应力以及条带材料和半导体材料之间的热力系数差导致的。此外,如果串接条带太厚,还会开始浮现可靠性的问题。应用超软的条带可以减小应力和翘曲问题,但是在不放弃由总线条遮挡减少带来的增益和条带成本降低的情况下,需要不同的串接方案以有效的把电力损失减到小于2%。在一些实施例中,可以使用其他方法来减小应力和翘曲,包括但不限于:在串接条带的长度内引入卷曲件或弹簧,并且对厚的条带进行点焊。
[0082]对于单边缘总线条构造,因为接片宽得多并且短于串接条带,所以由于单个接片的串联电阻导致的电力损失的量小得多。图6Β是表示对于不同条带/接片厚度的串接条带和单个接片之间的电力损失差异的比较的图。根据图6Β,可以看出,由于单个接片的串联电阻导致的电力损失远小于单个条带的电力损失,如606栏所示。例如,由250μπι厚的单个边缘接片导致的电力损失仅为0.37(对于5英寸96电芯面板布局),以及大约1.64% (对于6英寸,60电芯面板布局)。因此,可以看出,即使对于72电芯面板的6英寸电芯,厚度250μπι的边缘接片足够厚,其导致的电力损失小于2%,使得在考虑遮挡减小的情况下能够实现总的电力增益。
[0083]影响太阳能面板的电力输出的另一个因素是电芯之间的错配,这可能由部分遮挡的太阳能面板导致。为了使电力输出最大化,可以向太阳能面板中引入最大功率点跟踪(MPPT)装置,以允许被部分遮挡或其它原因遮挡的面板向耦接到面板的电池充电系统传递最大功率。MPPT装置可以管理一串电芯或单个电芯的电力输出。在本发明的一些实施例中,太阳能面板实现电芯水平的MPPT,意味着每个太阳能电芯耦接至MPPT装置,例如MPPT集成电路(IC)芯片。
[0084]在电芯水平上实现MPPT使得其能够补偿由于错配低效率损失的电力的30%。此夕卜,其消除了电芯分级的需求并且可以增大产率。这样,通过消除安装者匹配一个串中面板的库存管理需求以及减小保修预留(因为替换面板不再需要与旧系统匹配),能够显著地改善阵列所有者的投资回报(ROI)。电芯水平的MPPT还可以增加用于安装太阳能阵列的可用表面积,特别是在一天中的特定时间或一年中的特定季节存在阵列的结构性遮挡的情况下。这对于在前侧和后侧都受到遮挡的双面模块特别有用。电芯水平的MPPT还允许系统安装的更大的灵活性,使得能够使用I轴或2轴跟踪器,并且地面安装到高散射光背景中。在2011年10月4 日提交的、发明人为Christopher James Beitel、Jiunn Benjamin Heng、Jianming Fu、以及Zheng Xu、名称为“Solar Panels with Integrated Cell-Level MPPTDevices”的美国专利申请N0.13/252,987(律师档案号N0.SSP10-1011US)中,可以找到有关电芯水平的MPPT的细节,它的公开通过引用而全部包含与此。在另外一些实施例中,太阳能模块可以每串太阳能电芯具有一个MPPT装置,从而便于串水平的MPPT。
[0085]图7A是表示根据本发明的一个实施例的在具有双总线条太阳能电芯中放置最大功率点跟踪(MPPT)集成电路(IC)芯片的例子的图。在图7A所示的例子中,MPPT IC芯片(例如MPPT IC芯片702)被布置在相邻的太阳能电芯之间。更具体地说,MPPT IC芯片可以被布置在两个串接条带之间。在一些实施例中,MPPT IC芯片可以与两个串接条带接触并且便于两个相邻的太阳能电芯之间的串联连接。
[0086]图7B是表示根据本发明的一个实施例的把最大功率点跟踪(MPPT)集成电路(IC)芯片布置在具有单中心总线条太阳能电芯的太阳能面板中的例子的示意图。与图7A所示的例子类似,MPPT IC芯片(例如MPPT IC芯片704)被布置在两个相邻的太阳能电芯之间。在一些实施例中,MPPT IC芯片是三端子装置,其中两个来自一个电芯的输入端,以及一个向相邻电芯的输出端。两个输入端可以被连接到第一太阳能电芯的上电极和下电极(通过对应的串接条带),并且一个输出端可以被连接到相邻的太阳能电芯的上电极或下电极,以便两个电芯之间的串联连接。
[0087]除了把MPPT IC芯片布置在相邻的太阳能电芯之间,还可以把MPPT IC芯片布置在太阳能电芯之间的角部间隔处。图7C是表示根据本发明的一个实施例的具有单边缘总线条太阳能电芯的太阳能面板中布置最大功率点跟踪(MPPT)集成电路(IC)芯片的例子的示意图。在图7C所示的例子中,MPPT IC芯片(例如MPPT IC芯片706)布置在太阳能电芯之间的角部间隔处。在一些实施例中,MPPT IC芯片与单个接片接触,以便于两个相邻芯片之间的串联连接。注意,对于单边缘总线条构造,需要太阳能电芯外部的引线来把太阳能电芯的相对侧的前电极和后电极与MPPT IC芯片的两个输入连接。
[0088]图7D是表示根据本发明的一个实施例的实现电芯水平的MPPT的示例性太阳能模块的示意图。在图7D中,太阳能模块710中的每个太阳能电芯包括上电极和下电极,其可以是图7B中所示的单个中心总线条。每个MPPT IC芯片包括顶部输入端子、底部输入端子以及底部输出端子。例如,MPPT IC芯片712包括顶部输入端子714、底部输入端子716以及输出端子718。顶部输入端子714和底部输入端子716親接到太阳能电芯的顶部电极和底部电极。输出端子718耦接到相邻的太阳能电芯的底部电极。在图7D所示的例子中,太阳能电芯(例如太阳能电芯720)可以是双侧隧穿结太阳能电芯。太阳能电芯和MPPT IC芯片被埋置在粘合剂聚合物层722内,该粘合剂聚合物层722后续会被固化。可以用于形成粘合剂聚合物层722的材料包括,但不限于,乙烯乙酸乙烯酯(EVA)、丙烯酸、聚碳酸酯、聚烯烃以及热塑料。太阳能模块710还包括前侧盖724和后侧盖726。对于双面模块,前侧盖724和后侧盖726都可以由玻璃制成。当固化粘合剂聚合物层722时,前侧盖724和后侧盖726被层压,把太阳能电芯和MPPT IC芯片密封在其中,从而防止由于暴露给环境因素而导致损坏。在层压之后,太阳能模块710可以被修剪并放置到框架728中,然后就准备好连接到适当的接线盒。
[0089]图8是表示根据本发明的一个实施例的制造太阳能电芯模块的过程的流程图。在制造过程中,获得包括多层半导体结构的太阳能电芯(操作802)。在一些实施例中,多层半导体结构可以包括双侧隧穿结太阳能电芯。太阳能电芯可以具有标准尺寸,例如5英寸乘5英寸或者6英寸乘6英寸。在一些实施例中,太阳能电芯的最小尺寸是至少5英寸。然后沉积前侧金属网格和后侧金属网格,以完成双面太阳能电芯制造(操作804)。在一些实施例中,沉积前侧金属网格和后侧金属网格可以报考电镀涂覆有Ag或Sn的Cu网格。在进一步的实施例中,可以使用物理气相沉积(PVD)技术在多层结构上沉积一个或多个种子金属层,例如种子Cu或Ni层,从而改善电镀的Cu层的粘和性。可以形成不同类型的金属网格,包括但不限于:中心具有单个总线条的金属网格、电芯边缘具有单个总线条的金属网格。注意,对于边缘总线条构造,在太阳能电芯的前表面和后表面的总线条被布置在相对的边缘。
[0090]接下来,太阳能电芯被串接到一起以形成太阳能电芯串(操作806)。注意,取决于总线条构造,可能需要修改传统的串接过程。对于边缘总线条构造,每个太阳能电芯需要被旋转90度,使用与电芯边缘一样宽并且在3和12mm之间的单个接片来连接两个相邻的太阳能电芯。在一些实施例中,单个接片的长度可以在3和5mm之间。
[0091]然后,多个太阳能电芯可以被布局成阵列,并且前侧盖可以被施加到太阳能电芯阵列上(操作808)。对于实现电芯水平的MPPT的太阳能模块,MPPT IC芯片被布置在适当的位置,包括但不限于:太阳能电芯之间的角落间隔、以及相邻太阳能电芯之间的位置(操作810)。然后通过修改的接片处理把不同行的太阳能电芯彼此连接(操作812),然后,形成MPPT IC芯片和对应的太阳能电芯电极之间的电连接,以实现完全互连的太阳能模块(操作814)。更具体地说,通过典型的半导体手段(包括但不限于:焊料凸点、倒装、通过接触封装等),太阳能电芯的上电极被连接到IC的一个端子,下电极被连接到IC的另一个端子。接下来,后侧盖被施加(操作816),整个太阳能模块组件可以进行标准的层压处理,在层压处理能够原位密封电芯和MPPT 1C,然后进行加框和修剪(操作820),以及附接到接线盒(操作
822) ο
[0092]给出上述各种实施例的描述仅用于说明和描述目的。它们不是排他性或把本发明限制在所公开的形式。因此,对于本领域技术人员,许多修改和变型是清楚的。另外,上述公开无意限制本发明。
【主权项】
1.一种太阳能t吴块,包括: 前侧盖; 后侧盖;以及 位于所述前侧盖和所述后侧盖之间的多个太阳能电芯,其中,每个太阳能电芯包含: 多层半导体结构; 位于所述多层半导体结构上的前侧电极;以及 位于所述多层半导体结构下的后侧电极,其中所述前侧电极和所述后侧电极各自包括金属网格,每个金属网格包括多个指状件线和耦接到所示多个指状件线的单个总线条,该单个总线条被构造成收集来自所述多个指状件线的电流。2.根据权利要求1所述的太阳能模块,其中所述单个总线条位于所述太阳能电芯的对应表面的中心。3.根据权利要求2所述的太阳能模块,其中两个相邻的太阳能电芯被从太阳能电芯的前表面到相邻太阳能电芯的后表面穿行的串接条带串接到一起,所述串接条带被焊接到所述前表面和所述后表面上的单个总线条,所述串接条带的宽度大致等于所述单个总线条的宽度。4.根据权利要求1所述的太阳能模块,其中太阳能电芯的前表面和后表面的单个总线条位于相对的边。5.根据权利要求4所述的太阳能模块,其中通过金属接片把两个相邻的太阳能电芯耦接到一起,所述金属接片被焊接到位于太阳能电芯的边缘的第一单个总线条以及位于相邻太阳能电芯的相邻边缘的第二单个总线条,所述金属接片的宽度大致等于所述第一和第二单个总线条的长度。6.根据权利要求5所述的太阳能模块,其中所述第一单个总线条位于所述太阳能电芯的前表面上,所述第二单个总线条位于相邻的太阳能电芯的后表面上。7.根据权利要求5所述的太阳能模块,其中所述第一单个总线条和所述第二单个总线条位于两个太阳能电芯的表面的相同侧。8.根据权利要求5所述的太阳能模块,其中通过金属接片把多个太阳能电芯耦接成串,多个串串联或并联地电耦接。9.根据权利要求5所述的太阳能模块,其中所述金属接片的长度在3和12_之间。10.根据权利要求4所述的太阳能模块,其中通过把两个相邻的太阳能电芯的边缘重叠而把该两个相邻的太阳能电芯耦接到一起,该两个相邻的太阳能电芯被重叠成使得第一太阳能电芯的上边缘总线条耦接到相邻的第二太阳能电芯的下边缘总线条,从而便于两个相邻的太阳能电芯之间的串联。11.根据权利要求10所述的太阳能模块,其中通过把边缘重叠以形成串而耦接多个太阳能电芯,多个串串联或并联地电耦接。12.根据权利要求1所述的太阳能模块,其中所述多层半导体结构包括: 基层; 前侧发射器或后侧发射器;以及 前表面场层或后表面场层。13.根据权利要求12所述的太阳能模块,其中所述多层半导体结构包括位于所述基层两侧的量子隧穿势皇QTB层。14.根据权利要求1所述的太阳能模块,其中所述金属网格至少包括电镀的铜层。15.根据权利要求1所述的太阳能模块,其中所述单个总线条的宽度在0.5和3mm之间。16.根据权利要求1所述的太阳能模块,还包括多个最大功率点跟踪MPPT装置,其中对应的MPPT装置耦接到单独的太阳能电芯,从而便于电芯水平的最大功率点跟踪。17.根据权利要求1所述的太阳能模块,还包括多个最大功率点跟踪MPPT装置,其中对应的MPPT装置耦接到一串太阳能电芯,从而便于串水平的最大功率点跟踪。18.根据权利要求1所述的太阳能模块,其中所述前侧盖和所述后侧盖是透明的,以便所述太阳能模块的双面构造。19.根据权利要求1所述的太阳能模块,其中所述多个太阳能电芯至少包括以下之一: .5英寸太阳能电芯; .6英寸太阳能电芯;以及 .5英寸或6英寸太阳能电芯的1/8、1/6、1/4、1/3或1/2。20.—种太阳能电芯耦接系统,包括 第一太阳能电芯和第二太阳能电芯,其中每个太阳能电芯包括前侧电极和后侧电极,每个电极包括多个指状件线和耦接到所述多个指状件线的单个总线条,所述总线条位于对应的太阳能电芯的边缘;以及 金属接片,把所述第一太阳能电芯的前侧电极耦接到所述第二太阳能电芯的后侧电极。21.—种太阳能电芯耦接系统,包括: 第一太阳能电芯和第二太阳能电芯,其中每个太阳能电芯包括前侧电极和后侧电极,每个电极包括多个指状件线和耦接到所述多个指状件线的单个总线条,所述总线条位于对应的太阳能电芯的边缘; 其中所述第一太阳能电芯的边缘与第二太阳能电芯的边缘重叠,使得所述第一太阳能电芯的前侧电极的总线条耦接到所述第二太阳能电芯的后侧电极的总线条。22.—种太阳能模块装置,包括: 前侧盖装置,用于保护所述太阳能模块装置; 后侧盖装置,用于保护所述太阳能模块装置;以及 太阳能电芯装置,包括: 多层半导体装置,用于产生电力; 前侧电极装置,用于传导电流; 后侧电极装置,用于传导电流; 金属网格装置,用于收集电流,所述金属网格装置包括多个指状件线装置; 单个总线条装置,用于收集来自所述指状件线装置的电流。23.—种太阳能电芯耦接装置,包括 第一太阳能电芯装置和第二太阳能电芯装置,其中每个太阳能电芯装置包括用于传导电流的前侧电极装置和后侧电极装置,每个电极装置包括多个指状件线装置和单个总线条装置,该单个总线条装置耦接到所述多个指状件线装置并且位于对应的太阳能电芯装置的边缘;以及 金属接片装置,用于把所述第一太阳能电芯装置的前侧电极装置耦接到所述第二太阳能电芯装置的后侧电极装置。24.—种太阳能电芯耦接装置,包括: 第一太阳能电芯装置和第二太阳能电芯装置,其中每个太阳能电芯装置包括前侧电极装置和后侧电极装置,每个电极装置包括多个指状件线装置和单个总线条装置,所述单个总线条装置耦接到所述指状件线装置并且位于对应的太阳能电芯装置的边缘;以及 其中所述第一太阳能电芯的前侧电极装置的总线条装置被耦接到所述第二太阳能电芯装置的后侧电极装置的总线条装置。
【文档编号】H01L31/0747GK105874609SQ201580003510
【公开日】2016年8月17日
【申请日】2015年1月9日
【发明人】王君俊, 傅建明, 徐征, 杨振凯
【申请人】光城公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1