专利名称:具有优秀的电磁屏蔽性能的高强度钢板及其生产方法
技术领域:
本发明涉及具有优秀的电磁屏蔽性能和热浸镀性能的高强度钢板,该钢板适用于要求高耐蚀性的领域,如建筑装修领域。更具体地说,本发明涉及具有优秀的电磁屏蔽性能和热浸镀性能的高强度钢板,该钢板对60Hz的电磁场的屏蔽效应为25dB(屏蔽效率为93%)或更高且其屈服强度为22kg/mm2或更高。
近来的研究已经证实,低频率的电磁波对生物系统产生有害作用。具体来说,一系列研究结果显示输电线周围的电磁场(60Hz)与致癌作用有关系,这已经在全世界引起非常大的反响。
除致癌作用外,人们还发现当人体长时间暴露于低频波中时,带有磁性能的低频波能在人体中产生感应电流,打破各种离子如Na+、K+、Cl-等在细胞膜上的生物平衡,这将导致对人体的激素分泌和免疫细胞产生有害影响。
另外,其它研究显示出磁场对褪黑激素分泌的影响,褪黑激素是负责调节睡眠周期的激素,这说明当人体长时间暴露于磁场中时,可能会受到失眠症的困扰。
为了对付这种有害的电磁波,人们从两方面开发了屏蔽技术结构和材料。关于建筑方面,美国专利No.6,282,848和日本特许公开专利No.Hei 7-32136中公开了磁场屏蔽室。日本特许公开专利2001-217589中公开了目前用作屏蔽电磁波材料的导电材料如铜。但是,这样的材料只适用于高频(1KHz或更高)电磁波。
通常在常用电源中检测到的60Hz的电磁波由电场和磁场分量构成,这两种场分量都随时间而改变。因此,为了屏蔽近来已证明对健康有负作用的这些低频电磁波,应当一起考虑时变的电场和磁场。但是,目前还没有开发出能有效地屏蔽时变的电磁场的钢板实用技术。
传统上用高导磁率的钢板作为磁屏蔽材料。例如,日本特许公开专利No.Hei.10-208670和No.Hei.10-96067及PCT申请WO97/11204中公开了可用在如电视监视器的彩色显像管中的静磁场屏蔽钢板,这可防止监视器上的色彩调制。使用这些钢板是为了利用其在静磁场如地球磁场下的矫顽力和导磁性,但是不能用于屏蔽时变的磁场和电场。因此,传统钢板与电磁波屏蔽材料有一些不同。
在必要时,要求建筑材料不能透过电磁波。在这一方面,有人建议将使用硅钢的热轧厚钢板用在屏蔽电磁场的建筑中,这公开在日本特许公开专利2001-107201和2001-107202中。但是,这些建筑材料只利用了硅钢在静磁场下的高导磁率,并没有说明其在电场中的情况。另外,因为这样的钢板不是冷轧而是热轧的,因此其机械成型性和可镀性(镀锌层性能)差。
另外,本发明的发明人在韩国专利申请No.1999-52018中公开了一种在低频磁场中具有优秀屏蔽效应的钢材。这种屏蔽效应是由在静磁场下测定的导磁率和导电率得到的理论值,因此不同于实际值,这难以进行实际应用。因此,仍然需要对时变磁场下的屏蔽作用进行评价。
为了满足这一要求,人们开发了根据频率评价钢板的磁屏蔽效应的方法(韩国专利No.2000-799907和No.2000-80886),并且在目前得到了应用。
一般用下述公式得到钢板的屏蔽效率公式1 公式2 用下述公式得到钢板的屏蔽效应,以dB为单位表示公式3 公式4 根据上述公式,屏蔽效率为90%(电磁波衰减至十分之一)的屏蔽材料的屏蔽效应可以表示为20dB。95%(电磁波衰减至二十分之一)的屏蔽效率对应于约26dB的屏蔽效应。
本发明的发明人的韩国专利申请No.2000-81056涉及基于电磁屏蔽冷轧钢板的生物波(biowave)钢板,其上涂有能发射远红外线的粉末。为了改善其对时变磁场的屏蔽效应,即,为了在时变磁场下得到高导磁率,用于屏蔽电磁波的生物波钢板中含有0.02%或更低的碳和0.5-3.5%的Si。
至于碳含量低于0.02%的冷轧钢板,因为它们的强度差而不能用在建筑中。在钢板中,碳含量越低,钢的显微组织的晶粒越粗,这样能够改善磁屏蔽效应,但是会使强度降低。因此,低碳含量的冷轧钢板不适用于要求高强度的领域。
另外,硅钢板强度太高,其机械成型性非常差(延伸率为40%或更低),因此,它们难以应用在对材料的机械成型性有要求的建筑和家用电器中。
为了用在外部环境中,如用在建筑外部装修中,硅钢板必须具有耐蚀性。在这一方面,在这样的外部装修上用耐腐蚀材料进行热浸镀。但是,在对钢板进行热浸镀时,Si的存在易于造成镀层缺陷,如没有镀上镀层的缺陷。事实上,对应用在高腐蚀性环境如建筑装修中的电磁屏蔽钢板的要求是用锌进行热浸镀时,镀层密度至少为100g/mm2。
本发明的另一个目的是提供一种生产该钢板的方法。
本发明的一个方面是提供一种高强度钢板,该钢板是用含下述元素的组合物制成的C、N和S的总含量为0.0150重量%或更低;Mn含量为0.2-0.8重量%;Al含量为0.6重量%或更低;Si含量为0.4重量%或更低;Cu和/或Sn的总含量为0.1-0.6重量%;余量为Fe和不可避免地存在的元素,该钢板具有优秀的电磁屏蔽性能和热浸镀性能。
本发明的另一方面是提供一种生产高强度钢板的方法,包括下述步骤提供一种含下述元素的钢坯C、N和S的总含量为0.0150重量%或更低;Mn含量为0.2-0.8重量%;Al含量为0.6重量%或更低;Si含量为0.4重量%或更低;Cu和/或Sn的总含量为0.1-0.6重量%;余量为Fe和不可避免地存在的元素;在1110-1290℃下将钢坯再加热;在900℃或更高的最终变形温度下热轧钢坯,得到热轧钢板;卷绕热轧钢板;以50-70%的压缩百分率(reduction percentage)冷轧钢板并退火,这样能够改进钢板的电磁屏蔽效应和热浸镀性能。
本发明的再一方面是提供一种生产高强度的热浸镀的钢板的方法,包括下述步骤提供一种含下述元素的钢坯C、N和S的总含量为0.0150重量%或更低;Mn含量为0.2-0.8重量%;Al含量为0.6重量%或更低;Si含量为0.4重量%或更低;Cu和/或Sn的总含量为0.1-0.6重量%;余量为Fe和不可避免地存在的元素;在1110-1290℃下将钢坯再加热;在900℃或更高的最终变形温度下热轧钢坯,得到热轧钢板;卷绕热轧钢板;以44-70%的压缩百分率冷轧钢板并退火;对钢板进行热浸镀并任选地以0.2-1.0%的压缩百分率对钢板进行光整冷轧,这样能够改进钢板的电磁屏蔽效应和热浸镀性能。
本发明的最佳实施方案电流产生磁场,电压感应电场。在低频时,电磁波可以分解成电分量和磁分量。为了用于电磁屏蔽,该材料必须能够衰减或屏蔽电分量和磁分量。
材料对低频磁场的磁屏蔽效应取决于其改变磁通线路和造成涡流损耗的能力。在本申请中,改变磁通线路的意思是当有害磁场入射到屏蔽材料上时,屏蔽材料表面将产生能使磁场流经的线路,因此,磁场不会进入屏蔽材料内部,而是被导向它处进行分散。在本申请中,涡流损耗的意思是当磁场入射到屏蔽材料上时,在屏蔽材料上在消除磁场的方向环流的涡流使屏蔽材料表面上的波形式的磁场作为热量散发掉。较高导磁率的材料更利于改变磁通线路。另外,低频时产生的涡流损耗一般随屏蔽材料的导电率和导磁率的增加而增加。因此,在60Hz时具有高导磁率和导电率的钢板具有优秀的低频磁场屏蔽性能。
即使没有电流流过,只要产生了电势差,就会感应电场。为了防止屏蔽空间内感应电场,屏蔽空间必须处于等电位状态。对电屏蔽材料的要求是具有高体积导电率,因为较高的导电率更利于防止电势差的产生。
依本发明的发明人的经验,在时变电场如电磁波的存在下精确测量一种材料的导电率和导磁率是非常困难的。另外,制备样品的过程非常复杂,会导致导电率和导磁率测量中的很大误差。
在本发明中,对钢板屏蔽磁场和电场的能力进行测量。在这一点上,通过使用测量时变磁场下的磁屏蔽能力的装置评价低频磁屏蔽能力(韩国专利No.2000-79907和2000-80886)。至于屏蔽时变电场的能力,使用置于屏蔽室外面的60Hz的1200伏特/米的电压电源,通过测定存在屏蔽材料和不存在屏蔽材料时屏蔽室内的电场强度的比值确定。
本发明涉及能够屏蔽电磁场的高强度钢板。
除Fe外,钢板可含有各种元素。一般加入铁磁体Fe中用于改进钢板强度和耐蚀性的合金元素能够影响时变磁场(60Hz)下的最大导磁率和导电率。另外,导磁率和导电率随钢板的碳含量和晶粒大小而改变。当然,由于硬化机理如固溶硬化、晶粒尺寸细化等的变化而使钢板的机械性能随钢板组成的变化而变化。
本发明提供的一种钢板的强度适用于建筑和家具面板,即,屈服强度为22kg/mm2或更高,其电磁屏蔽能力为93%(25dB)或更高。本发明的发明人通过全面细致的实验,即,在改变钢板组成的同时测量钢板的电磁屏蔽效应和机械强度,确定了每一种组分在决定钢板的电磁屏蔽效应和强度方面的作用。具体来说,我们发现C、N、S、Si、Mn、Al、Cu和Sn对钢板的屏蔽能力和强度有重要影响。基于这些实验结果,可以得到最佳的钢组成系统。其他实验发现辅助元素如Si、Mn、Al、Cu和Sn的含量与钢板的热浸镀性能有关,这样就能够得到热浸镀性能和屏蔽能力与强度均优秀的钢组成。
从整体上讲,钢板的电磁屏蔽效应主要取决于其间隙元素如N、C和S或能够形成析出物的元素含量。例如,钢的内应力随C、N和S的含量增加而增加,其强度也由于应变硬化而增加。另外,间隙元素C、N和S分别以Fe3C、AlN和MnS的形式析出,因此增加了钢强度。
但是,增加的应力和形成的析出物将使钢的导磁率和导电率降低很多,因此将破坏钢的屏蔽性能。事实上,仅用这些间隙元素产生具有合适强度和屏蔽效率为95%(25dB)或更高的钢非常困难。
根据本发明,在钢的组成中,将对钢板的电磁屏蔽性能有致命影响的C、N和S的含量总和限定为最高0.015重量%。
为了保证钢的电磁屏蔽效应和机械成型性,C和N的含量优选均为0.0030%或更低,同时控制S含量为0.0090%。
当以上述含量使用间隙元素C、N和S时,钢的强度差。为了补偿由于间隙元素含量低所造成的强度差的情况,必须用其它元素进行固溶硬化以增加钢强度。但是,必须对用于改善强度的元素含量和种类进行限制,防止它们因为会使导磁率和导电率下降太大而破坏电磁屏蔽效应。具体来说,用钢板的热浸镀性能对辅助元素的含量和种类进行限定,因为辅助元素对热浸镀性能有非常大的影响。
本发明的钢板中含有Mn。钢板的电屏蔽能力不会随Mn含量的变化而变化,因为该元素不会影响钢板的导电率。但是,Mn含量对钢板的机械性能和磁屏蔽效应有非常大的影响。
当Mn含量达到0.2重量%时,除了能保证合适的强度外,Mn通常还对钢板的磁屏蔽效应和延伸率有好处。但是,当存在0.8重量%或更高的Mn时,进行热浸镀时就会产生镀层缺陷。考虑到Mn的这些作用,将Mn的用量确定为0.2-0.8重量%。
本发明的钢板中还含有Si。增加Si含量能够增加钢的强度,但会降低磁屏蔽效应。
在本发明中,将Si含量的上限确定为0.4重量%。如果Si含量太高,易于氧化的Si在冷轧钢板表面上会形成SiO2,该氧化物对可镀性有负面影响。
本发明的钢板中可以含有Al。Al能够改善钢的强度,会略微降低电屏蔽效应,不会大幅降低磁场屏蔽效应。在本发明中,Al的最高含量为0.6重量%。超过0.6重量%的Al会大幅降低可镀性。
在电磁屏蔽效应、机械性能和热浸镀性能方面,Al的作用类似于Si。可以认为二者作用类似的原因不仅在于这两种元素对钢板的导磁率和导电率的影响及硬化机理方面类似,而且在于这两种元素都易于在钢板表面上氧化形成氧化物,对可镀性产生负面影响。
根据本发明,钢板中含有Cu和Sn。我们发现Cu和Sn能够在改进电磁屏蔽效应的同时增加钢板强度。另外,因为它们不像Si和Al那样易于氧化,所以Cu和Sn都不会对钢板的热浸镀性能产生负面影响。
可以用由于Cu和Sn的固溶产生的硬化效应来解释Cu和Sn的强度改善机理。通常,当钢合金中发生固溶硬化时,其内应力会使导磁率降低,或者说晶粒细化使导磁率和导电率下降。尽管加入Cu和/或Sn产生固溶硬化,但是钢板的导磁率和导电率不会显著降低。可以认为加入的这些元素发展了易磁化轴<100>的组织,并且几乎没有改变晶粒的大小。
Cu和Sn能够改善钢板的强度,同时不会使磁屏蔽性能显著降低,这两种元素可单独也可结合用在本发明中。
优选将Cu和Sn的含量总和限定为0.1-0.6重量%。例如,低于0.1%时,Cu和Sn不起作用,也不能保证得到要求的强度(屈服强度为22kg/mm2或更高)。另一方面,当Cu和Sn的用量之和大于0.6%时,不仅磁屏蔽效应降低,而且在钢板上不能成功地进行热浸镀。
将Cu和Sn与Si、Al和Mn结合使用时,对电磁屏蔽和强度都有益。在本发明中,Cu、Sn、Al、Mn和Si的含量总和限定为1重量%或更低。
另外,本发明涉及钢板和热浸镀的钢板的生产方法。
首先,将按上述组成制备的钢坯再加热。在这一方面,将钢坯再加热温度(SRT)限定为1110-1290℃。
当SRT低于1110℃时,在连续加工过程中除鳞时间不充分,产生表面缺陷。或者说,低于1110℃的低温会使热轧在两相区进行(铁素体+奥氏体区),因此,在钢坯中会产生一些问题如材料性能的变化问题。另一方面,高于1290℃的SRT要求很高的能量和设备费用。另外,在1290℃的SRT下,在钢坯表面形成的氧化物层太厚,不能使钢坯除鳞,将产生表面缺陷。
在SRT范围内,(Mn,Cu,Sn)S析出物的大小随温度的提高而增加,因此能够有效地改善电磁屏蔽能力。但是,当温度超过1200℃时,钢坯中再熔融的(Mn,Cu,Sn)S将再次析出和细分散,使钢坯的晶粒变小。由于细析出物而造成的晶粒尺寸减小会阻碍晶粒在随后冷轧工艺的退火工序中生长,这将使屏蔽效应略有降低。
因此,SRT优选为1110-1200℃。
然后在900℃或更高的最终变形温度下(FDT)热轧再加热的钢坯。当FDT低于900℃时,两相区(铁素体+奥氏体区)经受热轧,造成材料性能变化和表面缺陷如桔皮现象。因此,将FDT限定为900℃或更高。
然后卷绕热轧钢板。因为热轧后热轧钢板的晶粒大小对冷轧产品中晶粒大小的影响非常大,所以优选将卷绕温度(CT)限定为610-750℃。具体地说,CT低于610℃时,晶粒生长不充分。另一方面,高于750℃的CT不会使晶粒进一步生长。
然后将卷绕的热轧钢板酸洗,酸洗后进行冷轧和退火。
一般来说,钢板的电磁屏蔽效应主要取决于其晶粒大小。具有大颗粒的钢板允许磁畴在颗粒内自由移动,因此能够改善磁屏蔽能力。因此,控制冷轧工艺条件很重要,因为冷轧工艺能够改变晶粒大小,因此对电磁屏蔽效应的影响非常大。
当冷轧过程中的压缩百分率较低时,冷轧后的热轧组织几乎没有被破坏。因此,退火时发生再结晶的成核点的数量将减少,因此退火后的晶粒尺寸会增大。但是,在连续冷轧过程中,低压缩百分率难以控制钢板形状。另外,低压缩百分率下的生产效率低。
另一方面,压缩百分率太高时,冷轧钢板的晶粒变得很细,会破坏钢板的电磁屏蔽效应。
因此,在本发明中将冷轧的压缩百分率定为50-70%。
然后在一般条件下将冷轧钢板退火,得到高强度冷轧钢板,该钢板除具有优越的热浸镀性能外还具有22kg/mm2或更高的屈服强度和在60Hz的时变电磁场下93%(25dB)或更高的屏蔽效率。
为了使具有上述组成的钢板具有耐蚀性,可以用耐腐蚀元素如锌或铝进行热浸镀。为了控制钢板的形状和粗糙度,可以对热浸镀后的钢板进行光整冷轧。
但是,光整冷轧会降低时变磁场下的导磁率,因此会破坏钢板的磁屏蔽效应。但是,不进行光整冷轧又无法控制诸如钢板畸变的缺陷。因此,优选使光整冷轧的程度尽可能小。
为了避免诸如钢板畸变的缺陷,要求延伸率至少为0.2%。另一方面,当压缩百分率超过1.0%时,钢板内会产生非常大的内应力,这样会使钢板的电磁屏蔽效应降低很多。因此,在本发明中优选以0.2-1.0%的压缩百分率进行光整冷轧。
这样的光整冷轧能有效地避免由于44-50%的低冷轧压缩百分率造成的钢板畸变。因此,当进行光整冷轧时,可以将冷轧压缩百分率由50%改变为44%。换句话说,在本发明中可以不进行光整冷轧,因为在压缩百分率为50%-70%的冷轧过程中不会产生钢板畸变。
通过用锌或铝进行热浸镀可以改善具有上述组成的高强度钢板的耐蚀性。
与未涂覆镀层的冷轧钢板相比,热浸镀钢板的电磁屏蔽能力略有提高,而其屈服强度下降。这是因为当钢板上镀锌时,冷轧钢板增厚,而锌与铁相比,导电率高,强度低。但是,热浸镀的钢板与裸钢板相比,二者在电磁屏蔽和强度方面没有可测出的差别。
镀层方法没有限定本发明的钢板的应用。因为热浸镀的钢板一般可用电镀法制成,所以可用耐腐蚀元素如锌和铝以电镀方式对本发明的钢板进行镀层。
根据本发明,可以用有机树脂层涂覆钢板以在钢板上显示颜色。用含颜料的有机树脂如聚乙烯涂覆后,被称为预涂布的金属的钢板仍然保持其以前具有的电磁屏蔽效应和机械性能方面的特征,这不仅因为树脂中含有的颜料是非磁性的,还因为这种涂层仅有25μm厚。
根据本发明,辐射效率(发射率)为0.9或更高的能发射远红外光的粉末可以在钢板的涂层上形成15-60μm厚的层。优选发射远红外光的粉末的比表面积为1m2/g或更高并含有17-99%的Mg(OH)2。
前面已对本发明进行了概述,参考本申请提供的一些具体实施例可以进一步理解本发明,这些实施例仅仅为了说明本发明,除非特别指出,这些实施例不能限制本发明。
在1250℃下将熔融组合物再加热,在保持为900℃的最终变形温度下对其热轧,得到均为2mm厚的热轧钢板,通过酸洗除去钢板上的热轧铁鳞。以50%的压缩百分率将酸洗的热轧钢板冷轧成1mm的厚度。然后在850℃下用连续退火模拟装置进行退火,得到冷轧钢板。用热浸镀模拟装置在每一种冷轧钢板上镀锌,镀层密度为300g/m2。
用电磁屏蔽效应分析器测定每一种热浸镀的钢板在60Hz时的电磁屏蔽效应,结果示于下面表1中。另外,用通用试验机测定钢板的机械性能如屈服强度和延伸率,将结果概括在下面表1中。
通过肉眼观察和实验的方法测定镀层附着性,在表1中用○表示热浸镀的钢板的可镀性好,用×表示存在致命的镀层缺陷。
表1
从表1中的数据可清楚地看到本发明的钢板(组合物1和2)的Cu、Sn和Si含量都在本发明定义的范围内,这些钢板都具有优秀的强度性能,并且没有牺牲电磁屏蔽效应。另外还发现这些钢板具有优秀的可镀性。
相反,不含Cu、Sn和Si的对比组合物1虽然具有优秀的屏蔽效应,但强度太低,不能适用于本发明。当Si含量超过0.4%时(对比组合物2和3),可镀性差,观察到由于存在未镀区域而产生的镀层缺陷。
含有Mn和/或Si、但不含Cu和Sn的对比组合物4-7的强度仅为18-22kg/mm2,达不到要求的强度(22kg/mm2或更高)。另外,其中的一些钢板具有高强度(>22kg/mm2),但不能热浸镀。特别是当Si、Al和Mn的含量总和超过1.0%时(对比组合物4),我们观察到其电磁屏蔽效应降低,特别是其热浸镀性能受到非常大的破坏。
当Cu和Sn的含量总和低于0.1%时(对比组合物8),屏蔽效应和热浸镀性能优秀,但强度低。另一方面,当Cu和Sn的含量总和超过0.6%时(对比组合物9),强度非常高,但是,我们发现磁屏蔽效应和热浸镀性能骤降。
用电磁屏蔽效应分析器测定每一种冷轧钢板在60Hz时的电磁屏蔽效应,结果示于下面表2中。另外,用通用试验机测定钢板的机械性能如屈服强度,将结果概括在下面表2中。用肉眼观察,确定其表面上是否存在铁鳞。
表2
从表2可以看出本发明的钢板(钢号1-5)都是在适当控制的再加热和卷绕温度下制备的,我们发现所有这些钢板都具有优越的电磁屏蔽性能,并且除鳞完全,没有形成热轧钢板缺陷。
具体来说,当钢坯的再加热温度(SRT)在本发明定义的范围内时,电磁屏蔽效应有非常大的提高。电磁屏蔽效应提高的原因可以认为是组分Mn、Cu和Sn与杂质S的(Mn,Cu,Sn)S集合体不再重新析出,因此,(Mn,Cu,Sn)S析出物和晶粒仍然是粗糙的。
对于SRT大于1200℃的钢号1和2,除鳞进行的很充分,能够防止表面缺陷,但是在再加热后的冷却工序中会产生新的析出物(Mn,Cu,Sn)S,使晶粒变小。因此,钢号为1和2的钢板的电磁屏蔽效应比钢号为3-5的低。因此,优选将SRT限定为1110-1200℃。
相反,当SRT小于1110℃时(对比钢号1),充分的除鳞时间难以保证。因此,在冷轧钢板表面上形成缺陷,这些缺陷会接着残留在热浸镀的钢板表面上。
当FDT小于900℃时,两相区(铁素体+奥氏体区)经受热轧,造成材料性能变化和钢板变形及许多表面缺陷(对比钢2和3)。
另外,当卷绕温度小于600℃时(对比钢号4),因为晶粒变小而使得电磁屏蔽效应骤降。
从表2可清楚地看到高卷绕温度能够提高电磁屏蔽能力,但钢板的强度降低。这是因为晶粒在高温下生长,这样能够改进钢板在时变电磁场下的导磁率和导电率。
在1200℃下将熔炼组合物再加热后,将其制成热轧钢板,其厚度为1.8、2.0、3.0和4.0mm,而将FDT和CT分别设定为910℃和680℃。然后以表3所示的不同的压缩百分率将钢板冷轧成1mm的厚度。在850℃下退火,然后用锌对这些钢板进行热浸镀,镀层密度为180g/m2。以不同的压缩百分率对得到的一些热浸镀的钢板进行光整冷轧。
用电磁屏蔽效应分析器测定每一种冷轧钢板在60Hz时的电磁屏蔽效应,结果示于下面表3中。另外,用通用试验机测定钢板的机械性能(屈服强度),将结果概括在下面表3中。用肉眼观察冷轧钢板,确定钢板上是否有形状缺陷(钢板变形)。
表3
从表3可以看出冷轧压缩百分率为44-70%,光整冷轧压缩百分率为0.2-1.0%的本发明的钢板(钢号1-6)均具有优秀的电磁屏蔽效应,其形状没有变形。冷轧压缩百分率控制在50-70%范围内的钢号1和2即使不进行光整冷轧,也具有优秀的电磁屏蔽性能和机械性能及优秀的钢板构形。
相反,在冷轧压缩百分率小于50%且没有进行光整冷轧的对比钢号1中观察到钢板变形的缺陷。当冷轧压缩百分率大于70%时(对比钢号2和3),其电磁屏蔽效应骤降。
当光整冷轧压缩百分率大于1.0%时(对比钢4),在钢中会引入大的应力,导致其在时变电磁场下的导磁率和导电率下降,并因此导致其电磁屏蔽效应降低。
工业实用性如上所述,控制Cu和Sn的含量在具有下述性能的钢板和热浸镀钢板的生产中是有用的屈服强度为22kg/mm2或更高,在60Hz的时变电磁场下的屏蔽效率为93%或更高(25dB或更高)。
权利要求
1.一种高强度钢板,所述的钢板是由含下述元素的组合物制成的C、N和S的总含量为0.0150重量%或更低;Mn含量为0.2-0.8重量%;Al含量为0.6重量%或更低;Si含量为0.4重量%或更低;Cu和/或Sn的总含量为0.1-0.6重量%;余量为Fe和不可避免地存在的元素,该钢板具有优秀的电磁屏蔽效应和热浸镀性能。
2.根据权利要求1的高强度钢板,其中,Mn、Cu、Sn、Si和Al的含量总和为1.0%或更低。
3.根据权利要求1的高强度钢板,其中,C和N的含量均为0.0030重量%或更低,S含量为0.0090重量%或更低。
4.根据权利要求1的高强度钢板,其中,1mm厚的所述钢板的电磁屏蔽效应为25dB或更高,其屈服强度为22kg/mm2或更高。
5.根据权利要求1-4任一项的高强度钢板,其中所述的钢板上包括热浸镀的耐腐蚀性元素镀层。
6.根据权利要求5的钢板,其还包括在热浸镀镀层上的有机树脂涂层。
7.根据权利要求5的钢板,其中的热浸镀镀层上覆有辐射效率为0.9的远红外辐射发射粉末层,所述粉末层的厚度为15-60μm。
8.根据权利要求7的钢板,其中的远红外辐射发射粉末的比表面积为1m2/g并含有17-99重量%的Mg(OH)2。
9.一种生产高强度钢板的方法,所述的方法包括下述步骤提供一种含有下述元素的钢坯C、N和S的总含量为0.0150重量%或更低;Mn含量为0.2-0.8重量%;Al含量为0.6重量%或更低;Si含量为0.4重量%或更低;Cu和/或Sn的总含量为0.1-0.6重量%;余量为Fe和不可避免地存在的元素;在1110-1290℃下将钢坯再加热;在900℃或更高的最终变形温度下热轧钢坯,得到热轧钢板;然后卷绕热轧钢板;以50-70%的压缩百分率冷轧钢板并退火,该方法能够改进钢板的电磁屏蔽效应。
10.根据权利要求9的方法,其中的Mn、Cu、Sn、Si和Al的含量总和为1.0%或更低。
11.根据权利要求9的方法,其中的C和N的含量均为0.0030重量%或更低,S含量为0.0090重量%或更低。
12.根据权利要求9的方法,其中在1110-1200℃下进行再加热步骤。
13.根据权利要求9的方法,其中在610-750℃下卷绕钢板。
14.一种生产高强度的热浸镀的钢板的方法,包括下述步骤提供一种含有下述元素的钢坯C、N和S的总含量为0.0150重量%或更低;Mn含量为0.2-0.8重量%;Al含量为0.6重量%或更低;Si含量为0.4重量%或更低;Cu和/或Sn的总含量为0.1-0.6重量%;余量为Fe和不可避免地存在的元素;在1110-1290℃下将钢坯再加热,在900℃或更高的最终变形温度下热轧钢坯,得到热轧钢板,卷绕热轧钢板;以44-70%的压缩百分率冷轧钢板并退火;和对钢板进行热浸镀并任选地以0.2-1.0%的压缩百分率对钢板进行光整冷轧,该方法能够改进钢板的电磁屏蔽效应和热浸镀性能。
15.根据权利要求14的方法,其中以50-70%的压缩百分率进行冷轧步骤并省略光整冷轧步骤。
16.根据权利要求14的方法,其中的Mn、Cu、Sn、Si和Al的含量总和为1.0%或更低。
17.根据权利要求14的方法,其中的C和N的含量均为0.0030重量%或更低,S含量为0.0090重量%或更低。
18.根据权利要求14的方法,其中在610-750℃下卷绕钢板。
全文摘要
本发明公开了一种具有优秀的电磁屏蔽能力的高强度钢板及其生产方法。该钢板是用含下述元素的组合物制成的C、N和S的总含量为0.0150重量%或更低;Mn含量为0.2-0.8重量%;Al含量为0.6重量%或更低;Si含量为0.4重量%或更低;Cu和/或Sn的总含量为0.1-0.6重量%;余量为Fe和不可避免地存在的元素,该钢板具有优秀的电磁屏蔽效应和热浸镀性能。
文档编号C21D9/46GK1401212SQ01804992
公开日2003年3月5日 申请日期2001年12月19日 优先权日2000年12月19日
发明者金逸荣, 李在永, 孙晋君, 赵雷夏, 郭荣镇, 权纯宙, 金容敏, 李贞植 申请人:Posco公司, 浦项产业科学研究院