一种用等离子体制备的一维金属纳米材料及其方法

文档序号:3380582阅读:228来源:国知局
专利名称:一种用等离子体制备的一维金属纳米材料及其方法
技术领域
本发明涉及金属的纳米材料技术,特别提供了一种含有铝的复合金属一维纳米材料及其制备方法。
背景技术
纳米材料是由尺寸在1~1000纳米的超细微粒组成,制备状态大多为粉状,需要压制烧结成块体,也可以直接是块体、薄膜或纳米颗粒附着在载体上。纳米晶体属于原子和宏观物体的过渡区,展现出既不同于晶态的长程有序,也不同于非晶态的短程有序的结构特征,表现出许多奇异的微观性能,如量子限域效应、小尺寸效应、表面界面效应、宏观量子隧道效应等,由此使纳米材料呈现出许多奇特的物理化学性能,如优良的力学性能、特殊的磁性能、高的导电性能、高的反应活性和催化活性以及吸收电磁波的性能。
当材料的形状为棒状或线状复合的一维金属纳米材料是指横向尺寸在1~500纳米,而纵向尺寸为横向尺寸的3倍以上。
等离子体是电离了的气体,它是由电子,离子和中性粒子组成。其中电子和离子的总数基本相等,因而作为整体是电中性的,若等离子体一旦出现电荷分离,立即就会产生巨大的电场。
电子温度在电弧放电过程中,电子在电场中获得的能量w=1eV,电子的电荷量为e=1.6×10-19库仑,V=1伏特,因而可以得到1eV=1.6×10-19库仑×1伏特=1.6×10-19焦耳。根据温度的微观定义,E=W=3/2 kT=1eV=1.6×10-19焦耳,把玻耳兹曼常数代入便可得到电子温度TT=11600K气体电弧放电中,外部电源将能量传递给电子,因为电子是电流的载流体。电子直接从电源中获得能量,因而温度比较高。离子主要是通过跟电子的碰撞获得能量。在每一次电子跟离子的碰撞中,由于两者质量相差很大,电子只是把自己很少的一部分能量传递给离子。电子虽然在碰撞中损失掉一小部分能量,却同时又从外部电源中继续获得了能量,在等离子体中,电子温度和离子温度不同。在本发明中电子温度高于离子温度。在等离子体中高温未必非常热,如在日光灯中。这是因为尽管电子动能很大,但数量很少。
德拜长度。
粒子无规则运动所引起的电荷分离尺度是由德拜(Debye)长度λD来描述,它与电子温度Te的平方根成正比,而与电子数密度n的平方根成反比。
λD=(ε0k Te/e2ne)1/2德拜长度定量的描述了等离子体由于某种原因引起的局部电荷分离,使电中性受到破坏的程度。也可以把λD看作电离气体是否是等离子体的一个衡量尺度。
在电弧放电产生的等离子体中德拜长度为7×10-7米,温度是104K,密度是1014cm-3。在温度是300K时,等离子体中德拜长度为7×10-9米,为7纳米。
等离子体中电子和离子间的静电吸引力使其不断的振荡,振荡頻率f为f=9000(n)1/2/秒,等离子体密度n越大,振荡頻率越高。
具有稳定结构的一维纳米材料倍受关注。但是由于纳米金属粒子的粒径小、比表面大,在空气中极易氧化,因而难以应用。当然这个问题在金属纳米粉末材料中普遍存在,不仅限于一维纳米材料。

发明内容
本发明的目的是提供一种用等离子体制备的一维纳米材料及其方法。
本发明提供一种用等离子体制备的一维金属纳米材料(纳米棒或纳米线),其特征在于所述的一维金属纳米材料线束长度大于1mm,一维金属纳米材料的表面覆有一层氧化铝,一维金属纳米材料内部是非晶态的Fe、Co、Ni、Cu、Cr之一种或者其与Al的固溶体。
本发明又提供一种用等离子体制备一维金属纳米材料(纳米棒或纳米线)的方法,纳米棒或纳米线的径向尺寸(或横截面的宽度)在500纳米以内,而该材料的长度和径向尺寸的比值大于3的金属纳米材料,采用电弧放电产生等离子体的制备方法,其特征在于所用消耗阳极的成分是,原子百分比,Al 3~70%,Fe、Co、Ni、Cu、Cr之一种97~30%;制备过程在氩气气氛中进行,氩气压强为0.001~0.5MPa。
电弧放电是在密闭的带水冷的装置中的下半部和氩气中进行的,使Fe、Co、Ni、Cu、Cr中的一种金属元素和金属铝粉被电离,形成准电中性的等离子体,等离子体被束缚在带水冷的装置中,在装置上半部,准电中性的等离子体的条件被破坏,使在等离子体中被电离的元素急剧析出,因为铝的熔点较低,Fe、Co、Ni、Cu或Cr可在德拜长度的尺度内迅速凝固,而生成一维的纳米线,或者准电中性的等离子体的条件被破坏较早,则有纳米棒生成,从而制备出一种一维的含铝的金属纳米材料。
本发明提供的用等离子体制备一维金属纳米材料的方法,所用氩气中可以混有氢气和/或氮气,氢气和/或氮气的分压为0.01~0.1Mpa。
本发明提供的用等离子体制备一维金属纳米材料的方法,所用阴极可以是金属钨、含钨的合金或石墨,电弧放电过程中,电流和电压随工作状况而变化的,在开始时为5~25A然后加大到15~1000A,电压为5~100V。
本发明提供的用等离子体制备一维金属纳米材料的方法,所用阳极可以是水冷阳极,水冷阳极和消耗阳极之间可以有铜板,铜板厚度为3~150mm,改善阳极与靶材间的导电导热性能。
本发明提供的用等离子体制备一维金属纳米材料的方法,所述消耗阳极可以是铝粉与Fe、Co、Ni、Cu、Cr粉之一种混合、压制成形的靶材,压力为0.1MPa~2GPa。
本发明提供的用等离子体制备一维金属纳米材料的方法,所述的靶材可以在压制后再烧结,烧结温度为100~1000℃。
本发明提供的用等离子体制备一维金属纳米材料的方法,所述烧结过程可以在真空或的非氧化气氛中进行,防止氧化。
本发明提供的用等离子体制备一维金属纳米材料的方法,所述烧结可以在氧化物覆盖下进行。
本发明提供的用等离子体制备一维金属纳米材料的方法,所述铝粉的纯度,按重量计,不低于95%,Fe、Co、Ni、Cu、Cr粉纯度不低于96%,粉的粒径在1微米至2毫米之间;以保证纳米材料的质量。
本发明提供的用等离子体制备一维金属纳米材料的方法的优点在于制得的纳米线束长,纳米线稳定,纳米线的直径小;对于Fe、Co和Ni的一维金属纳米材料,则被磁铁吸引,显铁磁性。


图1是本发明提供的用等离子体制备一维金属纳米材料的方法所用的设备;图2是以Fe85Al15(原子%)粉,压成的块体作为靶材,用电弧放电产生的等离子体制备纳米线束照片;图3是以Fe85Al15(原子%)粉,压成的块体作为靶材,用电弧放电产生的等离子体制备纳米线束的透射电镜照片;图4是以Fe85Al15(原子%)粉,压成的块体作为靶材,用电弧放电产生的等离子体制备纳米线束的微观照片;图5是以Fe85Al15(原子%)粉,压成的块体作为靶材,用电弧放电产生的等离子体制备纳米线束及纳米粉的透射电镜暗场(衍射)照片;图6是以Fe85Al15(原子%)粉,压成的块体作为靶材,用电弧放电产生的等离子体制备纳米线束及纳米粉的与图5中亮区对应的透射电镜衍射像,证明亮区是铁;图7是以Fe85Al15(原子%)粉,压成的块体作为靶材,用电弧放电产生的等离子体制备纳米线束及纳米粉的X光衍射谱;图8是以Cr70Al30(原子%)粉,压成的块体作为靶材,用电弧放电产生的等离子体制备纳米棒的透射电镜照片;图9是以Fe70Al30(原子%)粉,压成的块体,盖上氧化铝粉,在700℃烧结1小时后,作为靶材,用电弧放电产生的等离子体制备纳米棒的透射电镜照片;图10是以Co70Al30(原子%)粉,压成的块体,盖上氧化铝粉,在800℃烧结1小时后,作为靶材,用电弧放电产生的等离子体,制备纳米棒的透射电镜照片;图11是以Co94.7Al5.3(原子%)粉,压成的块体,盖上氧化铝粉,在800℃烧结3小时后,作为靶材,用电弧放电产生的等离子体,制备纳米棒的透射电镜照片;图12是以Ni95Al5(原子%)粉,压成的块体,盖上氧化铝粉,在800℃烧结3小时后,作为靶材,用电弧放电产生的等离子体,制备纳米棒的透射电镜照片;图13是以Cu60Al40(原子%)粉,压成的块体,盖上氧化铝粉,在800℃烧结后,作为靶材,用电弧放电产生的等离子体,制备纳米棒的透射电镜照片。
具体实施例方式实施例1所用设备见图1,其中1是带水冷的铜电极支柱;2是半圆状挡板;3和4分别是阳极水冷的铜电极冷却水的入口和出口接阳极的水冷铜电极;5是观察孔;6是纯铜坩锅;7是抽真空的机械泵和扩散泵;8是带水冷的收集腔;9作为阳极由铝粉和铁(或鈷、镍、铜、鉻)粉的压成的靶;是作为阴极的钨或钨合金;10、11分别是阴极水冷的铜电极冷却水的入口和出口;12是直流电源接阴极的水冷铜电极;13是充气孔;14是圆状水冷铜电极和15是水冷的圆柱状金属筒。
以Fe85Al15(原子%)粉,在压强1GPa下压成的块体作为靶材,在电压8~40V、放电电流10~250A下,用电弧放电产生的等离子体制备纳米线束的全长约300毫米,部分纳米线束的宏观照片见图2,纳米线束的透射电镜照片见图3,纳米线束透射电镜的局部照片见图4,纳米线束及纳米粉的透射电镜暗场(衍射)照片见图5,纳米线束及纳米粉的透射电镜衍射像(衍射环对应的晶体成份是Fe)见图6,纳米线束及纳米粉的X光衍射谱(其主相是Fe)见图7。
Fe在等离子体中电离的元素急剧析出,因为铝的熔点较低,Fe在德拜长度的尺度内迅速凝固,而生成一维的纳米线,其中(1)纳米线束的长度约为100毫米,(2)纳米线束的长度约为60毫米,(3)纳米线束的长度约为28毫米,(4)纳米线束的长度约为5毫米。
纳米线束的直径为40~50纳米,每根线的直径为3.6~3.9纳米。对应着生成的等离子体的德拜长度。因为电子温度Te与电子数密度n不同,不同工作状况产生等离子体的德拜长度不同,即便在严格控制条件下,等离子体的德拜长度也会略有不同。
以Fe85Al15(原子%)粉,压成的块体作为靶材,用电弧放电产生的等离子体制备纳米线束及纳米粉的表面成份(2纳米以内)测量后,半定量计算结果见表1。
实施例2所用设备见图1。以Cr70Al30(原子%)粉,在压强800MPa下压成的块体作为靶材,在电压5~50V、放电电流10~600A下,用电弧放电产生的等离子体制备纳米棒的透射电镜照片见图8,纳米棒的直径不均匀,在5~50纳米,之间。纳米线束及纳米粉的表面成份(2纳米以内)测量后,半定量计算结果见表1。
表1(原子%)

实施例3所用设备见图1。以Fe70Al30(原子%)粉,压成的块体,盖上氧化铝粉,在700℃烧结1小时后,作为靶材,在电压8~25V、放电电流10~180A下,用电弧放电产生的等离子体制备纳米棒的透射电镜照片见图9,纳米棒的直径不均匀,在5~80纳米,之间。
实施例4所用设备见图1。以Co70Al30(原子%)粉,压成的块体,盖上氧化铝粉,在800℃烧结1小时后,作为靶材,在电压10~35V、放电电流10~300A下,用电弧放电产生的等离子体,制备纳米棒的透射电镜照片见图10,纳米棒的直径不均匀,在9~20纳米之间。纳米线束及纳米粉的表面成份(2纳米以内)测量后,半定量计算结果见表1。
实施例5所用设备见图1。以Co94.7Al5.3(原子%)粉,压成的块体,盖上氧化铝粉,在800℃烧结3小时后,作为靶材,在电压5~25V、放电电流5~150A下,用电弧放电产生的等离子体,制备纳米棒的透射电镜照片见图10,纳米棒的直径不均匀,在9~40纳米之间。
实施例6所用设备见图1。以Ni95Al5(原子%)粉,压成的块体,盖上氧化铝粉,在800℃烧结3小时后,作为靶材,在电压5~60V、放电电流10~500A下,用电弧放电产生的等离子体,制备纳米棒的透射电镜照片见图12,纳米棒的直径不均匀,外形象大头针,长度约120纳米。
实施例7所用设备见图1。以Cu60Al40(原子%)粉,压成的块体,盖上氧化铝粉,在800℃烧结后,作为靶材,在电压10~36V、放电电流10~300A下,用电弧放电产生的等离子体,制备纳米棒的透射电镜照片见图13,纳米棒的直径不均匀,外形象大头针,长度约100纳米。
权利要求
1.一种用等离子体制备的一维金属纳米材料,其特征在于所述的一维金属纳米材料线束长度大于1mm,一维金属纳米材料的表面覆有一层氧化铝,一维金属纳米材料内部是非晶态的Fe、Co、Ni、Cu、Cr之一种或者其与Al的固溶体。
2.一种用等离子体制备一维金属纳米材料的方法,采用电弧放电产生等离子体的制备方法,其特征在于所用消耗阳极的成分是,原子百分比,Al3~70%,Fe、Co、Ni、Cu、Cr之一种97~30%;制备过程在氩气气氛中进行,氩气压强为0.001~0.5MPa。
3.按照权利要求2所述的用等离子体制备一维金属纳米材料的方法,其特征在于所用氩气中混有氢气和/或氮气,氢气和/或氮气的分压为0.01~0.1MPa。
4.按照权利要求2所述的用等离子体制备一维金属纳米材料的方法,其特征在于所用阴极是金属钨、含钨的合金或石墨,电弧放电的电流为5~1000A,电压为5~100V。
5.按照权利要求2所述的用等离子体制备一维金属纳米材料的方法,其特征在于所用阳极为水冷阳极,水冷阳极和消耗阳极之间有铜板,铜板的厚度为3~150mm。
6.按照权利要求2所述的用等离子体制备一维金属纳米材料的方法,其特征在于所述消耗阳极是铝粉与Fe、Co、Ni、Cu、Cr粉之一种混合、压制成形的靶材,压力为0.1MPa~2GPa。
7.按照权利要求2所述的用等离子体制备一维金属纳米材料的方法,其特征在于所述靶材在压制后再进行烧结,烧结温度为100~1000℃。
8.按照权利要求6所述的用等离子体制备一维金属纳米材料的方法,其特征在于所述的烧结过程在真空或氮气、氩气、二氧化碳、氢气的非氧化气氛中进行。
9.按照权利要求6所述的用等离子体制备一维金属纳米材料的方法,其特征在于所述的烧结过程在氧化物覆盖下进行。
10.按照权利要求6~9之一所述的用等离子体制备一维金属纳米材料的方法,其特征在于所述铝粉的纯度,按重量计,不低于95%,Fe、Co、Ni、Cu、Cr粉纯度不低于96%,粉的粒径在1微米至2毫米之间。
全文摘要
本发明提供一种用等离子体制备的一维金属纳米材料(纳米棒或纳米线),所述的一维金属纳米材料线束长度大于1mm,一维金属纳米材料的表面覆有一层氧化铝,一维金属纳米材料内部是非晶态的Fe、Co、Ni、Cu、Cr之一种或者其与Al的固溶体。其方法是采用电弧放电产生等离子体的制备方法,所用消耗阳极的成分是,原子百分比,Al3~70%,Fe、Co、Ni、Cu、Cr之一种97~30%;制备过程在氩气气氛中进行,氩气压强为0.001~0.5MPa。本发明提供的用等离子体制备一维金属纳米材料的方法的优点在于制得的纳米线束长,纳米线稳定,纳米线的直径小;对于Fe、Co和Ni的一维金属纳米材料,则被磁铁吸引,显铁磁性。
文档编号B22F9/14GK1626300SQ20031011905
公开日2005年6月15日 申请日期2003年12月12日 优先权日2003年12月12日
发明者耿殿禹, 张志东, 张维山, 李万锋, 司平占, 李耀标, 陈圣林, 刘伟, 赵新国, 熊定康 申请人:中国科学院金属研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1