纳米多层结构、部件以及相关的生产方法

文档序号:3265445阅读:169来源:国知局
专利名称:纳米多层结构、部件以及相关的生产方法
技术领域
本发明总体涉及纳米多层结构、部件以及相关的生产方法。更具体地说,本发明涉及在高温下使用的纳米多层涂层体系以及用来在诸如燃气轮机部件、航空器发动机部件及类似部件上沉积涂层体系的相关方法。
背景技术
在很多工程应用中,为了满足日益增加的性能和效率需求,工作温度提高了。例如,在燃气轮机、航空器发动机等的燃气管道的温度已经提高到远远超过约1400℃。因此,这些燃气轮机、航空器发动机等的部件经常被暴露在超过约1000℃的温度下。为了承受如此高的温度,这些部件通常由高温镍、钴或铁基超合金制成。这些部件也由被称作热绝障涂层的环境或热阻隔涂层保护。
然而,常规的高温涂层体系,例如MCrAlY和铝合物通常被开发以增强抗氧化性能,而耐磨性、抗冲击性、耐腐蚀性以及间隙控制却没有得到增强。因此,在温度超过约1000℃时,这些涂层体系没有保持它们的硬度,也没有表现出足够的耐磨性、抗冲击性、耐腐蚀性和控制间隙性。常规的热喷涂涂层体系,例如碳化钨和碳化铬以及常规的相加强涂层体系,例如Triballoy 800也是如此。同样地,常规的陶瓷热阻隔涂层在温度超过大约1000℃时,不具有所需要的韧性也没有展现足够的耐磨性、抗冲击性、耐腐蚀性和控制间隙性。
因此,我们所需要的是一种在温度超过约1000℃时提供增强的耐磨性、抗冲击性、耐腐蚀性和控制间隙性的涂层体系。在如此高的温度下,该涂层体系必须保持其硬度、韧性和抗氧化性。最后,该涂层体系必须能够通过使用常规的沉积方法沉积在例如燃气轮机部件、航空器发动机部件以及类似部件上。

发明内容
在本发明的各种实施方案中,本发明的高温纳米多层结构、部件以及相关的生产方法利用了许多交替的金属合金和氧化陶瓷层。这些金属合金和氧化陶瓷层的选择应使其尤其是在温度超过约1000℃时展现出足够的内在抗氧化性,并且能够相互粘贴。每一层金属合金层和氧化陶瓷层的厚度均为纳米级,因此,纳米多层涂层体系的厚度是微米级。所使用的金属合金层和氧化陶瓷层的数目可以根据每一层金属合金和氧化陶瓷层的厚度以及纳米多层涂层体系的所需厚度而改变。当遇到热机械应力的时候,可以独立地调节金属合金和氧化陶瓷层的厚度以控制纳米多层涂层体系的硬度、应变容许量及其整体稳定性。
在本发明的一个实施方案中,适合应用于高温应用的纳米多层结构包括许多每一层的厚度是纳米级的金属合金层,以及以交替的方式排列于该许多金属合金层之间的每一层的厚度是纳米级的许多氧化陶瓷层。
在本发明的另一个实施方案中,高温部件包括一个具有表面的基片和位于该基片表面上的纳米多层结构。该纳米多层结构包括许多每一层的厚度是纳米级的金属合金层,以及以交替的方式排列于该许多金属合金层之间的每一层的厚度是纳米级的许多氧化陶瓷层。
在本发明的更进一步的实施方案中,生产适用于高温应用的纳米多层结构的方法包括提供一个具有表面的基片。该方法还包括接近于基片表面设置许多的金属合金层,其中,该许多金属合金层中的每一层的厚度是纳米级。该方法进一步还包括将许多氧化陶瓷层接近于基片表面设置并且以交替的方式设置于该许多金属合金层之间,其中该许多氧化陶瓷层的每一层的厚度是纳米级。


图1是本发明高温纳米多层结构的一个实施方案的横截面侧视图,其包括排列在基片表面的许多金属合金和氧化陶瓷层;和图2是生产图1所示的高温纳米多层结构的方法的一个实施方案的流程图。
具体实施例方式
本发明的高温纳米多层结构、部件及相关的生产方法基于以下前提层状结构比其它能够预想的混合方式表现出更高的硬度和更好的耐磨性、抗冲击性、耐腐蚀性以及控制间隙性。上述前提之所以成立,是因为当不同弹性模量和晶体结构的材料交替层叠放在一起时,该结构的抗位错性总体上提高了。这是由当它们被迫通过相对较窄的流道时位错所经历的塑性收缩、从一层传送到另一层的像力以及相邻层之间的弹性模量失配所引起的。换句话来说,在相对呈延性的层中的塑性流动受到比较脆性的层制约,位错运动受到聚积机理、像力和弹性模量失配效应的限制。在比较脆性的层中所引发的裂纹被相对延性的层所钝化,在主拉伸应力定向变化的情况下,由于在层界面连续偏转,裂纹不能沿固定的路径行进。
纳米多层涂层体系已经被开发应用于诸如刀具及类似领域。通常纳米多层涂层体系包括许多交替组成的氮化物层,如Ti-TiN,TiN-TiAlN,TiN-NbN,TiN-TaN或TiN-VN。每一层氮化物层的厚度在大约0.1nm和大约30nm之间,其以大约0.5微米到大约20微米的总厚度被涂于相对硬的基底上,例如淬火工具钢,硬质碳化钨钴等等。同样地,纳米多层涂层体系可以包括多种金属氮化物、金属碳化物和氧化铝(例如伽马氧化铝)和/或碳氮化物,它们形成许多的没有整齐间距的非周期层或者形成一个具有连续变化组成的结构。这些金属可以包括Ti,Nb,Hf,V,Ta,Mo,Zr,Cr,W,Al或它们的混合物。然而,由于氮化物基纳米多层涂层体系等容易氧化,因此不适合应用于温度超过约600℃的情况。在相对较低的厚度时,氮化物基纳米多层涂层体系及类似体系还不适合用于相对柔软的基底,例如,铜、铝、铜合金以及铝合金等等,这是因为与所接触的凸凹不平相关的应力场可以使基底材料塑性变形,引起涂层材料剥离。
在各种实施方案中,本发明的高温纳米多层结构、部件以及相关的生产方法利用了许多交替的金属合金层和氧化陶瓷层。这些金属合金层和氧化陶瓷层是经过选择的,因此,尤其是在温度超过约1000℃时,它们表现出足够的内在抗氧化性并且相互粘合。优选地,每一层金属合金层和氧化陶瓷层的厚度在大约3nm和大约200nm之间,导致纳米多层涂层体系的厚度在大约3微米到大约200微米之间。所使用的金属合金层和氧化陶瓷层的数目可以根据每一层金属合金层和氧化陶瓷层的厚度以及纳米多层涂层体系所需的厚度而改变。当受到热机械应力的影响时,金属合金层和氧化陶瓷层的厚度可以单独调节以控制纳米多层涂层体系的硬度、应变容许量和整体稳定性。
参照图1,在本发明的一个实施方案中,纳米多层结构由一个包括许多以交替方式排列在许多氧化陶瓷层14之间的金属合金层12的纳米多层涂层体系10组成。优选地,每层金属合金层12和氧化陶瓷层14的厚度16为大约3nm到大约200nm之间,更加优选在大约10nm至大约100nm之间,因此,纳米多层涂层体系10的厚度18介于大约3微米至大约200微米之间,更加优选大约5微米至大约150微米之间。所使用的金属合金层12和氧化陶瓷层14的数目,可以依据每一层金属合金层12和氧化陶瓷层14的厚度16以及纳米多层涂层体系10的所需厚度18而改变。
所述的许多金属合金层12每一层可以由以下材料组成,例如,镍铝(NiAl),掺Hf镍铝(NiAl(Hf),掺Zr镍铝(NiAl(Zr)),铂铝(PtAl)或者MCrAlY,其中M至少为镍、铁、铁、钴和它们的结合中的一种。所述的许多的氧化陶瓷层14的每一层可以由,例如,氧化铝、氧化钇、氧化锆、氧化钇稳定氧化锆(YSZ)、氧化铪、钇基金刚砂、莫来石或类似物组成。然而,其它合适的材料也可以使用。
参照图2,在本发明的另一实施方案中,本发明的纳米多层涂层体系10(图1)的生产方法30包括为接下来的涂敷预备基底20(图1)的表面。(方框32)。例如,基底20的表面可以经过喷砂处理,抛光,化学清洗,超声波清洗,脱脂或它们的结合来预备。如上所述,基底可以包括例如用来形成燃气轮机部件、航空器发动机部件等的高温镍、钴或铁基超合金等等。当基底20的表面为接下来的涂敷做好准备以后,第一金属合金层12(图1)通过使用本领域普通技术人员所公知的物理或化学气相沉积法,例如,化学气相沉积法(CVD)、等离子增强化学气相沉积法(PECVD)、电子束物理气相沉积法、阴极电弧涂敷法、溅射、等离子区涂敷法等等沉积在基底20的表面上。(方框34)。作为选择,本领域普通技术人员也已经公知的热喷涂技术,例如,火焰喷镀、等离子体喷镀,高速氧燃油雾化喷镀等等也可以用来沉积第一层金属合金层12以及后来的合金层。然后将第一层氧化陶瓷层14(图1)沉积在邻接基底20表面的第一层金属合金层12上。(方框36)。然后,将第二层金属合金层12沉积在接近于基底20表面的第一层氧化陶瓷层14上,(方框38),将第二层氧化陶瓷层14沉积在接近于基底20表面的第二层金属合金层12上,(方框40),等等。作为选择,可以在沉积任何金属合金层12之前,将氧化陶瓷层14沉积在基底20的表面上。在一个实施方案中,第一层氧化陶瓷层14和后来的氧化陶瓷层的沉积是使用本领域普通技术人员所公知的物理或化学气相沉积法,例如,化学气相沉积法(CVD)、等离子增强化学气相沉积法(PECVD)、电子束物理气相沉积法、阴极电弧涂敷法、溅射、等离子区涂敷法等等。在另一个实施方案中,本领域普通技术人员也已经公知的热喷涂技术,例如,火焰喷镀、等离子体喷镀,高速氧燃油雾化喷镀等可以用来沉积第一层氧化陶瓷层14和后来的陶瓷氧化层。最后,纳米多层涂层体系10可以在大约600℃至大约1400℃的温度范围内,或者在高达该纳米多层涂层体系的熔化温度约80%的高温下进行热处理。(方块42)。在一个实施方案中,纳米多层涂层体系10是在大约600℃至900℃的温度范围内进行热处理。
下面的例子对实施本发明的本领域的普通技术人员提供附加指导,其仅仅是有助于本发明教导的代表性操作。从而,该例子并不是打算以任何方式,像所附权利要求书所限定的那样用来限定本发明。
例如,两种多层纳米复合材料Cu-Mo和Ni20Cr-ZrO2(7Y2O3)(在本领域也被称为氧化钇稳定氧化锆,ZrO2(7Y2O3),或7YSZ)是通过溅射生产的。能够使用DC或RF电压沉积导电和绝缘薄膜的侧面溅射系统被用来生产这两种纳米多层薄膜材料。另外,该溅射系统可以用来在薄膜沉积前,在真空中清洁基底。
在典型的试验中,载玻片、氧化硅导片、硅晶片和镀Cr钢基底被固定于垂直安装在溅射系统的真空室内部的顶板或底板上。通过计算机可控程序,底板能够移动到真空装载锁,NiCr溅射靶,7YSZ溅射靶或溅射浸蚀区域。第一步,安装有基底的底板经过真空装载锁被送入真空室中,紧接着被送到溅射浸蚀区域,在这里固定的基底被Ar+粒子在0.8kv电压和10mTorr Ar压力下轰击30秒而清洁。第二步,底板以50cm/min的速度,在2kv电压和12m Torr Ar压力下横穿NiCr溅射靶区域以在基底上沉积50nm厚的NiCr。第三步,底板以5cm/min的速度,在0.52KW电功率和15mTorr Ar压力下横穿7YSZ溅射靶区域以在基底上沉积50nm厚的YSZ。然后,将第二和第三步骤再另外重复49次,从而生产具有50层50nm Ni20Cr和50层50nm 7YSZ的纳米多层薄膜,其总厚度为5微米。相似的程序可以用来生产层厚度为从大约1nm到大约1000nm范围内任何层厚度的多层薄膜,该程序只受完成单一和多步溅射步骤所需要的时间的限制。
虽然在本发明中已经参照优选实施方案和例子对本发明进行了举例说明和描述,然而,很显然对本领域的普通技术人员来说,其它方案和实施例可以起到相似的作用和/或达到相同的效果。所有此类等同的实施方案和例子都在本发明的精神和范围内,并且打算被以下的权利要求书所覆盖。
零件表

权利要求
1.一种适用于高温应用的纳米多层结构(10),其包括许多金属合金层(12),该许多金属合金层(12)每一层的厚度(16)是纳米级;和以交替的方式排列在所述许多金属合金层(12)之间的许多氧化陶瓷层(14),该许多氧化陶瓷层(14)每一层的厚度(16)是纳米级。
2.权利要求1所述的结构(10),其中所述的许多金属合金层(12)中的每一层包括一种选自由镍铝,掺Hf镍铝,掺Zr镍铝,铂铝和McrAlY合金所组成的组中的材料,其中M包括镍、铁、钴以及它们的组合中的至少一种。
3.权利要求1所述的结构(10),其中所述的许多氧化陶瓷层(14)中的每一层包括选自由氧化铝、氧化钇、氧化锆、氧化钇稳定氧化锆、氧化铪、钇基金刚砂和莫来石所组成的组中的至少一种材料。
4.权利要求1所述的结构(10),其中所述的许多金属合金层(12)和许多氧化陶瓷层(14)的每一层的厚度(16)在大约3nm至大约200nm之间。
5.权利要求4所述的结构(10),其中所述的许多金属合金层(12)和许多氧化陶瓷层(14)的每一层的厚度(16)在大约10nm至大约100nm之间。
6.权利要求1所述的结构(10),其中所述的许多金属合金层(12)和许多氧化陶瓷层(14)的总厚度(18)在大约3微米至大约200微米之间。
7.权利要求6所述的结构(10),其中所述的许多金属合金层(12)和许多氧化陶瓷层(14)的总厚度(18)在大约5微米至大约150微米之间。
8.权利要求1所述的结构(10),其中所述的纳米多层结构(10)包括纳米多层涂层体系(10)。
9.权利要求1所述的结构(10),其还进一步包括一个具有表面的基底(20),其中所述的许多金属合金层(12)和许多氧化陶瓷层(14)被排列在基底(20)的表面上。
10.权利要求9所述的结构(10),其中所述的基底(20)包括镍基超合金、钴基超合金、铁基超合金和MCrAlY合金中的至少一种,其中M包括镍、铁、钴以及它们的组合中的至少一种。
11.权利要求9所述的结构(10),其中所述的基底(20)包括燃气轮机部件或航空器发动机部件。
全文摘要
一种适合应用于高温应用的纳米多层结构(10),其包括许多的金属合金层(12),该许多金属合金层(12)每一层的厚度(16)是纳米尺寸的;和以交替的方式排列在所述许多金属合金层(12)之间的许多的氧化陶瓷层(14),该许多氧化陶瓷层(14)每一层的厚度(16)是纳米尺寸的。
文档编号C23C14/06GK1605460SQ200410092159
公开日2005年4月13日 申请日期2004年10月10日 优先权日2003年10月10日
发明者R·R·科尔德曼, P·R·苏布拉马尼安, D·斯里尼瓦桑, D·M·格雷, K·阿南德 申请人:通用电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1