离子氮化法改善镁基储氢合金耐腐蚀性能的方法

文档序号:3268545阅读:165来源:国知局
专利名称:离子氮化法改善镁基储氢合金耐腐蚀性能的方法
技术领域
本发明涉及一种合金改性技术,特别是一种离子氮化法改善镁基储氢合金耐腐蚀 性能的方法。
背景技术
储氢合金将氢气以原子态的形式储存到储氢合金的原子间隙中形成金属氢化物。 储氢合金可以用作镍氢电池或金属氢化物空气电池的负极材料。镍氢电池采用氢氧化镍作 为正极,储氢金属作为负极,碱液(主要为Κ0Η)作为电解液。镁基储氢合金具有比重小、储 氢容量高、价格低廉、资源丰富等优点,但镁基储氢合金在碱性电解液中极易腐蚀,充放电 循环性能较差,从而限制了它在镍氢电池上的应用。同样,在空气电池中由于镁基储氢合金 在碱性电解液中极易腐蚀,导致其自放电速率很大。目前改善镁基储氢合金充放电循环性能的主要方法有添加合金元素、控制粒径大 小、进行退火处理、制成复合材料、进行表面包覆、控制电荷输入、使用缓蚀剂和改善制备工 艺等。因此,采用不同方法对其充放电循环寿命进行改善成为近年来的一个研究热点。如利 用固相扩散法制备铝部分替代镁合金Mg2_xAlxNi,随着铝含量的增加放电稳定性得到了改 善[J. Alloys Compd, 307 (2000) 240-244]。认为机理是由于加入铝,能够在合金表面形成致 密保护膜,增强了合金的耐蚀性。用机械合金化的方法得到Mgu5Yaci5Nia92Alatl8,无须活化 其容量即达470mAh g—1,并且充放电循环稳定性很好,150次循环后容量保持率仍达98%。 在Pr、Ce添加的镁基合金施以熔体快淬,凝固速度达到105 106K s—1,可使循环稳定性优 异的Pr5Co19型或Ce5Co19型结构的高温相部分保留,其与Ce2Ni7型或Gd2Co7型相协同作用 使稀土镁基储氢合金同时具有高容量和长寿命[CN101624660]。离子渗氮法(或辉光放电氮化)是由德国人B. Berghaus于1932年发明的。该法 是在0. 1 IOTorr (Torr = 133. 3Pa)的含氮气氛中,以炉体为阳极,被处理工件为阴极,在 阴阳极间加上数百伏的直流电压,由于辉光放电现象便会产生象霓红灯一样的柔光覆盖在 被处理工件的表面。此时,已离子化了的气体成分被电场加速,撞击被处理工件表面而使其 加热。同时依靠溅射及离子化作用等进行氮化处理。离子氮化法与以往的靠分解氨气或使 用氰化物来进行氮化的方法截然不同,作为一种全新的氮化方法,现已被广泛应用于汽车、 机械、精密仪器、挤压成型机、模具等许多领域,而且其应用范围仍在日益扩大。离子氮化法具有以下一些优点①由于离子氮化法不是依靠化学反应作用,而是利用离子化了的含氮气体进行氮 化处理,所以工作环境十分清洁而无需防止公害的特别设备。因而,离子氮化法也被称作 二十一世纪的“绿色”氮化法。②由于离子氮化法利用了离子化了的气体的溅射作用,因而与以往的氮化处理相 比,可显著的缩短处理时间(离子渗氮的时间仅为普通气体渗氮时间的1/3 1/5)。③由于离子氮化法利用辉光放电直接对工件进行加热,也无需特别的加热和保温 设备,且可以获得均勻的温度分布,与间接加热方式相比加热效率可提高2倍以上,达到节能效果(能源消耗仅为气体渗氮的40 70% )。④由于离子氮化是在接近真空中进行,因而可获得无氧化的加工表面。⑤由于离子氮化是在低气压下以离子注入的方式进行,因而耗气量极少(仅为气 体渗氮的百分之几),可大大降低处理成本。渗氮是继传统渗碳处理之后发展的一种表面处理技术,通常仅用于钢铁的表面处 理。渗氮处理通常提高钢铁零件的表面硬度、耐磨性、耐腐蚀性及红硬性,用于个体零件的 处理。由于用途的限制,虽有金属粉末气体渗氮的研究成果[CN93120039. 3,《材料热处理 学报》2008年第29卷第2期40-42页],但未见有粉末离子渗氮处理方法报道,将离子氮化 法应用于储氢合金的改性目前也尚未见报道。

发明内容
本发明要解决的技术问题是克服现有技术中的不足,提供一种离子氮化法改善镁 基储氢合金耐腐蚀性能的方法。为解决上述技术问题,本发明提供的离子氮化法改善镁基储氢合金耐腐蚀性能的 方法,是采用离子氮化法对镁基储氢合金表面进行离子渗氮处理,在其表面层中形成氮与 储氢合金构成元素的化合物。采用离子氮化法技术进行镁基储氢合金的表面合金化,通过改变表面层应力分布 和镁基储氢合金的表面成分,在原子尺度上对镁基储氢合金的耐腐蚀性能进行改良。氮与 镁可形成间隙相Mg3N2和MgN6,与镍可形成Ni4N、Ni3N和NiN6。氮与镁形成化合物后,有效 地将镁的自由电子吸引到氮原子的周围而难以失去,造成自由电子的局域化,从而抑制镁 的氧化,提高镁基储氢合金的耐腐蚀能力。氮与镁基中其他元素形成化合物,弥散分布在镁 基储氢合金的表面层中,对镁的氧化物或氢氧化物的成长起到阻碍作用,从而提高镁基储 氢合金的耐腐蚀能力。本发明中,所述镁基储氢合金的成分可由通式MgaRbNieCodAle表示,R为钙、稀土或 混合稀土,各原子成分变化范围1彡a彡16 ;0彡b彡2 ;0彡c彡2 ;0彡d彡1 ;O^e^O. 5 ; 且b,c,d,e不得同时为零。该方法包括将镁基储氢合金粉碎至200目 400目,置于离子渗氮炉炉底的阴极 上,阳极位于炉顶;处理时在阴阳极间施加200 800伏的直流电压,并不断搅拌置于炉底 的合金粉末,搅拌速度为10 200rpm ;控制升温速度为1 10°C /min,同时控制合金粉末 温度为300 600°C,处理时间为0. 2 2小时。与现有技术相比,本发明的有益效果是气体渗氮是一种均勻渗氮的方法,离子渗氮则是区域选择性渗氮。在平滑光整的 平面上离子渗氮均勻,而对于表面曲率变化剧烈的突起部或凹下部,由于电流集中,导致在 这些平面部分渗氮量较高。对于储氢材料的渗氮,很好地利用了这一特点。因为储氢材料 在充放电过程中,粒子表面曲率变化剧烈的突起部或凹下部也会产生局部电流集中,导致 该部分的腐蚀速度加快,而这些部位也是离子渗氮量较高的部位,具有较高的耐腐蚀性能。因此,离子渗氮的区域选择性,使得渗氮处理变得有的放矢,使镁基储氢合金在碱 性溶液中的耐腐蚀性大幅度提高。而且,合金氮化处理后无需再经过活化处理,生产工艺简 单、环保,可大批量生产。成本远低于目前使用的稀土镍储氢材料,而且资源丰富,将其应用于镍氢电池可大大提高电池的容量或能量密度,应用于空气电池可大大减小自放电,可制 造成为大规模商业化应用的便携和移动式电源,应用于电动汽车,电子产品和军用设备等。说明书附1为离子渗氮炉的原理图。图中标识1 连接真空泵与阀门的管道;2 开启或关闭炉内抽真空的阀门;3 离 子渗氮炉阳极;4 连接离子渗氮炉阳极与直流电源的导线;5 提供200 800伏直流电压 的电源;6 连接离子渗氮炉阴极与直流电源的导线;7 合金粉末床;8 离子渗氮炉阴极; 9:带有桨片的搅拌桨,与控速电机相接;10、11 连接离子渗氮炉阴极与加热控制器的导 线;12 加热控制器,用于控制合金粉末床温度;13 石英玻璃制成的炉壁;14 开启或关闭 炉内充填氮气的阀门;15 连接高纯氮钢瓶与阀门的管道。图2为本发明对镁基储氢合金耐腐蚀性能改善的效果图。图中①Mg1.9La0. ^i0.7Co0.2A10. i电极的充放电循环衰退曲线、②渗氮处理 Mg1.9La0. !Ni0.7Co0.2A10.工电极的充放电循环衰退曲线。
具体实施例方式下面结合具体实施方式
对本发明进一步详细描述实施例1 储氢合金粉末的制备表IMgaRbNieCodAle储氢合金的成分例举
5 按表1各合金中金属元素的原子比例,秤取相应金属,放入坩埚。置于氩气保护的 管式炉内,在氩气保护下升温至800°C,在800°C下保持2小时后冷却至室温,得到相应的块 状钙基或镁基储氢材料。用机械破碎方法进行破碎,通过筛选获得粒径小于2毫米的粒子, 置于不锈钢反应器中,升温至350°C,抽真空至反应器压力KT3Torr以下,然后加氢升压至 40大气压进行氢化,当反应器内氢压不再下降时,升温至450°C进行减压脱氢。冷却后从反
应器取出得到储氢材料粉末,筛选粒径200目 400目。实施例2 储氢合金渗氮处理选取实施例1中一些合金进行渗氮处理,取镁基储氢合金粉末100克,将其粉碎 至200目 400目,置于离子渗氮炉炉底的阴极上,阳极位于炉顶;处理时在阴阳极间施加 200 800伏的直流电压,并不断搅拌置于炉底的合金粉末,搅拌速度为10 200rpm ;控制 升温速度为1 10°c /min,同时控制合金粉末温度为300 600°C,处理时间为0. 2 2小 时。其渗硼处理工艺条件列于表2。表2储氢合金渗氮处理工艺条件 实施例3 渗氮处理效果的评估取实施例2中镁基合金Mg1.^aaiNitl.一 义丨^粉末,筛选粒径200目 400目。将 Mg1.9LaQ. Pia7Coa2Alai粉末、镍粉、PVA水溶液(5wt. 按质量比1 0. 5 3混合调制成 浆料涂敷到泡沫镍中,室温干燥后压制成型,作为比较电极。图2为渗氮前后MguLaaiNia7Coa2Alai比较电极的容量衰退行为。从图中可以看 出,渗氮处理大大提高了 MguLaaiNia7Coa2Alai电极的充放电循环稳定性。以充放电循环200次的充放电容量保有率来评价镁基合金的耐腐蚀性能,容量保 有率越高,说明镁基合金的耐腐蚀性能越好。表3给出了实施例2中一些镁基合金按表3经过表面渗氮处理,对镁基合金耐腐蚀性能的提高效果。表3镁基合金经过表面渗氮前后容量保有率比较 从表3中可以看出,镁基合金经过渗硼处理后,镁基合金的充放电容量保有率得 到提高,由此说明渗氮处理可大幅度提高镁基合金的耐腐蚀性能。最后,还需要注意的是,以上列举的仅是本发明的具体实施例。显然,本发明不限 于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导 出或联想到的所有变形,均应认为是本发明的保护范围。
9
权利要求
一种离子氮化法改善镁基储氢合金耐腐蚀性能的方法,其特征在于,是采用离子氮化法对镁基储氢合金表面进行离子渗氮处理,在其表面层中形成氮与储氢合金构成元素的化合物。
2.根据权利要求1所述改善镁基储氢合金耐腐蚀性能的方法,其特征在于,该方法包 括将镁基储氢合金粉碎至200目 400目,置于离子渗氮炉炉底的阴极上,阳极位于炉顶; 处理时在阴阳极间施加200 800伏的直流电压,并不断搅拌置于炉底的合金粉末,搅拌速 度为10 200rpm ;控制升温速度为1 10°C /min,同时控制合金粉末温度为300 600°C, 处理时间为0. 2 2小时。
3.根据权利要求1或2任意一项中所述的改善镁基储氢合金耐腐蚀性能的方法,其特 征在于,所述镁基储氢合金的成分的通式为MgaRbNi。CodAle,式中R为钙、稀土或混合稀土, 其中1彡a彡16 ;0彡b彡2 ;0彡c彡2 ;0彡d彡1 ;0彡e彡0. 5 ;且b,c,d,e不得同时 为零。
全文摘要
本发明涉及合金改性技术,旨在提供一种离子氮化法改善镁基储氢合金耐腐蚀性能的方法。该方法是采用离子氮化法对镁基储氢合金表面进行离子渗氮处理,在其表面层中形成氮与储氢合金构成元素的化合物。离子渗氮的区域选择性,使得渗氮处理变得有的放矢,使镁基储氢合金在碱性溶液中的耐腐蚀性大幅度提高。而且,合金氮化处理后无需再经过活化处理,生产工艺简单、环保,可大批量生产。成本远低于目前使用的稀土镍储氢材料,而且资源丰富,将其应用于镍氢电池可大大提高电池的容量或能量密度,应用于空气电池可大大减小自放电,可制造成为大规模商业化应用的便携和移动式电源。
文档编号C23C8/36GK101899638SQ20101013791
公开日2010年12月1日 申请日期2010年8月24日 优先权日2010年8月24日
发明者刘宾虹, 李洲鹏 申请人:浙江大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1