一种超低硫钢冶炼方法

文档序号:3286883阅读:156来源:国知局
一种超低硫钢冶炼方法
【专利摘要】本发明公开了一种超低硫钢冶炼方法,该方法包括将转炉冶炼得到的钢水出钢到钢包中,并进行LF炉精炼和浇铸,在出钢过程中进行预脱氧合金化并采用高碱度精炼渣进行脱硫,出钢结束后采用高铝调渣剂进行钢包顶渣的改性;其中,所述LF炉精炼的方法包括将钢包送到LF炉中,在向钢包中的钢水中吹入氩气的条件下,向钢水中分多次加入高碱度精炼渣、高铝调渣剂和萤石。通过上述方法得到的连铸坯能够达到硫≤0.003%、夹杂物各项评级均≤1.5级、T[O]≤20×10-6。
【专利说明】一种超低硫钢冶炼方法
【技术领域】
[0001]本发明涉及一种超低硫钢冶炼方法。
【背景技术】
[0002]炉外精炼是把转炉、平炉或电炉中所炼的钢水转移到另一个容器中(主要是钢包)进行精炼的过程。炉外精炼把传统的炼钢过程分为初炼和精炼两个步骤。其中,初炼是在氧化性气氛下进行炉料的熔化、脱磷、脱碳和主合金化;精炼是在真空、惰性气氛或可控气氛下进行脱氧、脱硫、去除夹杂、夹杂物变性、微调成分、控制钢水温度等。
[0003]目前,常见的炉外精炼方法包括钢包封电弧加热的钢包吹Ar炉(即,LF炉)和真空循环脱气处理(即,RH处理)。精炼方法不同,采用的工艺操作也不相同,所达到的冶金效果也不一样。
[0004]CN102534120A公开了一种超低硫钢生产的冶炼工艺,该工艺路线为:铁水喷镁脱硫预处理-转炉-钢包喷粉-LF炉精炼-RH精炼-连铸。工艺特点为:铁水预处理采用喷吹颗粒镁脱硫;转炉冶炼采用优质废钢和白灰,出钢采用铝铁强脱氧并进行渣面脱氧;钢包喷粉控制合理的喷吹速度和粉剂用量;LF炉精炼控制高碱度精炼渣加入量和钢包底吹流量,精炼结束保证钢渣氧化性和碱度。但是,该工艺的步骤复杂且成本较高。

【发明内容】

[0005]本发明的目的在于提供一种新的超低硫钢冶炼方法。通过该方法得到的连铸坯能够达到硫≤0.003%、夹杂物各项评级均≤1.5级、T [O] ( 20 X 10_6,且步骤简单。
[0006]本发明中,所述夹杂物包括夹杂物评级标准GB/T10561-2005中的A类夹杂物、B类夹杂物、C类夹杂物和D类夹杂物。所述夹杂物的含量根据该夹杂物评级标准GB/T10561-2005 来评定。
[0007]本发明的发明人经过深入的研究发现,在LF精炼过程中,通过将高碱度精炼渣、高铝调渣剂和萤石各自分别分多次加入,并优选控制高碱度精炼渣、高铝调渣剂和萤石的分次加入方式、加入时刻和加入量,能够调整成品钢中夹杂物的含量,能够获得硫< 0.003重量%、夹杂物各项评级均≤1.5级、T [O] ( 20X10_6的高品质的连铸坯,从而完成了本发明。
[0008]即,一种超低硫钢冶炼方法,该方法包括将转炉冶炼得到的钢水出钢到钢包中,并进行LF炉精炼和浇铸,在出钢过程中进行预脱氧合金化并采用高碱度精炼渣进行脱硫,出钢结束后采用高铝调渣剂进行钢包顶渣的改性;其中,所述LF炉精炼的方法包括将钢包送到LF炉中,在向钢包中的钢水中吹入氩气的条件下,向钢水中分多次加入所述高碱度精炼渣、所述高铝调渣剂和萤石。
[0009]根据本发明的超低硫钢冶炼方法,能够获得硫< 0.003%、夹杂物各项评级均(1.5级、T[O]≤20X 10_6的高品质的连铸坯。
[0010]本发明的其他特征和优点将在随后的【具体实施方式】部分予以详细说明。【具体实施方式】
[0011]以下对本发明的【具体实施方式】进行详细说明。应当理解的是,此处所描述的【具体实施方式】仅用于说明和解释本发明,并不用于限制本发明。
[0012]本发明的超低硫钢冶炼方法包括将转炉冶炼得到的钢水出钢到钢包中,并进行LF炉精炼和浇铸,在出钢过程中进行预脱氧合金化并采用高碱度精炼渣进行脱硫,出钢结束后采用高铝调渣剂进行钢包顶渣的改性;其中,所述LF炉精炼的方法包括将钢包送到LF炉(钢包精炼炉)中,在向钢包中的钢水中吹入氩气的条件下,向钢水中分多次加入所述高碱度精炼渣、所述高铝调渣剂和萤石。
[0013]根据本发明的超低硫钢冶炼方法,其主要改进在于LF精炼过程,其对转炉冶炼的方法、出钢过程中进行脱氧预合金化的方法、采用高碱度精炼渣进行脱硫的方法、以及出钢结束后采用高铝调渣剂进行钢包顶渣的改性的方法没有特别的限定,可以按照本领域通常使用的方法来进行。
[0014]在本发明中,例如,出钢到钢包过程中进行脱氧的方法可以通过将28-40重量%的所述转炉冶炼得到的钢水加到钢包中之后,加入脱氧剂来进行,所述脱氧剂的加入量可以根据所期望的转炉终点碳含量来加入,所述脱氧剂可以为铝铁和/或金属铝,优选为铝铁(铝含量为40重量%、铁含量为58重量%、余量为杂质)。当所述脱氧剂为铝铁和/或金属铝时,以铝重量计的脱氧剂的加入量Q可以按照以下公式进行计算得出:
[0015]Q=0.055*ff/[C];
[0016][C]-转炉终点碳含量,重量% ;
[0017]W-转炉出钢的钢水量,t。
[0018]另外,进行预合金化的方法可以在将入脱氧剂加到钢包中之后,通过加入各种合金进行预合金化。所述预合金化中所加入的合金可以根据钢种的要求向钢水中加入各种合金,例如,硅铁、锰铁合金,预合金化的过程中各种合金的加入量只要保证钢中各组分含量处于钢种要求的至少下限含量之上。
[0019]在本发明中,例如,出钢过程中采用高碱度精炼渣进行脱硫的方法可以在将65-75重量%的所述冶炼得到的钢水加到钢包中之后,向所述钢包中加入高碱度精炼渣,其加入量使出钢后钢水硫含量控制在0.005重量%~0.015重量% ;优选使出钢后钢水硫含量控制在0.005重量%~0.010重量%。通常情况下,所述高碱度精炼渣的加入量可以为5-7kg/t钢(在此,单位kg/t钢中“钢”是指:出钢后钢包内的钢水量),所述高碱度精炼渣的组成优选包括65-85重量%的CaO、1-5重量%的Si02、1-3重量%的Al203、7_15重量%的CaF2和1-5重量%的MgO ;另外,还含有少量杂质。
[0020]在本发明中,例如,采用高铝调渣剂进行钢包顶渣的改性的方法可以在出钢结束后,向钢包渣面加入高铝调渣剂并均匀覆盖在钢包渣面上,其改性的目的是均匀地降低钢包渣氧化性,并降低钢包顶渣熔点,以利于吸附钢水中夹杂物;优选,高铝调渣剂的加入量为1.5-3kg/t钢;然后进行底吹氩气,吹氩气流量为0.5-0.8NL/t钢.min,控制吹氩时间O-1Omin0
[0021]根据本发明,所述高铝调渣剂是指相对于普通的含铝调渣剂铝含量较高的调渣剂,所述高铝调渣剂中Al含量为30重量%以上,例如为30-35重量%。[0022]优选情况下,所述高铝调渣剂的组成优选包括25-30重量%的Al203、25-30重量%的CaO、5-10重量%Si02、30-35重量%的Al ;另外,还可以含有少量杂质。
[0023]根据本发明,为了能够获得硫≤0.003%、夹杂物各项评级均≤1.5级、T[O] <20X10_6的高品质的连铸坯。优选情况下,所述冶炼得到的钢水中的碳含量为0.03-0.08重量%、硫含量为0.005-0.015重量%,出钢温度为1640-1700。C。
[0024]根据本发明,在LF精炼过程中需要加入高碱度精炼渣、高铝调渣剂和萤石。在LF精炼过程中,加入所述高碱度精炼渣和所述高铝调渣剂的目的是为均匀地降低钢包渣氧化性,并降低钢包顶渣熔点,以利于吸附钢水中夹杂物;加入所述萤石的目的为提高钢包顶渣的流动性,以利于吸附夹杂物。
[0025]在本发明中,为了能够获得硫≤0.003%、夹杂物各项评级均≤1.5级、T[O] ( 20X10_6的高品质的连铸坯,所述高碱度精炼渣、高铝调渣剂和萤石的加入需要各自分别分多次进行。在保证获得的连铸坯的品质的前提下,为了进一步简化工序,优选所述高碱度精炼渣、高铝调渣剂和萤石的加入各自分别分2-5次进行。更优选所述高碱度精炼渣、高铝调渣剂和萤石的加入各自分别分2-3次进行。
[0026]根据本发明的一种优选的实施方式,分三次加入高碱度精炼渣、高铝调渣剂和萤
[0027]根据本发明,为了能够获得硫≤0.003%、夹杂物各项评级均≤1.5级、T[O] ( 20X10_6的高品质的连铸坯,所述高碱度精炼渣、高铝调渣剂和萤石的加入时机也非常重要。优选情况下,在上述优选的实施方式中,第一次加入高碱度精炼渣、高铝调渣剂和萤石的时机为LF炉精炼开始后1-5分钟内;第二次加入高碱度精炼渣、高铝调渣剂和萤石的时机为LF炉精炼开始后10-15分钟内;第三次加入高碱度精炼洛、高铝调渣剂和萤石的时机为LF炉精炼开始后20-25分钟,所述LF精炼时间为30-45分钟。更优选第一次加入高碱度精炼渣、高铝调渣剂和萤石的时机为LF炉精炼开始后1-3分钟内;第二次加入高碱度精炼渣、高铝调渣剂和萤石的时机为LF炉精炼开始后10-12分钟内;第三次加入高碱度精炼渣、高铝调渣剂和萤石的时机为LF炉精炼开始后20-23分钟,所述LF精炼时间为35-40分钟。此外,本发明中,以将钢水进入LF炉后进行吹氩为LF炉精炼的起始时间(即精炼开始时间)。
[0028]根据本发明,第一次加入高碱度精炼渣、高铝调渣剂和萤石只要在LF炉精炼开始后1-5分钟内即可,可以将高碱度精炼渣、高铝调渣剂和萤石混合后在LF炉精炼开始后1-5分钟内加入;也可以在LF炉精炼开始后1-5分钟内加入完一种后立即加入另一种,对于高碱度精炼渣、高铝调渣剂和萤石的加入顺序没有特别的要求,但从降低钢包顶渣的氧化性上来考虑,优选在加入高碱度精炼渣后,再加入高铝调渣剂。第二次加入高碱度精炼渣、高铝调渣剂和萤石只要在LF炉精炼开始后10-15分钟内即可,可以将高碱度精炼渣、高铝调渣剂和萤石混合后在LF炉精炼开始后10-15分钟内加入;也可以在LF炉精炼开始后10-15分钟内加入完一种后立即加入另一种,对于高碱度精炼渣、高铝调渣剂和萤石的加入顺序没有特别的要求,但从降低钢包顶渣的氧化性上来考虑,优选在加入高碱度精炼渣后,再加入高铝调渣剂。另外,第三次加入高碱度精炼渣、高铝调渣剂和萤石只要在为LF炉精炼开始后20-25分钟即可,可以将高碱度精炼渣和高铝调渣剂混合后在LF炉精炼开始后20-25分钟内加入;也可以在LF炉精炼开始后20-25分钟内加入完一种后立即加入另一种,对于高碱度精炼渣和高铝调渣剂的加入顺序没有特别的要求,但从降低钢包顶渣的氧化性上来考虑,优选在加入高碱度精炼渣后,再加入高铝调渣剂。
[0029]根据本发明,各次的高碱度精炼渣、高铝调渣剂和萤石加入量可以在宽的范围内变动。优选情况下,第一次加入高碱度精炼渣、高铝调渣剂和萤石时,高碱度精炼渣的加入量为l_2kg/t钢,高铝调渣剂的加入量为0.8-1.5kg/t钢,萤石的加入量为Ο-lkg/t钢;第二次加入高碱度精炼渣、高铝调渣剂和萤石时,高碱度精炼渣的加入量为l_2kg/t钢,高铝调渣剂的加入量为0.8-1.5kg/t钢,萤石的加入量为Ο-lkg/t钢;第三次加入高碱度精炼渣、高铝调渣剂和萤石时,高碱度精炼渣的加入量为0.5-1.5kg/t钢,高铝调渣剂的加入量为0-1.5kg/t钢,萤石的加入量为Ο-lkg/t钢。更优选情况下,第一次加入高碱度精炼渣、高铝调渣剂和萤石时,高碱度精炼渣的加入量为1.3-1.6kg/t钢,高铝调渣剂的加入量为1-1.3kg/t钢,萤石的加入量为0.2-0.4kg/t钢;第二次加入高碱度精炼渣、高铝调渣剂和萤石时,高碱度精炼渣的加入量为1.5-1.6kg/t钢,高铝调渣剂的加入量为1-1.2kg/t钢,萤石的加入量为0.2-0.4kg/t钢;第三次加入高碱度精炼渣、高铝调渣剂和萤石时,高碱度精炼渣的加入量为0.5-lkg/t钢,高铝调渣剂的加入量为0-1.2kg/t钢,萤石的加入量为0-0.2kg/t钢;在保证精炼效果的前提下,从成本上考虑,更优选在第三次不加入萤石。在此,单位kg/t钢中的“钢”是指钢包内钢水量,例如,“所述高碱度精炼渣的加入量为l_2kg/t钢”是指:相对于I吨钢包内钢水,所述高碱度精炼渣的加入量为l_2kg。
[0030]根据本发明,在LF精炼过程中,在底吹氩气的条件下进行,在所述第一次、第二次和第三次加入后,所述底吹氩气的流量可以相同也可以不同。优选情况下,在第二次加入高碱度精炼渣、高铝调渣剂和萤石之前,氩气的流量为1-1.5NL/t钢.π?η ;在第二次加入与第三次加入之间 ,氩气的流量为1-1.5NL/t钢.π?η ;在第三次加入高碱度精炼渣、高铝调渣剂和萤石之后至LF炉精炼结束,氩气的流量为0.5-1.0NL/t钢.π?η。更优选情况下,在第二次加入高碱度精炼渣、高铝调渣剂和萤石之前,氩气的流量为1.2-1.5NL/t钢.π?η ;在第二次加入与第三次加入之间,氩气的流量为1.2-1.5NL/t钢.min ;在第三次加入高碱度精炼渣、高铝调渣剂和萤石之后至LF炉精炼结束,氩气的流量为0.8-1.0NL/t钢.min。
[0031]在本发明中,单位“NL/t钢.min”是指相对于每吨钢水,每分钟的氩气流量(以标准体积计)。
[0032]根据本发明,对LF精炼的温度没有特别的要求,可以采用本领域常规使用的温度来进行。优选情况下,所述LF精炼的温度为1550-1650°C ;优选为1600-1630°C。
[0033]根据本发明,所述高碱度精炼渣可以为本领域常用的各种高碱度精炼渣,优选情况下,所述高碱度精炼渣优选组成包括65-85重量%的CaO、1-5重量%的Si02、1-3重量%的Al203、7-15重量%的CaF2和1_5重量%的MgO ;另外,还含有少量杂质。该精炼渣可以通过常规的方法制得,例如,可以通过将活性石灰、萤石按照重量比10:1-10:2的比例进行均匀混合而制得。
[0034]如上所述,在本发明中,所述高铝调渣剂是指相对于普通的含铝调渣剂铝含量较高的调渣剂,所述高铝调渣剂中Al含量为30重量%以上,例如为30-35重量%。
[0035]优选情况下,所述高铝调渣剂的组成包括25-30重量%的Al203、25-30重量%的CaO、5-10重量%Si02、30-35重量%的Al ;另外,还含有少量杂质。
[0036]根据本发明,优选情况下,所述萤石的颗粒直径为5_20mm。萤石的CaF2含量为90重量%以上,优选为95重量%~98重量%。在萤石中,除CaF2之外,剩余组分为杂质,例如,Fe203、SiO2 等。
[0037]根据本发明,该方法还包括在第三次加入高碱度精炼渣、高铝调渣剂和萤石之后,对钢水进行钙处理。优选情况下,对钢水进行钙处理的方法通过加入硅钙线来实现。
[0038]根据本发明,硅钙线的加入量满足以下公式:
[0039]G=1500X (Alt-Als+S) XWXD/N
[0040]G-硅钙线加入量,m ;
[0041]Alt-钢水中全铝含量,重量% ;
[0042]Als-钢水中酸溶铝含量,重量% ;
[0043]S-钢水中硫含量,重量% ;
[0044]W-钢包内钢水量,t;
[0045]D-硅钙线重量,kg/m ;
[0046]N-硅钙线含钙量,重量%。
[0047]其中,上述Alt、Als、S的含量可以通过光谱分析的方法来测定,通过在后述的Thermo Scientific ARL4 460直读光谱仪上进行测定。
[0048]通过上述公式来加入硅钙线,能有效降低钢水中A类和B类夹杂物。
[0049]根据本发明,优选情况下,所述硅钙线的组成包括:28-32重量%的Ca,50_55重量%的Si,5-10重量%的Fe ;另外,还含有少量杂质。
[0050]根据本发明,该方法还包括在所述硅钙线加入完成后,在底吹氩气流量为
0.5-1.0NL/t钢.min的条件下,精炼6_10min,得到LF精炼后的钢水。
[0051]根据本发明,虽然可以将得到的LF精炼后的钢水直接进行浇铸,从而得到钢成品。但优选还包括在将LF精炼后的钢水进行浇铸之前,将LF精炼后的钢水送往RH真空站进行真空处理,并在处理过程中进行合金微调,在RH处理结束后进行钙处理。
[0052]根据本发明,将LF精炼后的钢水送往RH真空站对钢水进行真空处理,并在处理过程中进行合金微调,再在RH处理结束后进行钙处理的方法可以按照以下步骤进行:将LF精炼后的钢水送往RH真空站进行真空处理,RH处理过程包括用插入管提升氩气流量为1200-1500NL/min,在真空度小于300Pa的处理时间为20min以上。RH处理15_18min后,保持真空度,加入合金,进行合金微调,合金微调的目的是根据钢种要求,将各金属含量调节至钢种要求的中限附近,例如,可上下浮动3%。合金化后,循环处理5min以上,使成分均匀,破真空,然后对钢水进行钙处理,钙处理与上述在LF精炼炉中的钙处理一样通过加入同样组成的硅钙线来进行,硅钙线的加入量为1.0-5.0m/t钢。采用钢包底吹氩气流量为
0.5-1.0NL/t 钢.min,吹氩气 5min 以上,优选为 5-lOmin。
[0053]根据本发明,该方法包括将钢水进行浇铸,得到连铸坯的方法。
[0054]根据本发明,该方法还包括将连铸坯通过轧制工艺,生产成钢成品(例如钢管或钢棒)。
[0055]根据本发明,上述连铸以及轧制工艺可以采用本领域常用的方法和条件来进行。
[0056]以下将通过实施例对本发明进行详细描述,但本发明并不仅限于下述实施例。
[0057]以下实施例和对比例中,C含量、Alt含量、Als含量、S含量米用光谱分析的方法,在Thermo Scientific ARL4460直读光谱仪上进行测定。[0058]以下实施例和对比例中,增碳剂中碳含量为99重量%,余量为杂质;硅铁中含75重量%的Si,23%铁,其余为杂质;锰铁中含有65重量%的Mn,33%重量的Fe,其余为杂质;硅钙线的组成为:30重量%0&,55重量°/(5;[, 10重量1?^,余量为杂质,该娃|丐线重量为150kg/m0
[0059]以下实施例和对比例中,圆钢中硫含量通过采用碳硫分析仪(购于LECO公司,型号为CS-444LS)进行测定,T[O]的测定通过氧氮分析仪(购于LECO公司,型号为TC-600)。
[0060]实施例1
[0061]在本实施例中,高碱度精炼渣的组成为70重量%的Ca0、3重量%的Si02、3重量%的A1203、12重量%的CaF2和5重量%的MgO,余量为杂质。高铝调渣剂的组成为25重量%的Al203、30重量%的Ca0、5重量%的Si02、30重量%的Al,余量为杂质。所述萤石的颗粒直径为10-15mm,萤石的CaF2含量为98重量%,余量为杂质。
[0062]在转炉中将铁水进行冶炼,得到转炉冶炼终点碳含量为0.05重量%的钢水(组成为 C:0.05 重量 %,Si:0.01 重量 %,Mn:0.05 重量 %,S:0.006 重量 %,Fe:99.81 重量 %,余量为杂质;钢水温度为1670°C) 135吨,然后倒炉出钢,当出钢量为40吨时,向钢包内加入铝铁(招含量为40重量%、铁含量为58重量%、余量为杂质)进行脱氧,加入量为2.5kg/t钢,铝铁加入完成后随即加入增碳剂lkg/t钢、硅铁1.5kg/t钢、金属锰4.5kg/t钢。当出钢为90吨时,向钢包内加入高碱度精炼渣5kg/t钢。出钢结束后,向钢包渣面均匀加入高铝调渣剂2.0kg/t钢。上述出钢过程中钢包底吹氩气流量采用0.8NL/t钢.π?η。出钢结束后,采用0.5NL/t钢.η?η的底吹IS流量吹IS 6min,然后将钢水(钢水组成为C:0.16重量%, S:0.007重量%,S1:0.17重量%,Mn:0.48重量%,Fe:99.21重量%,余量为杂质;钢水温度为1613°C)送往LF精 炼。
[0063]钢水到LF炉后接通底吹気进行钢包底吹気开始精炼,吹IS流量采用1.5NL/t钢.π?η,吹氩2min后,同时向钢包内加入高碱度精炼渣1.5kg/t钢、高铝调渣剂1.0kg/t钢和萤石0.3kg/t钢(加入花费2min),加完后继续精炼(精炼温度为1555°C );精炼开始IOmin后,将钢包底吹氩气流量调整为1.2NL/t钢.π?η,同时向钢包内加入高碱度精炼渣1.5kg/t钢、高铝调渣剂1.0kg/t钢和萤石0.3kg/t钢(加入花费2min),加完后继续进行精炼(精炼温度为1575°C);精炼开始20min后,将钢包底吹氩气流量调整为1.0NL/t钢.min,同时加入高碱度精炼渣0.5kg/t钢和高铝调渣剂0.5kg/t钢(加入花费2min)。然后继续精炼(精炼温度为1599°C ),精炼12min后,钢水温度达到1635°C。此时,将钢包底吹氩气流量调整为1.0NL/t钢.π?η,取样分析此时钢水中Alt为0.035重量%,Als为0.032重量%,S含量为0.0015重量%,向钢包内喂入硅钙线450m,硅钙线喂完后,钢包继续进行底吹氩气,氩气流量采用0.8NL/t钢.min,吹氩8min后,钢水LF出站并送往RH进行真空处理。
[0064]钢水(温度为1607 °C)到RH真空站后,设定RH插入管提升氩气流量为1500NL/min,开始抽真空,3min后真空度达到IOOPa并稳定在此值上进行真空处理,当处理时间为18min时,保持真空度,加入增碳剂0.lkg/t钢、娃铁0.15kg/t钢,合金加完后,循环处理7min,使成分均匀,破真空。然后对钢水进行钙处理,硅钙线的加入量为1.5m/t钢,喂线过程钢包底吹氩气流量为1.0NL/t钢.min,然后吹氩气6min。接着将钢水送往连铸工序,生产成360X450mm大方坯连铸坯产品,连铸坯产品通过轧制工艺,生产成Φ40πιπι圆钢。按照夹杂物评级标准GB/T10561-2005评价出成品钢中A类夹杂物、B类夹杂物、C类夹杂物、D类夹杂物评级均< I级,圆钢中硫含量为0.0013重量%,T [O]平均< 11.7X10-6。
[0065]实施例2
[0066]在本实施例中,高碱度精炼渣的组成为85重量%的Ca0、2重量%的Si02、2重量%的Al203、8重量%的CaF2和4重量%的MgO,余量为杂质。高铝调渣剂的组成为28重量%的Al203、28重量%的Ca0、8重量%的Si02、33重量%的Al,余量为杂质。所述萤石的颗粒直径为10-15mm,萤石的CaF2含量为98重量%,余量为杂质。
[0067]在转炉中将铁水进行冶炼,得到转炉冶炼终点碳含量为0.06重量%的钢水(组成为 C:0.06 重量 %,Si:0.02 重量 %,Mn:0.04 重量 %,S:0.005 重量 %,Fe:99.82 重量 %,余量为杂质;钢水温度为1675°C) 130吨,然后倒炉出钢,当出钢量为40吨时,向钢包内加入招铁(招含量为40重量%、铁含量为58重量%、余量为杂质)进行脱氧,加入量为3.15kg/t钢,铝铁加入完成后随即加入增碳剂3.0kg/t钢、硅铁1.2kg/t钢、金属锰7.5kg/t钢。当出钢为90吨时,向钢包内加入高碱度精炼渣5.5kg/t钢。出钢结束后,向钢包渣面均匀加入高铝调渣剂1.5kg/t钢。上述出钢过程中钢包底吹氩气流量采用0.8NL/t钢.min出钢结束后,采用0.6NL/t钢.π?η的底吹氩流量吹氩6min,然后将钢水(钢水组成为C:0.36重量%,S:0.006重量%,S1:0.14重量%、Mn:0.81重量%,Fe:98.65重量%,余量为杂质;钢水温度为1571 °C )送往LF精炼。
[0068]钢水到LF炉后接通底吹気进行钢包底吹気开始精炼,吹IS流量采用1.5NL/t钢.π?η,吹氩3min后,同时向钢包内加入高碱度精炼渣1.3kg/t钢、高铝调渣剂1.2kg/t钢和萤石0.4kg/t钢(加入花费2min),加完后继续精炼(精炼温度为1588°C);精炼开始12min后,将钢包底吹氩气流量调整为1.5NL/t钢.min,同时向钢包内加入高碱度精炼渣1.5kg/t钢、高铝调渣剂1.0kg/t钢和萤石0.32kg/t钢(加入花费2min),加完后继续进行精炼(精炼温度为1605°C);精 炼开始20min后,将钢包底吹氩气流量调整为1.0NL/t钢.min,同时加入高碱度精炼渣0.5kg/t钢(加入花费2min),然后继续精炼(精炼温度为1620°C),精炼12min后,钢水温度达到1630°C。此时,将钢包底吹氩气流量调整为0.5NL/t钢.π?η,取样分析此时钢水中Alt为0.028重量%,Als为0.026重量%,S含量为0.0017重量%,向钢包内喂入硅钙线375m,硅钙线喂完后,钢包继续进行底吹氩气,氩气流量采用0.5NL/t钢.min,吹氩7min后,钢水LF出站并送往RH进行真空处理。
[0069]钢水(温度为1604°C)到RH真空站后,设定RH插入管提升气体流量为1500NL/min,开始抽真空,3.5min后真空度达到IOOPa并稳定在此值上进行真空处理,当处理时间为20min时,保持真空度,加入硅铁0.12kg/t钢,合金加完后,循环处理6min,使成分均匀,破真空。然后对钢水进行钙处理,硅钙线的加入量为1.0m/t钢,喂线过程钢包底吹氩气流量为0.6NL/t钢.π?η,然后吹氩气7min。接着将钢水送往连铸工序,生产成200 X 200mm方坯连铸坯产品,连铸坯产品通过轧制工艺,生产成Φ50_圆钢。按照夹杂物评级标准GB/Τ10561-2005评价出成品钢中A类夹杂物、B类夹杂物、C类夹杂物、D类夹杂物评级均< I级,圆钢中硫含量为0.0014重量%,Τ[0]平均< 10.5Χ10-6。
[0070]实施例3
[0071]在本实施例中,高碱度精炼渣的组成为85重量%的Ca0、4重量%的Si02、2重量%的A1203、13重量%的CaF2和2重量%的MgO,余量为杂质。高铝调渣剂的组成为28重量%的Al203、25重量%的CaO、10重量%的SiO2、35重量%的Al,余量为杂质。所述萤石的颗粒直径为10-15mm,萤石的CaF2含量为98重量%,余量为杂质。
[0072]在转炉中将铁水进行冶炼,得到转炉冶炼终点碳含量为0.07重量%的钢水(组成为 C:0.07 重量 %,Si:0.01 重量 %,Mn:0.05 重量 %,S:0.007 重量 %,Fe:99.80 重量 %,余量为杂质;钢水温度为1665°C) 138吨,然后倒炉出钢,当出钢量为40吨时,向钢包内加入铝铁(招含量为40重量%、铁含量为58重量%、余量为杂质)进行脱氧,加入量为2.8kg/t钢,铝铁加入完成后随即加入增碳剂2.0kg/t钢、硅铁1.5kg/t钢、金属锰3.5kg/t钢。当出钢为90吨时,向钢包内加入高碱度精炼渣6.0kg/t钢。出钢结束后,向钢包渣面均匀加入高铝调渣剂1.8kg/t钢。上述出钢过程中钢包底吹氩气流量采用0.85NL/t钢.π?η。出钢结束后,采用0.55NL/t钢.min的底吹氩流量吹氩6min,然后将钢水(钢水组成为:0.27重量%的C,S:0.006重量%,S1:0.16重量%,Mn:0.41重量%,Fe:99.1重量%,余量为杂质;钢水温度为1561°C )送往LF精炼。[0073]钢水到LF炉后接通底吹IJ进行钢包底吹IJ开始精炼,吹IS流量采用1.5NL/t钢.π?η,吹氩Imin后,并向钢包内加入高碱度精炼渣1.5kg/t钢、高铝调渣剂1.3kg/t钢和萤石0.35kg/t钢(加入花费2min),加完后继续精炼(精炼温度为1568°C);精炼开始Ilmin后,将钢包底吹氩气流量调整为INL/t钢.π?η,并向钢包内加入高碱度精炼渣1.6kg/t钢、高铝调渣剂1.lkg/t钢和萤石0.35kg/t钢(加入花费2min),加完后继续进行精炼(精炼温度为1588°C);精炼开始23min后,将钢包底吹氩气流量调整为1.1NL/t钢.min,同时加入高碱度精炼渣0.8kg/t钢和高铝调渣剂1.2kg/t钢(加入花费2min),然后继续精炼(精炼温度为1612°C),精炼12min后,钢水温度达到1645°C。此时,将钢包底吹氩气流量调整为0.8NL/t钢.min,取样分析此时钢水中Alt为0.034重量%,Als为0.031重量%,S含量为
0.0012重量%,向钢包内喂入硅钙线423m,硅钙线喂完后,钢包继续进行底吹氩气,氩气流量采用0.5NL/t钢.min,吹氩7min后,钢水LF出站并送往RH进行真空处理。
[0074]钢水(钢水温度为1628 °C)到RH真空站后,设定RH插入管提升气体流量为1500NL/min,开始抽真空,3.5min后真空度达到IOOPa并稳定在此值上进行真空处理,当处理时间为20min时,保持真空度,加入硅铁0.2kg/t钢,合金加完后,循环处理6min,使成分均匀,破真空。然后对钢水进行钙处理,硅钙线的加入量为0.8m/t钢,喂线过程钢包底吹氩气流量为0.7NL/t钢.π?η,然后吹氩气7min。接着将钢水送往连铸工序,生产成200 X 200mm大方坯连铸坯产品,连铸坯产品通过轧制工艺,生产成Φ50_圆钢。按照夹杂物评级标准GB/T10561-2005评价出成品钢中A类夹杂物、B类夹杂物、C类夹杂物、D类夹杂物评级均(I级,圆钢中硫含量为0.0013重量%,T [O]平均< 12.8X10'
[0075]实施例4
[0076]在本实施例中,高碱度精炼渣的组成为65重量%的Ca0、2重量%的Si02、l重量%的A1203、15重量%的CaF2和4重量%的MgO,余量为杂质。高铝调渣剂的组成为30重量%的Al203、28重量%的Ca0、9重量%的Si02、32重量%的Al,余量为杂质。所述萤石的颗粒直径为10-15mm,萤石的CaF2含量为98重量%,余量为杂质。
[0077]在转炉中将铁水进行冶炼,得到转炉冶炼终点碳含量为0.06重量%的钢水(组成为 C:0.06 重量 %,Si:0.015 重量 %,Mn:0.045 重量 %,S:0.006 重量 %,Fe:99.81 重量 %,
余量为杂质;钢水温度为1665°C) 133吨,然后倒炉出钢,当出钢量为40吨时,向钢包内加入招铁(招含量为40重量%、铁含量为58重量%、余量为杂质)进行脱氧,加入量为2.18kg/t钢,铝铁加入完成后随即加入硅铁1.5kg/t钢、金属锰6.5kg/t钢。当出钢为90吨时,向钢包内加入高碱度精炼渣6kg/t钢。出钢结束后,向钢包渣面均匀加入高铝调渣剂3.0kg/t钢。上述出钢过程中钢包底吹氩气流量采用0.7NL/t钢.min。出钢结束后,采用0.5NL/t钢.π?η的底吹氩流量吹氩7min,然后将钢水(钢水组成为C:0.06重量%,S:0.005重量%,S1:0.17重量% ;Mn:0.71重量%,Fe:90.1重量%,余量为杂质;钢水温度为1589°C)送往LF精炼。
[0078]钢水到LF炉后接通底吹IJ进行钢包底吹IJ开始精炼,吹IS流量采用1.2NL/t钢.min,吹氩4min后,同时向钢包内加入高碱度精炼渣1.6kg/t钢、高铝调渣剂1.2kg/t钢和萤石0.2kg/t钢(加入花费2min),加完后继续精炼(精炼温度为1545°C);精炼开始14min后,在钢包底吹氩气流量继续为1.2NL/t钢.π?η条件下,向钢包内加入高碱度精炼渣
1.5kg/t钢、高铝调渣剂1.2kg/t钢和萤石0.2kg/t钢(加入花费lmin),加完后继续进行精炼(精炼温度为1578°C);精炼开始24min后,将钢包底吹氩气流量调整为1.5NL/t钢.π?η,同时加入高碱度精炼渣1.0kg/t钢(加入花费2min)。然后继续精炼(精炼温度为1598°C),精炼13min后,钢水温度达到1623°C。此时,将钢包底吹氩气流量调整为0.7NL/t钢.π?η,取样分析此时钢水中Alt为0.042重量%,Als为0.04重量%,S含量为0.0013重量%,向钢包内喂入硅钙线330m,硅钙线喂完后,钢包继续进行底吹氩气,氩气流量采用0.5NL/t钢.min,吹気7min后,钢水LF出站并进行连铸,生成Φ200mm圆还产品,通过轧制工艺,生产成Φ60mm圆钢。按照夹杂物评级标准GB/T10561-2005评价出成品钢中A类夹杂物、B类夹杂物、C类夹杂物、D类夹杂物评级均< 1.5级,圆钢中硫含量为0.0014重量%,夹杂物各项评级均< 1.5级,T[O]平均< 18.8Χ 10_6。
[0079]实施例5
[0080]按照实施例3的方法进行,不同的是,第一次加入高碱度精炼渣、高铝调渣剂和萤石的时间在吹氩6min后。相同地得到Φ50πmm圆钢。按照夹杂物评级标准GB/T10561-2005评价出成品钢中A类夹杂物为1.5级、B类夹杂物为1.5级别、C类夹杂物为1.5级、D类夹杂物为1.5级。圆钢中硫含量为0.0025重量%,T[O]平均< 19.2Χ 10_6。
[0081]对比例1
[0082]按照实施例3的方法进行,不同的是,在LF精炼Imin后,将高碱度精炼渣、高铝调渣剂和萤石的一次全部加入。相同地得到Φ50mm圆钢。按照夹杂物评级标准GB/t10561-2005评价出成品钢中A类夹杂物为2.5级、B类夹杂物为1.5级别、C类夹杂物为
2.0级、D类夹杂物为2.0级。圆钢中硫含量为0.005重量%,T[O]平均为25Χ 10_6。
[0083]通过上述实施例1-5可以看出,通过采用本发明的方法,能够获得硫≤ 0.003%、夹杂物各项评级均≤ 1.5级、T[O] ≤20Χ10_6的高品质的连铸产品。而将高碱度精炼渣、高铝调渣剂的组成为和萤石的一次加入的对比例I无法得到硫< 0.003%、夹杂物各项评级均≤1.5级、T[O] ≤20Χ10—6的高品质的连铸产品。
[0084]以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
[0085]此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。
【权利要求】
1.一种超低硫钢冶炼方法,该方法包括将转炉冶炼得到的钢水出钢到钢包中,并进行LF炉精炼和浇铸,在出钢过程中进行预脱氧合金化并采用高碱度精炼渣进行脱硫,出钢结束后采用高铝调渣剂进行钢包顶渣的改性;其特征在于,所述LF炉精炼的方法包括将钢包送到LF炉中,在向钢包中的钢水中吹入氩气的条件下,向钢水中分多次加入高碱度精炼渣、高铝调渣剂和萤石。
2.根据权利要求1所述的冶炼方法,其中,所述高碱度精炼渣、高铝调渣剂和萤石的加入各自分别分2-5次进行。
3.根据权利要求2所述的冶炼方法,其中,分三次加入高碱度精炼渣、高铝调渣剂和萤 石。
4.根据权利要求3所述的冶炼方法,其中,第一次加入高碱度精炼渣、高铝调渣剂和萤石的时机为LF炉精炼开始后1-5分钟内;第二次加入高碱度精炼渣、高铝调渣剂和萤石的时机为LF炉精炼开始后10-15分钟内;第三次加入高碱度精炼渣和高铝调渣剂的时机为LF炉精炼开始后20-25分钟,所述LF炉精炼时间为30-45分钟。
5.根据权利要求4所述的冶炼方法,其中,第一次加入高碱度精炼渣、高铝调渣剂和萤石时,高碱度精炼渣的加入量为l_2kg/t钢,高铝调渣剂的加入量为0.8-1.5kg/t钢,萤石的加入量为0-lkg/t钢;第二次加入高碱度精炼渣、高铝调渣剂和萤石时,高碱度精炼渣的加入量为l_2kg/t钢,高铝调渣剂的加入量为0.8-1.5kg/t钢,萤石的加入量为0-lkg/t钢;第三次加入高碱度精炼渣、高铝调渣剂和萤石时,高碱度精炼渣的加入量为0.5-1.5kg/t钢,高铝调渣剂的加入量为0-1.5kg/t钢,萤石的加入量为0-lkg/t钢。
6.根据权利要求4所述的冶炼方法,其中,在LF炉精炼过程中,在第二次加入高碱度精炼渣、高铝调渣剂和萤石之前的时间段内,氩气的流量为1-1.5NL/t钢.min ;在第二次加入与第三次加入之间的时间段内,氩气的流量为1-1.5NL/t钢.min ;在第三次加入高碱度精炼渣、高铝调渣剂和萤石之后至LF炉精炼结束的时间段内,氩气的流量为0.5-1.0NL/t钢.min。
7.根据权利要求4所述的冶炼方法,其中,该方法还包括在第三次加入高碱度精炼渣、高铝调渣剂和萤石之后,对钢水进行钙处理。
8.根据权利要求7所述的冶炼方法,其中,对钢水进行钙处理的方法为向钢水中加入硅钙线,硅钙线的加入量满足以下公式: G=1500X (Alt-Als+S) ×W×D/N G-娃韩线加入量,m ; Alt-钢水中全铝含量,重量% ; Als-钢水中酸溶铝含量,重量% ; S-钢水中硫含量,重量% ; W-钢包内钢水量,t ; D-娃|丐线重量,kg/m ; N-娃韩线含韩量,重量%。
9.根据权利要求1-7中任意一项所述的冶炼方法,其中,所述高碱度精炼渣的组成包括65-85重量%的CaO、1-5重量%以下的Si02、1-3重量%的Al203、7_15重量%的CaF2和1-5重量%的MgO ;所述高铝调渣剂的组成包括25-30重量%的A1203、25-30重量%的CaO、.5-10重量%的SiO2、30-35重量%的Al ;所述萤石的颗粒直径为5_20mm,萤石的CaF2含量为90重量%以上。
10.根据权利要求1所述的冶炼方法,其中,转炉冶炼得到的钢水的碳含量为.0.03%-0.08重量%、硫含量为0.005%-0.015重量%,出钢温度为1640-1700。。。
11.根据权利要求1或7所述的冶炼方法,其中,该方法还包括将LF炉精炼后的钢水送往RH真空站进行真空处理,并在处理过程中进行合金微调,在RH处理结束后进行钙处理。
【文档编号】C21C7/064GK103898274SQ201210585798
【公开日】2014年7月2日 申请日期:2012年12月28日 优先权日:2012年12月28日
【发明者】陈天明, 陈亮, 杨森祥, 陈永, 龚洪君, 郭奠荣, 张龙超, 曾耀先, 王军 申请人:攀钢集团研究院有限公司, 攀钢集团攀枝花钢钒有限公司, 攀钢集团西昌钢钒有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1