一种具备耐磨耐蚀涂层钨镍合金的制备方法与流程

文档序号:11840599阅读:339来源:国知局

本发明涉及合金材料制造领域,具体涉及一种具备耐磨耐蚀涂层钨镍合金的制备方法。



背景技术:

硬质合金具有高强度、高硬度、优良的耐磨性、耐热性以及良好的抗腐蚀性等特点,因此广泛应用于高压、高转速、高温、腐蚀性介质等工作环境

WC-Ni硬质合金具有高强度、高硬度、优良的耐磨性、耐热性以及良好的抗腐蚀性等特点,因此广泛应用于高压、高转速、高温、腐蚀性介质等工作环境。由于Ni属于面心立方(F.c.c)晶系,塑性很好,在湿磨过程中容易发生塑性变形,形成片状的Ni粉团。工业生产以Ni作为粘结剂的硬质合金的球磨时间要长,即便是这样,也不能保证Ni粉的均匀细化,这是基于Ni粉存在着与Co粉截然不同的细化机理。

现有技术中主要通过添加合金元素,细化WC晶粒,通过严格的工艺控制,减少孔隙和缺陷等方法来改善WC-Ni硬质合金的性能。采用传统方法制备的WC-Ni混合料在真空烧结条件下常出现“镍池”和孔洞。“镍池”和孔洞会严重影响合金的综合性能,比如强度、耐磨性、耐腐蚀性等。

目前,利用PVD技术制备的CrN涂层是耐磨部件主要采用的防护涂层。然而,传统的具有柱状晶结构的CrN涂层在腐蚀介质中容易腐蚀脱落,并且涂层脆性较大,在接触应力作用下,涂层缺陷(微凸、微坑、应力集中处等)处易于萌生裂纹,导致涂层早期非正常剥落和加速疲劳磨损失效。因此,传统单一的CrN涂层已难以适应当前和未来高机械负荷和腐蚀环境中阀门密封件的苛刻工况服役环境和性能要求,如重载下的低摩擦、长寿命和耐蚀性等。



技术实现要素:

本发明提供一种具备耐磨耐蚀涂层钨镍合金的制备方法,该方法制备的钨镍合金,解决了传统细晶硬质合金制备过程中常出现“镍池”和孔洞的问题,以提高合金的综合性能,采用多层梯度的涂层结构,将涂层成分由Cr经CrN逐渐向CrAlSiN过渡,不仅减小了涂层晶粒尺寸和晶格中的残余应力,提高了薄膜的沉积厚度,从而大幅提高了涂层的承载抗磨能力。

为了实现上述目的,本发明提供了一种具备耐磨耐蚀涂层钨镍合金的制备方法,该方法包括如下步骤:

(1)制备基体

按以下重量组份配制混合粉

碳化钨,90.1%-92.8%,费氏粒度0.8-1μm;

镍粉,5%-6%,费氏粒度0.5-1.0μm;

碳化铬,余量;

将上述配比的混合粉进行湿磨;其中球磨时间分段控制;先将碳化物粉及添加剂碳化铬加入球磨筒湿磨12-16小时,再加入镍粉湿磨14-18小时;

将球磨完毕的混合料料浆干燥;

将干燥混合料压制成所需形状的压制品;

将压制品放在烧结炉内高温烧结,烧结温度为1450-1470℃, 保温时间70-90min,烧结压力为4.5-5.0Mpa,获得钨镍合金基体;

(2)基体预处理

所述基体预处理,可依次进行研磨抛光、超声清洗和离子源清洗;

(3)溅射沉积

将预处理后的基体置于镀膜设备真空腔体中,选用Cr、AlSi靶,靶电流为50-100A,工件上施加-20—-50V负偏压,控制加热温度为400℃-450℃,通入氩气和氮气,通过控制氩气流量、氮气流量以及沉积时间在基体表面依次沉积Cr层、CrN层以及CrAlSiN层组成,具体如下:

(31)氩气流量保持为150sccm-200sccm,氮气流量为0sccm,沉积1.5-2.5h,得到Cr层;

(32)氩气流量保持为20-80sccm,氮气流量为100sccm-300sccm,沉积时间为3-5h,得到CrN层;

(33)氩气流量保持为50-100sccm,氮气流量为450sccm-700sccm,沉积时间为10-15h,得到CrAlSiN层;

待涂层沉积完毕后,在真空环境下冷却至220℃以下,然后在氮气保护气氛下冷却至100℃以下,最后放气至大气压,开腔出炉,即在基体表面获得复合涂层。

优选的,在所述步骤(2)中,所述研磨抛光,可将基体先在600目的金刚石砂轮盘上进行粗磨10min,然后在1200目的金刚石砂轮盘上进行细磨10min,再用W2.5的金刚石抛光粉进行抛光至试样表面均匀光亮,所述超声清洗,可将研磨抛光后的基体按以下顺序清洗,丙酮超声清洗5min→无水乙醇超声清洗5min→烘干待用,所述离子源清洗,可采用霍尔离子源对基体进行清洗5min,压强为2×10-2Pa,基体温度为300℃,氩气通量为10sccm,偏压为-100V,阴极电流为29.5A,阴极电压为19V,阳极电流为7A,阳极电压为80V,以清除基体表面的吸附气体以及杂质,提高沉积涂层与基体的结合强度以及成膜质量。

依据上述方法制备的钨镍合金,可达到显著改善和控制材料的组织结构的目的,使得制备的钨镍合金材料强度和硬度能达到完美的匹配,综合性能优良。

具体实施方式

实施例一

按以下重量组份配制混合粉 :

碳化钨,90.1%,费氏粒度0.8-1μm;

镍粉,5%,费氏粒度0.5-1.0μm;

碳化铬,余量。

将上述配比的混合粉进行湿磨;其中球磨时间分段控制;先将碳化物粉及添加剂碳化铬加入球磨筒湿磨12小时,再加入镍粉湿磨14小时。

将球磨完毕的混合料料浆干燥。

将干燥混合料压制成所需形状的压制品。

将压制品放在烧结炉内高温烧结,烧结温度为1450℃, 保温时间70-90min,烧结压力为4.5Mpa,获得钨镍合金基体。

基体预处理,所述基体预处理,可依次进行研磨抛光、超声清洗和离子源清洗。所述研磨抛光,可将基体先在600目的金刚石砂轮盘上进行粗磨10min,然后在1200目的金刚石砂轮盘上进行细磨10min,再用W2.5的金刚石抛光粉进行抛光至试样表面均匀光亮,所述超声清洗,可将研磨抛光后的基体按以下顺序清洗,丙酮超声清洗5min→无水乙醇超声清洗5min→烘干待用,所述离子源清洗,可采用霍尔离子源对基体进行清洗5min,压强为2×10-2Pa,基体温度为300℃,氩气通量为10sccm,偏压为-100V,阴极电流为29.5A,阴极电压为19V,阳极电流为7A,阳极电压为80V,以清除基体表面的吸附气体以及杂质,提高沉积涂层与基体的结合强度以及成膜质量。

将预处理后的基体置于镀膜设备真空腔体中,选用Cr、AlSi靶,靶电流为50-100A,工件上施加-20V负偏压,控制加热温度为400℃,通入氩气和氮气,通过控制氩气流量、氮气流量以及沉积时间在基体表面依次沉积Cr层、CrN层以及CrAlSiN层组成,具体如下:氩气流量保持为150sccm,氮气流量为0sccm,沉积1.5h,得到Cr层;氩气流量保持为20sccm,氮气流量为100sccm,沉积时间为3h,得到CrN层;氩气流量保持为50sccm,氮气流量为450sccm,沉积时间为10h,得到CrAlSiN层。

待涂层沉积完毕后,在真空环境下冷却至220℃以下,然后在氮气保护气氛下冷却至100℃以下,最后放气至大气压,开腔出炉,即在基体表面获得复合涂层。

实施例二

按以下重量组份配制混合粉 :

碳化钨, 92.8%,费氏粒度0.8-1μm;

镍粉, 6%,费氏粒度0.5-1.0μm;

碳化铬,余量。

将上述配比的混合粉进行湿磨;其中球磨时间分段控制;先将碳化物粉及添加剂碳化铬加入球磨筒湿磨16小时,再加入镍粉湿磨18小时。

将球磨完毕的混合料料浆干燥。

将干燥混合料压制成所需形状的压制品。

将压制品放在烧结炉内高温烧结,烧结温度为1470℃,保温时间90min,烧结压力为5.0Mpa,获得钨镍合金基体。

按如下重量百分比准备熔覆的的金属粉末: Zr 15%、Ni 8%、Si 2%、B 5%、C 6%,钨粉为余量,球磨混合,金属粉末的粒度范围为60-100微米

使用连续光纤激光器,设定熔覆工艺,采用同步送粉方式对金属粉末进行多道熔覆,冷却至室温,在基体上制备一层合金涂层。

使用连续光纤激光器,设定重熔工艺,对制得的合金涂层进行激光表面重熔,冷却至室温,获得钨镍合金材料。

基体预处理,所述基体预处理,可依次进行研磨抛光、超声清洗和离子源清洗。所述研磨抛光,可将基体先在600目的金刚石砂轮盘上进行粗磨10min,然后在1200目的金刚石砂轮盘上进行细磨10min,再用W2.5的金刚石抛光粉进行抛光至试样表面均匀光亮,所述超声清洗,可将研磨抛光后的基体按以下顺序清洗,丙酮超声清洗5min→无水乙醇超声清洗5min→烘干待用,所述离子源清洗,可采用霍尔离子源对基体进行清洗5min,压强为2×10-2Pa,基体温度为300℃,氩气通量为10sccm,偏压为-100V,阴极电流为29.5A,阴极电压为19V,阳极电流为7A,阳极电压为80V,以清除基体表面的吸附气体以及杂质,提高沉积涂层与基体的结合强度以及成膜质量。

将预处理后的基体置于镀膜设备真空腔体中,选用Cr、AlSi靶,靶电流为50-100A,工件上施加-50V负偏压,控制加热温度为450℃,通入氩气和氮气,通过控制氩气流量、氮气流量以及沉积时间在基体表面依次沉积Cr层、CrN层以及CrAlSiN层组成,具体如下:氩气流量保持为200sccm,氮气流量为0sccm,沉积2.5h,得到Cr层;氩气流量保持为80sccm,氮气流量为300sccm,沉积时间为5h,得到CrN层;氩气流量保持为100sccm,氮气流量为700sccm,沉积时间为15h,得到CrAlSiN层。

待涂层沉积完毕后,在真空环境下冷却至220℃以下,然后在氮气保护气氛下冷却至100℃以下,最后放气至大气压,开腔出炉,即在基体表面获得复合涂层。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1