一种吸波多层薄膜及其制备方法与流程

文档序号:12458187阅读:953来源:国知局
一种吸波多层薄膜及其制备方法与流程

本发明涉及磁性材料制备领域,特别涉及一种吸波多层薄膜及其制备方法,可用于噪声抑制器,传输线等器件中。



背景技术:

随着无线电通讯科技的发展和电子设备的高集成化,集成电子器件在运行中所产生的高密度、宽频谱的电磁信号充满整个空间,形成复杂的电磁环境,这要求电子设备及电源在各个频段都具有很好的电磁兼容性,这也就给抗电磁干扰技术带来了一系列的挑战。

高频磁性薄膜在高频具有非常优异的电磁损耗效果,且其薄、轻的特点使其在高集成化、小型化的电子器件中具有良好的应用前景,其吸收机制为磁矩的自然共振。为了实现在较宽频带对电磁波的吸收,从理论上讲有两种思路:一种是单层磁性薄膜,通过增大薄膜磁矩共振时的阻尼因子来展宽薄膜的共振吸收频带,可是单纯控制阻尼因子是困难的,过大的阻尼也会降低薄膜的吸收效果;另一种思路是多层薄膜,在[Zhang L,Zheng H,Zhu W,Li M,Zhang M,Wang N,Lu H P,Xie J L,Deng L J(2016),J.Alloys Compd,vol.657,pp.174-178]文中公开了FeCoB和FeCoSiB组合的多层薄膜,该薄膜的共振吸收频率将FeCoB的共振吸收频率(3~3.25GHz)和FeCoSiB的共振吸收频率(1.96~2.13GHz)组合在一起,但是此方法只能组合磁性薄膜本身的吸收频率,很难将共振吸收频率向高频进一步拓宽。FeCo基薄膜的共振吸收频率比大部分的磁性薄膜的共振吸收频率高,如果想要把共振吸收频率向高频进一步拓宽,就要寻找具有更高吸收频率的磁性材料,但这本身就是非常困难的。

因此提供一种宽频带吸波多层薄膜及其制备方法,不局限于材料本身吸收频率,实现将吸收频带向高频的拓宽,对电磁屏蔽领域发展是非常有利的。



技术实现要素:

针对上述存在问题或不足,为解决将吸收频带拓宽至高频的宽频带吸波多层薄膜,本发明提供了一种吸波多层薄膜及其制备方法。

该吸波多层薄膜从下至上分为三个部分,依次为衬底、中间层和顶层。

中间层是由n个单元从下至上依次依次堆叠而成,n≥1,单元是下层共振吸收频率为f1的磁性层和上层是隔离层的双层单元结构,最终依次堆叠为f1-fn共计2n层的中间层,隔离 层材料为SiO2,Cu或Al2O3非磁性材料,厚度为5nm~15nm。

顶层是由均匀排布的相同条形磁性薄膜组合而成,条形薄膜的数量≥2,宽度为1μm~30μm,厚度为15nm~200nm,相邻条形磁性薄膜之间的间隔为1μm~10μm,材料为FeCo基合金材料。

整个吸波多层薄膜基于衬底、中间层和顶层的结构形成由隔离层间隔的共振吸收频率磁性层的多层薄膜材料。

进一步的,所述f1-fn的磁性层的共振吸收频率相同和/或不同,当共振吸收频率相同时可提升吸波多层薄膜的吸收率,不同时可拓宽吸波多层薄膜的频带。

其制备方法具体如下:

步骤1、将衬底清洗干净,并吹干后采用真空溅射法生成共振吸收频率为f1的第1磁性层,然后采用真空溅射法在第1磁性层上生成第1隔离层,再采用真空溅射法在第1隔离层上生成共振吸收频率为f2的第2磁性层,再采用真空溅射法在第2磁性层上生成第2隔离层,如此重复前述步骤直至完成共振吸收频率为fn的第n磁性层和隔离层,最后形成具有由隔离层间隔的不同共振吸收频率的多层薄膜衬底,最上层为第n隔离层;

步骤2、在步骤1中制得第n隔离层薄膜上光刻,形成组合胶膜;该胶膜由均匀的条形胶膜组合而成的,各条形胶膜宽度为1μm~10μm,厚度为0.5μm~1.5μm,各条形胶膜间的间距宽度为1μm~30μm,胶膜的数量≥2;

步骤3、采用真空溅射法在步骤2制得的具有胶膜薄膜衬底上溅射一层厚度为15nm~200nm的FeCo基磁性材料薄膜,溅射时沿条形胶膜长轴方向外加200Oe-2000Oe的静态磁场;然后将其置于丙酮溶液中进行超声清洗将胶膜剥离,形成均匀排布的条形磁性薄膜顶层,条形薄膜的数量≥2,宽度为1μm~30μm,相邻条形薄膜之间的间隔为1μm~10μm,厚度为15nm~200nm;至此最终制得吸波多层薄膜。

本发明将吸波多层薄膜的吸收频带有效拓宽,并且不局限于材料本身的吸收频率,且有效的将材料的吸收频带拓宽至高频。

附图说明

图1是本发明提供的吸波多层薄膜沿最上层条形薄膜短轴方向剖面结构示意图;

图2是实施例1成品在电子显微镜下的俯视图;

图3是实施例1、实施例2和实施例3的磁导率虚部测试图。

具体实施方式

实施例1:FeNi和FeCoSiB的吸波多层薄膜的制备

步骤1、将尺寸为15mm×5mm×0.5mm的Si(111)基片通过丙酮超声清洗5分钟,经过无水乙醇超声清洗5分钟,再用去离子水冲洗5次,将洗好的Si基片用压缩空气吹去表面的去离子水后,将Si基片固定于磁控溅射腔体中的沉积载台上,溅射靶材为磁性合金靶材FeNi,溅射背景真空为5×10-5Pa,通入纯度大于等于99.99%的氩气使溅射真空为0.3Pa,使用直流磁控溅射,设定溅射功率为60W,沿硅片短轴方向外加1000Oe的静态磁场;溅射速率为8.82纳米/分钟,溅射4分32秒,得到溅射有40nm厚的FeNi薄膜的衬底;

步骤2、将载有步骤1制得的衬底的沉积载台转动到靶材SiO2的靶位上方,溅射背景真空为5×10-5Pa,通入纯度大于等于99.99%的氩气使溅射真空为0.3Pa,使用射频磁控溅射,设定溅射功率为20W,溅射速率为1纳米/分钟,溅射10分钟,得到具有厚度为40nm的FeNi,20nm的SiO2的双层薄膜衬底;

步骤3、将步骤2制得的双层薄膜衬底进行光刻,在SiO2上形成一层组合胶膜,得到具有最上层为胶膜的三层薄膜衬底;该组合胶膜由均匀条形胶膜组合而成的,各条形胶膜宽度为3μm,厚度为1μm,各条形胶膜间的间距宽度为6μm,条形胶膜长轴平行于衬底短轴;

步骤4、将步骤3制得的三层薄膜衬底固定于磁控溅射腔体中的沉积载台上,溅射靶材为磁性合金靶材FeCoSiB,溅射背景真空为5×10-5Pa,通入纯度大于等于99.99%的氩气使溅射真空为0.3Pa,使用直流磁控溅射,设定溅射功率为45W,沿衬底短轴方向外加1000Oe的静态磁场;溅射速率为13.3纳米/分钟,溅射3分46秒后将衬底取出放入丙酮中进行超声清洗,再用酒精冲洗,然后用洗耳球吹干表面,得到厚度分别为40nm,10nm,50nm的FeNi,SiO2,FeCoSiB三层吸波薄膜材料。

实施例2与实施例1其他的制备条件相同,将步骤4中溅射时间设为3分钟,将衬底取出,放入丙酮中进行超声清洗,再用酒精冲洗,用洗耳球吹干表面,得到厚度分别为40nm,10nm,40nm的FeNi,SiO2,FeCoSiB三层吸波薄膜材料。

实施例3与实施例1其他的制备条件相同,将步骤4中溅射时间设为1分30秒,将衬底取出,放入丙酮中进行超声清洗,再用酒精冲洗,用洗耳球吹干表面,得到厚度分别为40nm,10nm,20nm的FeNi,SiO2,FeCoSiB三层吸波薄膜材料。

经过短路微带线法测试上述实施例中制得的薄膜材料得到如图3所示的磁导率虚部测试图,本发明没有局限于FeCoSiB的吸收频率(1.96~2.13GHz),得到两个共振峰,第二个峰的共振频率在4.5GHz到5GHz间,有效得到高频吸收频率;本方法还可以组合更多层,得到宽频带的高频吸波多层薄膜材料。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1