高温超导薄膜制备方法与流程

文档序号:11694214阅读:957来源:国知局

本发明涉及高温超导技术,更具体而言,涉及利用离子束溅射沉积制备高温超导薄膜的方法。



背景技术:

高温超导体是一类不能用传统BCS理论解释的非常规超导体,超导薄膜(Superconducting Thin Film)通常是指利用蒸发、喷涂等方法沉积的厚度小于1微米的超导材料。以超导薄膜为基础制成数字电路,将比半导体材料做的数字电路具有速度更快、损耗更小、容量更大的特点。实用的超导薄膜分为低温和高温两类。低温超导材料的临界温度是绝对温度十几K以下,需要在液氮中工作,由于液氮及其制冷费用昂贵,其应用受到很大限制;高温超导材料(High Temperature Superconducting Material,HTS)一般指临界温度在绝对温度77K以上、电阻接近零的超导材料,通常在廉价的液氮(77K)制冷环境中使用。目前,HTS材料是指La系(超导转变温度:35K)、MgB2(39K)、Bi系(92K)、Y系(110K)、T系(125K)、Hg系(135K),其中以MgB2、Bi系、Y系最具有实用前途。已经制备出的实用HTS材料主要分为超导带材、超导块材及超导薄膜。其中钇钡铜氧(YBa2Cu3O7-x,YBCO)用于制备超导薄膜。

到目前为止,较成熟的YBCO超导薄膜制备技术主要有等离子体磁控溅射技术和激光蒸发沉积技术。两种方法的原理都是把超导靶材的原子或分子一个个或一团团地移到一个基片上、并按基片原有的晶体学特征重新外延生长出超导薄膜。由于高温超导体是由多种元素组成的材料,控制成分和生成的温度、气氛等就成为制备高质量超导薄膜的关键技术。但两种技术都存在以下两个问题:(1)如何制备多成分超导靶材,因为存在等离子体对靶材成分选择溅射或优先蒸发问题,必须精确调整制靶的成分才能溅射沉积符合化学成分配比的高温超导薄膜,而制成的靶材一经被溅射,其表面稳定成分又将发生变化;(2)磁控溅射系统难以解决多源溅射多靶材所需的精确控制各个靶材溅射粒子通量分布和避免不同靶材溅射粒子交叉沉积。



技术实现要素:

为了解决现有技术中存在的问题,本发明的目的至少部分地在于提供一种高温超导薄膜制备方法,该方法包括:

S1:制备含有Y、Ba和Cu的三种超导靶材,并分别固定在可旋转的三靶靶台上;

S2:将金属氧化物衬底固定在可加热的工件台上;

S3:先用机械泵粗抽真空,然后用分子泵精抽真空,使真空仓的真空度达到并始终保持在6.7×10-5Pa;

S4:将Kr+等离子体经引出、成束、加速、中和形成高能高速Kr+离子束,同时通过步进电机驱动所述靶台以周期性地转换所述三种超导靶材,使得所述Kr+离子束对所述三种超导靶材分别轰击不同时长,由所述三种超导靶材溅射出来的原子向固定在所述工件台上金属氧化物衬底依次沉积形成不同厚度的多层金属氧化物薄膜;

S5:将形成的多层金属氧化物薄膜进行热处理,使得层间热扩散及氧化,形成最终的高温超导薄膜。

根据本公开的一个方面,在步骤S1中,将Y2O3、BaO和CuO3三种粉末冷压坯块经热压加工成形,形成所述超导靶材。

根据本公开的另一方面,在步骤S4中,由测量单元对所溅射沉积的三种金属氧化物薄膜分别测量各自的薄膜厚度,并将测得的薄膜厚度发送至比较单元,与所存储的预定薄膜厚度进行比较,仅当所沉积的一种金属氧化物薄膜的厚度达到预定薄膜厚度时,所述步进电机才驱动所述靶台转换至下一个靶材。

根据本发明的又一个方面,在步骤S4中,Kr+离子能量=1400eV,束流强度=25mA,溅射角θs=45°,沉积角θd=0°,沉积温度Td=200℃,Kr+离子束轰击所述三种靶材的时间分别为Y2O3=11s、BaO=35s、CuO3=6s,使得形成的金属氧化物薄膜的厚度分别为Y2O3=1nm、BaO=2.3nm、CuO3=0.68nm。

根据发明的再一个方面,在步骤S4中,通过依据确定的溅射原子通量及背散射粒子通量的空间角分布,以及薄膜沉积速率及成分相对含量,按生长三种标准氧化物膜层要求对靶材、工件台、离子源等在溅射系统中的几何配位进行最佳化处理,实现对薄膜成分的准确控制。

根据本发明的另一个方面,在步骤S5中,所述热处理为将沉积的多层金属氧化物薄膜在850~910℃温度下在O2气氛中退火,并在500℃保温120min。

本发明利用离子束溅射沉积(Ion Bean Sputtering Deposition,IBSD)制备高温超导薄膜,采用单离子源多溅射靶材,从靶面产生溅射原子沉积于衬底表面形成和生长薄膜。根据本发明的离子束溅射沉积高温超导薄膜方法具有工作参数独立控制自由度大、灵活性强,可有效监控薄膜生长速率的优点,薄膜密度几乎可以达到靶材标准,薄膜厚度可控制到亚纳米级高精度,附着力强,解决了现有技术中存在的问题。

附图说明

通过以下参照附图对本公开实施例的描述,本公开的上述以及其他目的、特征和优点将更为清楚,在附图中:

图1是根据本发明一个实施方式的离子束溅射沉积高温超导薄膜的示意图。

具体实施方式

以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。

在附图中示出了根据本公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。

在本公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。

图1是根据本发明一个实施方式的离子束溅射沉积高温超导薄膜的示意图。

在图1中,各部分名称如下:

(1)卡夫曼离子源

(2)Y2O3、BaO、CuO3靶材

(3)三靶旋转靶台

(4)MgO单晶衬底

(5)箔片电加热衬底台

(6)可编程石英晶体谐振器QCR

(7)计算机控制系统

(8)氪(Kr)离子束

(9)Y2O3、BaO、CuO3溅射原子

(10)真空室

接下来,结合图1,详细描述根据本发明一个实施方式的高温超导薄膜的制备过程。整个高温超导薄膜制备过程均在内壁衬为Cu的不锈钢真空室10内进行。

首先,制备Y、Ba和Cu三种靶材。将Y2O3、BaO和CuO3三种粉末冷压坯块经热压加工成形压入Cu盘,作为靶材2,分别将三种靶材固定在三靶旋转靶台3上。将MgO单晶衬底4放置在电加热的箔片5上。

随后执行抽真空过程。具体而言,首先用机械泵粗抽真空,然后用分子泵精抽真空,使得真空仓内的真空度达到6.7×10-5Pa以上,并且在后续等离子体溅射沉积过程中保持该真空度不变。

随后,向真空仓内的离子源1充入惰性气体。此处,充入的惰性气体为氪气Kr。然后打开高压电源,使得氪气辉光放电成Kr+等离子体。将Kr+等离子体通过引出、成束、加速、中和等过程形成高能高速Kr+离子束7。通过调节施加电压,设置Kr+离子能量=1400eV,束流强度=25mA。

接下来,通过步进电机驱动旋转靶台3,以周期性地转换Y2O3、BaO和CuO3三种靶材,使得Kr+离子束对这三种靶材分别轰击不同时长。由这三种靶材溅射出来的三种不同原子向固定在电加热箔片5上的MgO单晶衬底4依次沉积形成不同厚度的多层超导薄膜。

具体来说,由测量单元对所溅射沉积的金属氧化物薄膜的厚度进行测量,并将测得的薄膜厚度发送至比较单元,与所存储的预定薄膜厚度进行比较,仅当所沉积的一种高温超导薄膜的厚度达到预定薄膜厚度时,步进电机才驱动旋转靶台3转换至下一个靶材。此处的测量单元可以是图1中的可编程石英晶体谐振器QCR 6,或者可以是适于对薄膜厚度进行测量的任何其他的部件。

例如,在Kr+离子束对Y2O3靶材进行轰击从而溅射原子沉积在MgO单晶衬底4上形成Y2O3薄膜。将离子束溅射Y2O3靶材的时间控制为第一预定时间,例如11s。随后可编程石英晶体谐振器QCR 6对所沉积形成的Y2O3薄膜进行采样并测量其薄膜厚度,随后将测得的薄膜厚度发送至比较单元,例如,计算机控制系统7。计算机控制系统7将接收到的测得的Y2O3薄膜厚度与所存储的第一预定薄膜厚度进行比较。如果,尚未达到第一预定薄膜厚度(例如1nm),则继续执行离子束溅射沉积Y2O3薄膜。当测得的Y2O3薄膜厚度达到第一预定薄膜厚度时,计算机控制系统7控制步进电机驱动旋转靶台3转换至下一个靶材,例如BaO靶材,继续由Kr+离子束对BaO靶材进行轰击,并在所沉积的Y2O3薄膜上继续沉积BaO薄膜。将离子束溅射BaO靶材的时间控制为第二预定时间,例如35s。随后进行薄膜采样、厚度测量和比较过程,直至所沉积的BaO薄膜达到第二预定厚度(例如2.3nm)。然后计算机控制系统7控制步进电机驱动旋转靶台3转换至CuO3靶材,继续溅射沉积CuO3薄膜。将离子束溅射CuO3靶材的时间控制为第三预定时间,例如6s。再次执行薄膜采样、厚度测量和比较过程,直至所沉积的CuO3薄膜达到第三预定厚度(例如,0.68nm)。

在进行上述离子束溅射沉积时,离子束溅射沉积参数设置如下:溅射角θs=45°,沉积角θd=0°,沉积温度Td=200℃。计算机系统控制步进电机周期性地旋转靶台3,分别对Y2O3靶材、BaO靶材和CuO3靶材以第一预定时间、第二预定时间和第三预定时间进行离子束溅射,从而周期性地分别沉积第一预定厚度、第二预定厚度和第三预定厚度的Y2O3薄膜、BaO薄膜和CuO3薄膜,直至最终得到所需厚度的多层氧化物薄膜。

随后,将沉积的多层薄膜在850~910℃和O2气氛中退火并在500℃保温120min,使得多层氧化物薄膜的膜层之间发生热扩散及氧化过程,形成高温超导薄膜YBa2Cu3O7-δ

在本发明中,通过依据所确定的溅射原子通量及背散射粒子通量的空间角分布,以及薄膜沉积速率及成分相对含量,按生长三种标准氧化物膜层要求对离子束溅射沉积系统各个部件的几何配位进行最优化处理,能够使薄膜成分控制精度达3%。

在以上的描述中,对于各层的构图、刻蚀等技术细节并没有做出详细的说明。但是本领域技术人员应当理解,可以通过各种技术手段,来形成所需形状的层、区域等。另外,为了形成同一结构,本领域技术人员还可以设计出与以上描述的方法并不完全相同的方法。另外,尽管在以上分别描述了各实施例,但是这并不意味着各个实施例中的措施不能有利地结合使用。

以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。本公开的范围由所附权利要求及其等价物限定。不脱离本公开的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1