从褐铁矿型红土镍矿中提取镍铁合金的系统的制作方法

文档序号:11836251阅读:297来源:国知局
从褐铁矿型红土镍矿中提取镍铁合金的系统的制作方法与工艺

本实用新型属于冶金技术领域,具体而言,本实用新型涉及一种从褐铁矿型红土镍矿中提取镍铁合金的系统。



背景技术:

红土镍矿石含镍橄榄石岩在热带或亚热带地区经过大规模的长期风化淋滤变质而成,是由铁、镁、硅等含水氧化物组成的疏松的黏土状矿石,矿石中的铁主要以赤铁矿的形式存在,矿石呈红色,所以被称为红土镍矿。红土镍矿的可采部分一般分为3层:褐铁矿、过渡层和腐殖层,它们的组成各不相同,规律为铁含量依次降低,镁含量和镍含量依次升高,褐铁矿层一般为高铁低镁红土镍矿,其铁含量40~50%,镍含量0.8~1.5%。

红土镍矿的处理方法主要有两种:火法与湿法。采用湿法工艺一般处理低镁高铁红土镍矿,可以将红土镍矿中Ni、Co提取出来,得到电解镍,其成本比火法低,但湿法处理的工艺比较复杂、流程长,环境污染严重,且生产时原材料损耗大,工艺条件对设备要求高,安全生产不易控制;采用火法工艺一般处理高镁低铁红土镍矿,主要产品是镍铁合金,能够直接应用于不锈钢生产,火法工艺处理红土镍矿生产镍铁合金具有流程短、效率高等优点,目前火法工艺主要处理高品位的红土镍矿。由于资源的限制,褐铁矿型红土镍矿含镍品位低,通过火法冶炼生产的镍铁含镍品位低,经济价值不高,迫切需要开发出能利用褐铁矿型红土镍矿生产出适应市场需求的镍铁。



技术实现要素:

本实用新型旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本实用新型的一个目的在于提出一种从褐铁矿型红土镍矿中提取镍铁合金的系统,该系统采用含镍品位低的褐铁矿型红土镍矿制备得到镍品位高的镍铁合金,从而可以在拓展镍铁合金的原料来源的同时降低镍铁合金的生产成本。

在本实用新型的一个方面,本实用新型提出了一种从褐铁矿型红土镍矿中提取镍铁合金的系统。根据本实用新型的实施例,该系统包括:

混合装置,所述混合装置具有红土镍矿入口、还原煤入口、添加剂入口和混合物料出口;

制球装置,所述制球装置具有混合物料入口和混合球团出口,所述混合物料入口与所述混合物料出口相连;

还原焙烧装置,所述还原焙烧装置具有混合球团入口和金属化球团出口,所述混合球团入口与所述混合球团出口相连;

快速熔化装置,所述快速熔化装置具有金属化球团入口和混合熔体出口,所述金属化球团入口与所述金属化球团出口相连;

燃气熔分炉,所述燃气熔分炉具有烧嘴、混合熔体入口、镍铁合金出口和炉渣出口,所述混合熔体入口与所述混合熔体出口相连。

由此,根据本实用新型实施例的从褐铁矿型红土镍矿中提取镍铁合金的系统通将还原焙烧装置与快速熔化装置和燃气熔分炉串联使用,使得含有镍品位低的褐铁矿型红土镍矿的混合球团在还原焙烧装置中进行还原处理,所得到的金属化球团供给至快速熔化装置中进行快速升温熔化冶炼,熔化后所得到的含镍铁水和炉渣的混合熔体再一起热送进入燃气熔分炉中,利用燃气熔分炉上设置的烧嘴控制进入燃气熔分炉的空气和燃气比例来控制燃气熔分炉中的气氛,使得铁水中一部分铁选择性氧化后进行炉渣,而保证镍不被氧化(由于NiO+Fe=Ni+FeO反应的存在,即使镍被氧化,也会被铁置换),从而可以得到镍品位较高的镍铁合金,进而可以在拓展镍铁合金的原料来源的同时降低镍铁合金的生产成本。

另外,根据本实用新型上述实施例的从褐铁矿型红土镍矿中提取镍铁合金的系统还可以具有如下附加的技术特征:

任选的,所述还原焙烧装置为回转窑、转底炉、车底炉或隧道窑。由此,可以显著提高金属化球团的金属化率。

任选的,所述快速熔化装置为电弧炉或矿热炉。由此,可以显著提高金属化球团的熔化效率。

本实用新型的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本实用新型的实践了解到。

附图说明

本实用新型的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:

图1是根据本实用新型一个实施例的从褐铁矿型红土镍矿中提取镍铁合金的系统结构示意图;

图2是根据本实用新型一个实施例的从褐铁矿型红土镍矿中提取镍铁合金的系统实施从褐铁矿型红土镍矿中提取镍铁合金的方法流程示意图。

具体实施方式

下面详细描述本实用新型的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本实用新型,而不能理解为对本实用新型的限制。

在本实用新型的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。

在本实用新型中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。

在本实用新型中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。

在本实用新型的一个方面,本实用新型提出了一种从褐铁矿型红土镍矿中提取镍铁合金的系统。根据本实用新型的实施例,参考图1,该系统包括混合装置100、制球装置200、还原焙烧装置300、快速熔化装置400和燃气熔分炉500。

根据本实用新型的实施例,混合装置100具有红土镍矿入口101、还原煤入口102、添加剂入口103和混合物料出口104,且适于将红土镍矿、还原煤以及添加剂供进行混合处理,从而可以得到混合物料。

根据本实用新型的一个实施例,红土镍矿中的镍含量为0.5~1.4wt%,铁含量为40~50wt%。由此,本申请可以采用含镍品位低的褐铁矿型红土镍矿制备得到镍品位高的镍铁合金,从而可以在拓展镍铁合金的原料来源的同时降低镍铁合金的生产成本。

根据本实用新型的再一个实施例,红土镍矿、还原煤以及添加剂的混合配比并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本实用新型的具体实施例,红土镍矿、还原煤以及添加剂可以按照质量比为100:5~25:3~15进行混合。发明人发现,若还原煤的添加量过低,会影响金属化球团的还原效果,而若还原煤的添加量过高,并不能提高产品的技术指标,且会造成还原煤资源浪费,提高生产成本,而添加剂的用量旨在辅助红土镍矿中镍的还原,试验中发现过高或过低的用量都会降低镍的还原效果。

根据实用新型的又一个实施例,还原煤的具体类型并不受特别限制,根据本实用新型的具体实施例,还原煤可以为选自无烟煤、烟煤、兰炭和半焦中的至少一种。

根据实用新型的又一个实施例,添加剂的具体类型并不受特别限制,根据本实用新型的具体实施例,添加剂可以为选自碱金属氧化物、碱金属盐、碱土金属氧化物和碱土金属盐中的至少一种。发明人发现,在红土镍矿的还原过程中,该类添加剂能从镁橄榄石或铁橄榄石中置换出NiO,以提高NiO的活度,从而显著降低还原冶炼温度,使得红土镍矿的还原条件大为改善,促进还原反应进行。

根据本实用新型的实施例,制球装置200具有混合物料入口201和混合球团出口202,混合物料入口201与混合物料出口104相连,且适于将混合物料进行制球,从而可以得到混合球团。需要说明的是,本领域技术人员可以根据实际需要对混合球团的粒度进行选择。

根据本实用新型的实施例,还原焙烧装置300具有混合球团入口301和金属化球团出口302,混合球团入口301与混合球团出口202相连,且适于将混合球团供给至还原焙烧装置中进行还原焙烧处理,从而可以得到金属化球团。需要说明的是,本领域技术人员可以根据实际需要对还原焙烧处理过程的条件进行选择。

根据本实用新型的一个实施例,金属化球团的金属化率可以为40~60%。由此,可以显著提高后续所得镍铁合金的品位。

根据本实用新型的再一个实施例,还原焙烧装置的具体类型并不受特别限制,本领域技术人员可以根据实际进行选择,根据本实用新型的具体实施例,还原焙烧装置可以为回转窑、转底炉、车底炉或隧道窑。

根据本实用新型的实施例,快速熔化装置400具有金属化球团入口401和混合熔体出口402,金属化球团入口401与金属化球团出口302相连,且适于将金属化球团进行熔化处理,从而可以得到含有含镍铁水和炉渣的混合熔体。

根据本实用新型的一个实施例,熔化处理的温度并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本实用新型的具体实施例,熔化处理的温度可以为1500~1650摄氏度。

根据本实用新型的再一个实施例,快速熔化装置的具体类型并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本实用新型的具体实施例,快速熔化装置可以为电弧炉或矿热炉。

根据本实用新型的又一个实施例,含有含镍铁水和炉渣的混合熔体中,含镍铁水中镍的含量为1~4wt%。由此,通过后续处理可以保证所得镍铁合金中镍具有较高的品位。

根据本实用新型的实施例,燃气熔分炉500具有烧嘴501、混合熔体入口502、镍铁合金出口503和炉渣出口504,混合熔体入口502与混合熔体出口402相连,且适于将含有空气和燃气的混合气以及含有含镍铁水和炉渣的混合熔体供给至燃气熔分炉中进行熔分处理,从而可以得到镍铁合金和炉渣。发明人发现,通过将熔化后所得到的含有含镍铁水和炉渣的混合熔体一起热送进入燃气熔分炉中,利用燃气熔分炉上设置的烧嘴控制进入燃气熔分炉的空气和燃气比例来控制燃气熔分炉中的气氛,使得铁水中一部分铁选择性氧化后进行炉渣,而保证镍不被氧化(由于NiO+Fe=Ni+FeO反应的存在,即使镍被氧化,也会被铁置换),从而可以得到镍品位较高的镍铁合金,进而可以在拓展镍铁合金的原料来源的同时降低镍铁合金的生产成本。需要说明的是,本领域技术人员可以根据实际需要对燃气的具体类型进行选择。

根据本实用新型的再一个实施例,含有空气和燃气的混合气中,空气与燃气的体积比可以为10~15:1。发明人发现,燃气的燃烧需要空气中的氧气,燃气供给量一定的前提下,空燃比过低的话,燃气不能充分燃烧,一方面导致炉内的热效率低,另一方面炉内氧气耗尽导致炉内不是氧化性气氛;空燃比过高的情况下会导致一部分镍也随着铁氧化进渣导致镍损失。由此,采用本申请范围的空燃比既能保证炉内的热量供给效率又能提供合适的气氛。

发明人发现,燃气熔分炉的缺点是升温速率慢,生产效率低,优点是可以方便地调节炉内的气氛;电弧炉或矿热炉升温速率快但是很难控制炉内气氛,因此本申请电弧炉或矿热炉与燃气熔分炉进行联用,可以综合利用二者的优点,对褐铁矿型红土镍矿先进行还原冶炼得到金属化球团,然后将所得到的金属化球团热态先进入电弧炉或矿热炉中快速升温熔化冶炼,熔化后的含镍铁水和炉渣再一起送入燃气熔分炉冶炼,通过控制空燃比,使铁水中的铁一部分选择性氧化后进入炉渣,以此达到提高镍铁合金中镍的品位的目的。

根据本实用新型实施例的从褐铁矿型红土镍矿中提取镍铁合金的系统通将还原焙烧装置与快速熔化装置和燃气熔分炉串联使用,使得含有镍品位低的褐铁矿型红土镍矿的混合球团在还原焙烧装置中进行还原处理,所得到的金属化球团供给至快速熔化装置中进行快速升温熔化冶炼,熔化后所得到的含镍铁水和炉渣的混合熔体再一起热送进入燃气熔分炉中,利用燃气熔分炉上设置的烧嘴控制进入燃气熔分炉的空气和燃气比例来控制燃气熔分炉中的气氛,使得铁水中一部分铁选择性氧化后进行炉渣,而保证镍不被氧化(由于NiO+Fe=Ni+FeO反应的存在,即使镍被氧化,也会被铁置换),从而可以得到镍品位较高的镍铁合金,进而可以在拓展镍铁合金的原料来源的同时降低镍铁合金的生产成本。

如上所述,根据本实用新型实施例的从褐铁矿型红土镍矿中提取镍铁合金的系统可具有选自下列的优点至少之一:

根据本实用新型实施例的从褐铁矿型红土镍矿中提取镍铁合金的系统开辟了褐铁矿型红土镍矿火法冶炼高品位镍铁合金的新途径;

根据本实用新型实施例的从褐铁矿型红土镍矿中提取镍铁合金的系统将电弧炉或矿热炉和燃气熔分炉串联使用冶炼褐铁矿型红土镍矿,能够综合利用电炉升温快和燃气熔分炉气氛容易控制的优点,高效率地从褐铁矿型红土镍矿中冶炼出适应市场需求的镍铁。

为了方便理解,下面参考图2对采用本实用新型实施例的从褐铁矿型红土镍矿中提取镍铁合金的系统实施从褐铁矿型红土镍矿中提取镍铁合金的方法进行详细描述。根据本实用新型的实施例,该方法包括:

S100:将红土镍矿、还原煤以及添加剂供给至混合装置进行混合处理

根据本实用新型的实施例,将红土镍矿、还原煤以及添加剂供给至混合装置进行混合处理,从而可以得到混合物料。

根据本实用新型的一个实施例,红土镍矿中的镍含量为0.5~1.4wt%,铁含量为40~50wt%。由此,本申请可以采用含镍品位低的褐铁矿型红土镍矿制备得到镍品位高的镍铁合金,从而可以在拓展镍铁合金的原料来源的同时降低镍铁合金的生产成本。

根据本实用新型的再一个实施例,红土镍矿、还原煤以及添加剂的混合配比并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本实用新型的具体实施例,红土镍矿、还原煤以及添加剂可以按照质量比为100:5~25:3~15进行混合。发明人发现,若还原煤的添加量过低,会影响金属化球团的还原效果,而若还原煤的添加量过高,并不能提高产品的技术指标,且会造成还原煤资源浪费,提高生产成本,而添加剂的用量旨在辅助红土镍矿中镍的还原,试验中发现过高或过低的用量都会降低镍的还原效果。

根据本实用新型的又一个实施例,还原煤的具体类型并不受特别限制,根据本实用新型的具体实施例,还原煤可以为选自无烟煤、烟煤、兰炭和半焦中的至少一种。

根据本实用新型的又一个实施例,添加剂的具体类型并不受特别限制,根据本实用新型的具体实施例,添加剂可以为选自碱金属氧化物、碱金属盐、碱土金属氧化物和碱土金属盐中的至少一种。发明人发现,在红土镍矿的还原过程中,该类添加剂能从镁橄榄石或铁橄榄石中置换出NiO,以提高NiO的活度,从而显著降低还原冶炼温度,使得红土镍矿的还原条件大为改善,促进还原反应进行。

S200:将混合物料供给至制球装置中进行制球

根据本实用新型的实施例,将混合物料供给至制球装置中进行制球,从而可以得到混合球团。需要说明的是,本领域技术人员可以根据实际需要对混合球团的粒度进行选择。

S300:将混合球团供给至还原焙烧装置中进行还原焙烧处理

根据本实用新型的实施例,将混合球团供给至还原焙烧装置中进行还原焙烧处理,从而可以得到金属化球团。需要说明的是,本领域技术人员可以根据实际需要对还原焙烧处理过程的条件进行选择。

根据本实用新型的一个实施例,金属化球团的金属化率可以为40~60%。由此,可以显著提高后续所得镍铁合金的品位。

根据本实用新型的再一个实施例,还原焙烧装置的具体类型并不受特别限制,本领域技术人员可以根据实际进行选择,根据本实用新型的具体实施例,还原焙烧装置可以为回转窑、转底炉、车底炉或隧道窑。

S400:将金属化球团供给至快速熔化装置进行熔化处理

根据本实用新型的实施例,将金属化球团供给至快速熔化装置进行熔化处理,从而可以得到含有含镍铁水和炉渣的混合熔体。

根据本实用新型的一个实施例,熔化处理的温度并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本实用新型的具体实施例,熔化处理的温度可以为1500~1650摄氏度。

根据本实用新型的再一个实施例,快速熔化装置的具体类型并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本实用新型的具体实施例,快速熔化装置可以为电弧炉或矿热炉。

根据本实用新型的又一个实施例,含有含镍铁水和炉渣的混合熔体中,含镍铁水中镍的含量为1~4wt%。由此,通过后续处理可以保证所得镍铁合金中镍具有较高的品位。

S500:将含有空气和燃气的混合气以及含有含镍铁水和炉渣的混合熔体供给至燃气熔分炉中进行熔分处理

根据本实用新型的实施例,将含有空气和燃气的混合气以及含有含镍铁水和炉渣的混合熔体供给至燃气熔分炉中进行熔分处理,从而可以得到镍铁合金和炉渣。发明人发现,通过将熔化后所得到的含有含镍铁水和炉渣的混合熔体一起热送进入燃气熔分炉中,利用燃气熔分炉上设置的烧嘴控制进入燃气熔分炉的空气和燃气比例来控制燃气熔分炉中的气氛,使得铁水中一部分铁选择性氧化后进行炉渣,而保证镍不被氧化(由于NiO+Fe=Ni+FeO反应的存在,即使镍被氧化,也会被铁置换),从而可以得到镍品位较高的镍铁合金,进而可以在拓展镍铁合金的原料来源的同时降低镍铁合金的生产成本。需要说明的是,本领域技术人员可以根据实际需要对燃气的具体类型进行选择。

根据本实用新型的再一个实施例,含有空气和燃气的混合气中,空气与燃气的体积比可以为10~15:1。发明人发现,燃气的燃烧需要空气中的氧气,燃气供给量一定的前提下,空燃比过低的话,燃气不能充分燃烧,一方面导致炉内的热效率低,另一方面炉内氧气耗尽导致炉内不是氧化性气氛;空燃比过高的情况下会导致一部分镍也随着铁氧化进渣导致镍损失。由此,采用本申请范围的空燃比既能保证炉内的热量供给效率又能提供合适的气氛。

发明人发现,燃气熔分炉的缺点是升温速率慢,生产效率低,优点是可以方便地调节炉内的气氛;电弧炉或矿热炉升温速率快但是很难控制炉内气氛,因此本申请电弧炉或矿热炉与燃气熔分炉进行联用,可以综合利用二者的优点,对褐铁矿型红土镍矿先进行还原冶炼得到金属化球团,然后将所得到的金属化球团热态先进入电弧炉或矿热炉中快速升温熔化冶炼,熔化后的含镍铁水和炉渣再一起送入燃气熔分炉冶炼,通过控制空燃比,使铁水中的铁一部分选择性氧化后进入炉渣,以此达到提高镍铁合金中镍的品位的目的。

采用本实用新型实施例的从褐铁矿型红土镍矿中提取镍铁合金的系统实施从褐铁矿型红土镍矿中提取镍铁合金的方法通将还原焙烧装置与快速熔化装置和燃气熔分炉串联使用,使得含有镍品位低的褐铁矿型红土镍矿的混合球团在还原焙烧装置中进行还原处理,所得到的金属化球团供给至快速熔化装置中进行快速升温熔化冶炼,熔化后所得到的含镍铁水和炉渣的混合熔体再一起热送进入燃气熔分炉中,利用燃气熔分炉上设置的烧嘴控制进入燃气熔分炉的空气和燃气比例来控制燃气熔分炉中的气氛,使得铁水中一部分铁选择性氧化后进行炉渣,而保证镍不被氧化(由于NiO+Fe=Ni+FeO反应的存在,即使镍被氧化,也会被铁置换),从而可以得到镍品位较高的镍铁合金,进而可以在拓展镍铁合金的原料来源的同时降低镍铁合金的生产成本。

下面参考具体实施例,对本实用新型进行描述,需要说明的是,这些实施例仅仅是描述性的,而不以任何方式限制本实用新型。

实施例1

将褐铁矿型红土镍矿(含Ni 0.7wt%,TFe 41wt%)、无烟煤和碳酸钠供给至混合装置中配料并混匀,得到混合物料,然后将该混合物料供给至制球机中进行制球并烘干,得到混合球团,接着将所得到的混合球团供给至转底炉中进行还原焙烧,得到金属化球团(金属化率为50%),接着将所得到的金属化球团热装热送进入电弧炉内升温至1600℃进行熔化,熔化后的含镍铁水(含镍2.7%)和炉渣一同倒入燃气熔分炉内,通过调节空燃比使燃气炉内O2平均浓度在15%,冶炼结束后得到镍铁合金,Ni品位4.8%,Fe品位94.6%。

实施例2

将褐铁矿型红土镍矿(含Ni 0.5wt%,TFe 45wt%)、兰炭和碳酸钙供给至混合装置中配料并混匀,得到混合物料,然后将该混合物料供给至制球机中进行制球并烘干,得到混合球团,接着将所得到的混合球团供给至回转炉中进行还原焙烧,得到金属化球团(金属化率为46%),接着将所得到的金属化球团热装热送进入矿热炉内升温至1550℃进行熔化,熔化后的含镍铁水(含镍1.9%)和炉渣一同倒入燃气熔分炉内,通过调节空燃比使燃气炉内O2平均浓度在18%,冶炼结束后得到镍铁合金,Ni品位4.1%,Fe品位95.3%。

实施例3

将褐铁矿型红土镍矿(含Ni 1.2wt%,TFe 38wt%)、半焦和氢氧化钙供给至混合装置中配料并混匀,得到混合物料,然后将该混合物料供给至制球机中进行制球并烘干,得到混合球团,接着将所得到的混合球团供给至回转炉中进行还原焙烧,得到金属化球团(金属化率为55%),接着将所得到的金属化球团热装热送进入矿热炉内升温至1550℃进行熔化,熔化后的含镍铁水(含镍3.7%)和炉渣一同倒入燃气熔分炉内,通过调节空燃比使燃气炉内O2平均浓度在13%,冶炼结束后得到镍铁合金,Ni品位5.2%,Fe品位93.9%。

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本实用新型的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。

尽管上面已经示出和描述了本实用新型的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本实用新型的限制,本领域的普通技术人员在本实用新型的范围内可以对上述实施例进行变化、修改、替换和变型。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1