用于制造图案化的金属涂层的方法

文档序号:10475451阅读:585来源:国知局
用于制造图案化的金属涂层的方法
【专利摘要】本发明涉及用于制造图案化的金属涂层的方法,在该方法中,将包括至少一种活性物质的引发剂组合物添加至基底。将包括用于金属层的至少一种前体化合物的前体组合物施加至所述引发剂组合物涂层。然后通过所述活性物质沉积出金属层。将至少一种组合物作为乳液施加以实现所得到的金属层的图案化。
【专利说明】
用于制造图案化的金属涂层的方法
技术领域
[0001] 本发明涉及用于制造结构化的金属涂层的方法,所述金属涂层优选为透明的。
【背景技术】
[0002] 结构化的导电涂层在许多应用中起着重要的作用。特别地对于触摸屏或OLED需要 这样的结构化的导电涂层。所述涂层还优选是透明的。
[0003]在这方面的一个问题是,上述应用的基底大部分由塑料制成。这样的塑料不仅是 绝缘体,而且在其表面处理期间还要求低的温度。
[0004] 特别地,透明的涂层要求特别精细的结构。这些结构不能通过挤压的方法来容易 地获得。较大面积的涂层也是有问题的。
[0005] 文件W02012/084849A2公开了具有在表面上形成导电结构的银纳米颗粒的乳液。 此处,所述银纳米颗粒在烧结过程之后形成导电结构。此处的缺点在于,特别地,不能非常 容易地控制导电性而且所述结构的产生需要在升高的温度下的烧结过程。
[0006] 技术问题
[0007] 本发明所要解决的问题在于提供用于以导电涂料涂覆表面的方法,其能在低的温 度下实施,且此外,其容许对所述结构的良好控制。
[0008] 技术方案
[0009] 所述问题通过具有独立权利要求的特征的本发明得以解决。本发明的有利的实施 方式表现在从属权利要求中。因此,将所有权利要求的用语并入本说明书中。本发明还包括 所有有用的且特别地所有提到的独立权利要求和/或从属权利要求的组合。
[0010] 所述问题通过用于制造结构化的金属涂层的方法得以解决,该方法包括以下步 骤:
[0011] a)将包括至少一种活性物质的引发剂组合物施加至基底;
[0012] b)将包括用于金属层的至少一种前体化合物的前体组合物施加至基底;
[0013] c)通过所述引发剂组合物的活性物质从所述前体组合物沉积出金属层;
[0014] 其中步骤a)和/或步骤b)中的组合物中的至少一种是乳液。
[0015] 下文将对各个方法步骤进行更详细的描述。待描述的方法还可具有另外的、未指 定的步骤。
[0016] 待以引发剂组合物涂覆的基底可以是任何适用于此目的的材料。合适的材料的实 例为金属或金属合金,玻璃,陶瓷,包括氧化物陶瓷、玻璃陶瓷或塑料,以及纸和其它含纤维 素的材料。当然还可使用具有由上述材料制成的表面层的基底。所述表面层可为例如金属 化、搪瓷、玻璃或陶瓷的层或油漆。
[0017] 金属或金属合金的实例为钢(包括不锈钢)、铬、铜、钛、锡、锌、黄铜和铝。玻璃的实 例为钠钙玻璃、硼硅酸盐玻璃、铅晶质玻璃和石英玻璃。它可以是例如平板玻璃、中空玻璃 如器皿玻璃、或实验室设备的玻璃。陶瓷为例如基于氧化物Si0 2、Al203、Zr02或MgO或对应的 混合氧化物的陶瓷。可如同金属那样具有膜的形式的塑料的实例为聚乙烯(PE)例如HDPE或 LDPE,聚丙烯,聚异丁烯,聚苯乙烯(PS),聚氯乙烯(PVC),聚偏二氯乙烯,聚乙烯醇缩丁醛, 聚四氟乙烯,聚氯三氟乙烯,聚丙烯酸酯,聚甲基丙烯酸酯例如聚甲基丙烯酸甲酯(PMMA), 聚酰胺,聚对苯二甲酸乙二醇酯,聚碳酸酯,再生纤维素,硝酸纤维素,醋酸纤维素,三乙酸 纤维素(TAC),乙酸丁酸纤维素或盐酸橡胶。涂漆表面可由惯常的底漆或油漆形成。在优选 的实施方式中,基底为膜、特别是聚对苯二甲酸乙二醇酯膜或聚酰亚胺膜。
[0018]根据本发明,至少一种组合物为乳液。然后,优选将活性物质和/或前体化合物布 置在一个相中,特别优选地在相界面处。这通常已经由如下事实导致:活性物质和/或前体 化合物由于例如它们是疏水性的或亲水性的而具有在乳液的相内的不同分布。这导致:在 施加至表面时,乳液的图案被转移至所述表面。在所述表面上发生乳液的自组织。因此,可 获得栅格状或蜂窝状的结构。
[0019] 优选地,乳液为皮克林乳液(Pickering emulsion),即,通过添加颗粒而稳定化的 乳液。在这种乳液中,颗粒(特别是纳米颗粒)围绕乳液的分散相安置,并由此使乳液稳定。 稳定程度首先取决于颗粒的半径、界面张力,但亦取决于其润湿性。油/水乳液的最佳稳定 性通常在90°C的接触角下实现。因此,所述颗粒还必须不太疏水或亲水。
[0020]特别地,在皮克林乳液的情况中,在表面上的施用导致颗粒沿相界面的自组织。这 导致获得由乳液中所存在的纳米颗粒构成的栅格状或蜂窝状的结构。
[0021 ] 在此,乳液还可包含用于稳定化的分散剂。它可以是0/W或W/0乳液。优选0/W乳液。 在此,疏水相是分散相。在皮克林乳液的情况中,乳液中所存在的纳米颗粒使乳液的分散相 稳定化。
[0022] 所使用的乳液优选由水相和油相组成。对于水相,优选的是水或者包含水和有机 溶剂(优选水溶性溶剂)的混合物。特别优选地,所述水相是水、或水与醇、醛和/或酮的混合 物,特别优选水、或水与单醇或具有最高达四个碳原子的多元醇(例如甲醇、乙醇、正丙醇、 异丙醇或乙二醇)、具有最高达四个碳原子的醛(例如甲醛)、和/或具有最高达四个碳原子 的酮(例如丙酮或甲乙酮)的混合物。所述水相非常特别地优选为水。
[0023] 油相优选为不溶于水相的至少一种有机溶剂。优选地,这些是具有至少五个碳原 子的芳族或脂族烃例如石油醚、己烷、庚烷、甲苯、苯、环戊烷或环己烷,经卤代的芳族或脂 族烃例如二氯甲烷、氯仿,乙酸烷基酯例如乙酸丁酯,酮例如苯乙酮或环己酮。还可使用所 述溶剂的混合物。
[0024] 对于乳液的这两个相,优选的是具有小于150°C的沸点的溶剂。
[0025]对于乳液,油相的分数优选在15重量%和80重量%之间,基于总的组合物。在此,〉 50重量%的含量通常导致W/0乳液,而〈50重量%的含量则导致0/W乳液。
[0026]特别优选的是具有含量在15重量%和40重量%之间的油相的乳液,基于总的组合 物,优选地,在0/W乳液的情况中在20重量%和30重量%之间以及在W/0乳液的情况中在60 重量%和80重量%之间。
[0027] 如组合物那样,所述乳液也可包含其它化合物,例如聚合物、缓冲剂或分散助剂、 成膜剂等。优选地,组合物包含不超过10重量%、优选不超过5重量%的量的这些助剂,基于 总的组合物。
[0028] 在本发明的优选实施方式中,乳液不包含添加剂,特别地不包含表面活性化合物、 粘合剂、聚合物、缓冲剂或分散剂。
[0029] 引发剂组合物包含作为引发剂的至少一种可导致从前体化合物沉积出金属层的 活性物质。这可以是不同的化合物,取决于沉积的激活(活化)。因此,沉积可以热的方式、化 学的方式和/或通过辐照引起。
[0030] 活性物质可包括例如还原性基团或其前体,例如醛基。
[0031] 优选地,所述引发剂组合物包含作为引发剂的光催化的活性无机物质。在此,光催 化的活性物质被理解为意指这样的化合物,其直接引起金属络合物中的金属离子的还原以 得到金属,和/或,通过金属络合物或其它物质的氧化活化间接地引起所述还原,而其本身 在该过程中并不分解。在氧化过程中形成的产物导致金属络合物的分解和该络合物的金属 离子的还原。光催化材料可为ZnO或TiO 2,其中TiO2是优选的。特别优选地,TiO2具有锐钛矿 的形式。
[0032] TiO2还可具有无定形TiO2的形式。优选地,它们是纳米级的TiO2颗粒。它们可以是 例如平均直径小于200nm、优选平均直径小于50nm、特别优选小于20nm(借助于TEM测量)的 纳米级的T i〇2颗粒。特别优选的是平均直径在1和I OOnm之间、优选在1和20nm之间(借助于 TEM测量)的颗粒。
[0033]在本发明的一个实施方式中,所使用的颗粒的流体动力学半径(使用DLS测量)小 于300nm、优选小于200nm、特别优选小于150nm。在本发明的非常特别优选的实施方式中,颗 粒的流体动力学半径小于120nm。在这种情况中,颗粒还可作为具有特定流体动力学半径的 聚集体存在。在此,颗粒可作为其中至少90%具有在上述界线内的流体动力学半径的颗粒 分布存在。
[0034] 在本发明的一个实施方式中,颗粒独立地或以与上述参数组合的方式具有小于 IOOnm的cMt,借助于动态光散射法测量。颗粒优选具有小于150nm的cMto
[0035] 所述流体动力学半径可通过颗粒的表面改性而增大。在本发明的一个实施方式 中,在未改性的颗粒的情况中,优选具有小于50nm的d 5Q值、优选地具有小于50nm的d8Q值的 颗粒。在表面改性的情况中,优选具有小于IOOnm的d 5Q值、优选地具有小于150nm的d8Q值的 颗粒(均借助于动态光散射法测量)。
[0036] 所使用的颗粒优选地以胶体稳定的形式存在。任选地、但不是优选地,还可添加稳 定助剂。
[0037] 特别地,当使用光催化活化的引发剂组合物、优选使用TiO2颗粒时,在曝光的条件 下能够除去位于颗粒表面的任何有机成分。如果直接应用金属颗粒,则这样的有机成分可 严重破坏导电性。本发明方法明显不太受这样的添加剂的影响。因此,表面上的图案化(结 构化)可得到精准得多的控制。
[0038]特别优选的是在水热条件下以低于化学计量的水获得的颗粒,如例如在US2009/ 0269510A1中所描述的。这样的颗粒还可以掺杂形式制造。
[0039]为此,在纳米颗粒的情况中,于其制备的过程中可使用合适的金属化合物以用于 掺杂,所述金属化合物例如氧化物、盐或络合化合物,例如卤化物、硝酸盐、硫酸盐、羧酸酯 (例如乙酸酯)或乙酰丙酮化物。所述化合物应是可方便地溶于用于制备所述纳米颗粒的溶 剂中的。合适的金属是任何金属,特别是选自元素周期表的第5-14族以及镧系和锕系的金 属。此处所列的族依据如在R0mppChemie Lexikon,第9版中给出的新的IUPAC体系。所述 金属可以任何合适的氧化态出现在所述化合物中。
[0040] 用于金属化合物的合适的金属的实例为胃、]\1〇、211、(]11、48、411、311、111、?6、(]〇、附、]\111、 此、¥、恥、1『、诎、〇8、卩(1和?七。优选使用^1)、]\1〇(¥1)、211(11)、〇1(11)、八11(111)、511(1¥)、111 (III)、Fe(III)、Co(II)、V(V)和Pt(IV)的金属化合物。特别地,使用W(VI)、Mo(VI)、Zn(II)、 Cu (I I )、Sn (IV)、In (I II)和Fe (I II)实现非常好的结果。优选的金属化合物的具体实例为 WO3、Mo03、FeCl3、醋酸银、氯化锌、氯化铜(II)、氧化铟(III)和醋酸锡(IV)。
[0041 ]金属化合物和钛或锌化合物之间的定量比例还取决于使用的金属及其氧化态。一 般说来,例如使用这样的定量比例使得金属化合物的金属与钛或锌化合物的钛/锌的摩尔 比例(Me/Ti(Zn))为0 · 0005:1 至0 · 2:1、优选0 · 001:1 至0 · 1:1 以及更优选0 · 005:1 至0 · 1:1。 [0042] 纳米颗粒的掺杂描述于US2009/0269510A1中,其内容在此并入本说明书中。基本 上,在制备过程中还向其中添加上述金属化合物。
[0043] 根据本发明使用的纳米颗粒还可以是表面改性的例如以赋予它们与组合物的相 容性以及影响它们在乳液中的分布或它们的关于使乳液稳定化的性能。因此,例如,可影响 接触角并由此影响其关于使乳液稳定化的性能。
[0044] 因此,纳米颗粒可用疏水的、亲水的、疏油的或亲油的官能团进行表面改性。为了 实现疏水和/或疏油性能,例如可引入包括氟化烃链的官能团。
[0045] 该类型的官能团可通过纳米颗粒与表面改性剂的反应获得。纳米级颗粒的表面改 性是已知的过程,如由
【申请人】例如在W093/21127(DE4212633)或W096/31572中所描述的。表 面改性的纳米颗粒的制备原则上可以两种不同的方式进行,即,一方面通过已制备的纳米 级颗粒的表面改性,以及另一方面通过使用表面改性剂制备这些颗粒。
[0046] 最终纳米颗粒的表面改性可简单地通过混合颗粒和表面改性剂进行。反应任选地 在溶剂中进行,而且,如果必要的话,通过输入机械或热能和/或通过添加催化剂进行。
[0047] 合适的表面改性剂是一方面具有一个或多个能与在纳米颗粒的表面上存在的反 应性基团(例如OH基团)反应或相互作用的基团的化合物。表面改性剂可与纳米颗粒的表面 形成例如共价键、配位(络合)键和离子(盐状)键,而在纯的相互作用中,示例性地提及偶 极-偶极相互作用、氢桥键和范德华相互作用。优选的是共价键、离子键或络合的形成,非常 特别优选地作为离子键或络合的结果。
[0048 ]表面改性剂通常具有相对低的分子量。例如,分子量可为小于15 0 0、特别地小于 1000以及优选地小于700并且特别优选地小于500,但还可以是较高的分子量,例如,最高达 2000及更高。
[0049] 对于纳米颗粒的表面改性,考虑无机和有机酸、碱、螯合剂、络合物形成剂(例如β-二酮类、蛋白质,其可具有形成络合物的结构)、氨基酸或硅烷。在优选的实施方式中,表面 改性剂可为通过在颗粒表面上的络合形成改性的络合剂。表面改性剂的具体实例为饱和或 不饱和的一元和多元羧酸、相应的酸酐、酰基氯、酯和酰胺、氨基酸、蛋白质、亚胺、腈、异腈、 环氧化合物、单-和多胺、二羰基化合物(例如二酮)、肟、醇、烷基化物、金属或具有可 与颗粒的表面基团反应的官能团的半化合物(half-compound)(例如具有含至少一个非水 解性基团的可水解的基团的硅烷)。用于表面改性剂的特定的化合物是例如在上述的W093/ 21127和¥096/31572中指定的。
[0050] 特别优选的表面改性剂是饱和或不饱和的羧酸、β-二羰基化合物、胺、膦酸、磺酸 或硅烷。
[0051] 如所描述的,在优选实施方式中的官能团具有至少一个官能化基团。为此,使用包 括除用于与颗粒表面键合的官能团以外的至少一个其它官能团的表面改性剂。
[0052] 用于官能团的其它官能化基团的实例为羟基、环氧基、硫醇、氨基、羧基、羧酸酐、 磺酸基、膦酸基、季胺基或羰基。在更广泛的意义上,氟化烃基也可被包括在内。因此,为此 目的,使用双、三、或更高官能的表面改性剂,其中优选羧酸、二羰基化合物、胺、膦酸、磺 酸或具有至少一个选自上述优选的官能团的额外的基团的硅烷,例如羟基羧酸、氨基酸、氨 基磺酸、氨基膦酸,官能化的二羰基化合物。
[0053]由于表面改性,还可引入有利于金属沉积的基团。这些可例如为还原性基团例如 醛基。
[0054]用于表面改性的优选的化合物的实例列举如下:
[0055]优选包含1-24个碳原子的羧酸的实例为饱和一元羧酸(如甲酸、乙酸、丙酸、丁酸、 戊酸、己酸、癸酸、硬脂酸、苯乙酸、苯甲酸),具有两个或更多个羧基的饱和多元羧酸(例如 草酸、丙二酸、己二酸、琥珀酸、戊二酸和邻苯二甲酸),不饱和的羧酸(例如丙烯酸、甲基丙 烯酸、巴豆酸、马来酸、富马酸和油酸),α-羟基羧酸或α-酮羧酸(例如羟基乙酸、乳酸、酒石 酸、柠檬酸、2-羟基丁酸、2,3-二羟基丙酸、2-羟基戊酸、2-羟基己酸、2-羟基庚酸、2-羟基辛 酸、2-羟基癸酸、2-羟基十二烷酸、2-羟基十四烷酸、2-羟基十六烷酸、2-羟基十八烷酸、扁 桃酸、4-羟基扁桃酸、苹果酸、刺桐酸(erythraric acid)、酒石酸(threaric acid)、葡糖二 酸、半乳糖二酸、甘露糖二酸(mannaric acid)、葡糖二酸(gularic acid)、2_羟基-2-甲基 琥珀酸、葡糖酸,丙酮酸,葡萄糖醛酸和半乳糖醛酸),β_羟基羧酸(例如水杨酸,乙酰水杨 酸),和羧酸的衍生物,例如酸酐、酯(优选地&-(: 4-烷基酯,例如甲基丙烯酸甲酯)和酰胺。 [0056]优选包含4-12、更优选5-8个碳原子的β-二羰基化合物的实例为乙酰丙酮、2,4_己 二酮、3,5-庚二酮、乙酰乙酸和乙酰乙酸&-〇4-烷基酯;和官能化的二羰基化合物,例如六氟 乙酰丙酮和乙酰乙酰胺。
[0057]另外的实例为单胺或多胺,特别是通式R3-ηΝΗη的那些,其中η = 0、1或2以及基团R 彼此独立地为具有1-12、特别地1-8以及特别优选地1-6个碳原子的烷基(例如甲基、乙基、 正丙基和异丙基、丁基或己基),和亚乙基多胺(如乙二胺、二亚乙基三胺等);磺酸(如2-氨 基乙磺酸和3-氨基苯磺酸)、膦酸、氨基酸;亚胺;和硅烷,例如具有至少一个非水解性基团 的可水解的硅烷,其中优选在非水解性基团上具有官能团的那些。
[0058]另外的合适的表面改性剂的实例为式NR1R2R3R 4I的季铵盐,其中R1至R4任选地彼 此互不相同并且为优选具有1-12个、特别地1-8个碳原子的脂族、芳族或脂环族的基团,例 如具有1-12个、特别地1-8个以及特别优选地1-6个碳原子的烷基(例如甲基、乙基、正丙基 和异丙基、丁基或己基),以及Χ_为无机或有机阴离子,例如醋酸根、OH'Cl'Bf或Γ。
[0059]这些化合物的碳链可被0、S或NH基团中断。这样的表面改性剂为例如氧杂烷酸,其 中可包括1、2、3或更多个氧杂基团。实例为三氧杂癸酸、3-氧杂丁酸、2,6_二氧杂庚酸及其 同系物。
[0060] 对于在本发明的上下文中特别优选的TiO2颗粒,优选的是使用α-羟基羧酸、α-酮 羧酸或羟基羧酸或其衍生物的表面改性,极其特别优选的是使用水杨酸或乙酰水杨酸的 表面改性。
[0061] 优选地,使用颗粒的表面改性以使乳液稳定化。通过表面改性,可以调整颗粒与乳 液的各个相的接触角。因此,颗粒可被优化以用于某些乳液。
[0062] 这还决定用于表面改性的键合分子的数量。在进一步的实施方式中,二氧化钛颗 粒以小于10分子/nm2、优选小于5分子/nm 2被表面改性(使用同步热分析法测量,优选使用 Netzsch STA 449 C Jupiter测量)〇
[0063] 在本发明的一个实施方式中,引发剂组合物为纳米颗粒在至少一种溶剂中的分散 体,所述纳米颗粒还可以是表面改性的。此处,纳米颗粒的分数(含量)小于20重量%、优选 小于10重量%、特别优选小于5重量%。优选的范围是0.5重量%-3重量%。实例为1重量%、 1.5重量%、2重量%和2.5重量%。在这种情况中,所述分数与总的引发剂组合物有关。
[0064] 在本发明优选的实施方式中,引发剂组合物为乳液。优选地,其为油相含量在15重 量和40重量%之间、优选地含量在20重量%和30重量%之间的乳液。
[0065] 在本发明优选的实施方式中,引发剂组合物包括皮克林乳液,即由纳米颗粒稳定 化的乳液。此处优选地,纳米颗粒为引发剂组合物的活性物质。此处,纳米颗粒的含量大于 0.1重量%,基于总的引发剂组合物。
[0066] 在优选的实施方式中,以两个或更多个步骤制备所述皮克林乳液。首先,将纳米颗 粒的水性分散体与和水不溶混的溶剂混合,并且之后进行分散以形成乳液。优选地,此处纳 米颗粒的含量大于0.1重量%、优选大于0.2重量%,基于总的乳液。优选地,纳米颗粒的含 量在0.1重量%和5重量%之间、特别优选地在0.1重量%和2重量%之间、极其特别优选地 在0.2重量%和1.5重量%之间、或为1重量%。由于仅在另外的步骤中施加导电金属层,因 而能够以比直接使用金属颗粒的情况显著更低的颗粒含量工作。
[0067] 特别地,在表面改性的颗粒的情况下,在静置时间之后可出现乳液的乳液分层 (creaming)。在此,由于乳液分层而形成上部的浓缩乳液相。如果观察到这样的乳液分层, 则分离出下部的基本上水性的相并将上部的浓缩乳液相用作引发剂组合物。在该浓缩的乳 液相中,颗粒的含量可为较高。在该情况中,上述数据与乳液分层前的总的组合物有关。在 乳液的乳液分层前的静置时间优选为1-30分钟。
[0068] 另外地,可需要先将制成的乳液静置一段时间,例如1小时-72小时。
[0069] 通过两个相的比例和颗粒的表面改性,能够调整乳液中存在的液滴的尺寸,在0/W 乳液的情况中调整油滴的尺寸。由于这些决定了后续的网络密度,因而它们在获得透明结 构的情况下构成了重要的参数。
[0070] 在本发明优选的实施方式中,在施加至基底之后的乳液的平均液滴尺寸在Ιμπι和 500μπι之间(由光学显微镜测得)。在透明结构的情况中,平均液滴尺寸优选在30μπι和400μπι 之间。此处,仅考虑球形的液滴。
[0071] 溶液中的液滴尺寸可随乳液的老化而改变。取决于界面张力,在乳液中出现聚结, 这导致较大的液滴。
[0072] 可使用常规的方法施加引发剂组合物,例如浸渍、压延、刮涂、流涂(flooding)、牵 弓丨、喷涂、旋涂或刷涂。可完全或部分地进行施加。
[0073]所施加的分散体被干燥。为此使用的温度取决于基底。对于塑料基底或塑料表面, 自然不能使用非常高的温度。优选地,所述干燥在小于200°C、优选小于150°C进行。特别优 选地在小于l〇〇°C。使用用于干燥的温度的处理优选在2分钟和120小时之间进行。
[0074]对于本发明的方法重要的是在干燥期间必须不发生烧结,因为只在接下来的步骤 中才施加金属层。因此,还可以在小于40°C、或小于30°C的温度对结构进行干燥。在这些温 度下,1小时至36小时的干燥时间是优选的。
[0075] 干燥可以在有覆盖物或无覆盖物的情况下进行。所述覆盖物可以是玻璃或塑料的 板、膜或多孔滤布。覆盖物可影响乳液在表面上的自组织。
[0076] 如上所描述的,所述干燥还可影响乳液的分散相的尺寸分布。
[0077] 特别地,在使用包括表面改性的颗粒的皮克林乳液的情况中,用于干燥的时间可 被减少至少于2小时、优选地少于1小时,优选地在20°C_120°C的温度。甚至可以减少干燥至 少于10分钟、优选地少于6分钟、更优选地少于4分钟,优选地在50°C-120°C的温度。这样的 乳液甚至在非常短时间的干燥的情况下也在表面上形成稳定的栅格状结构。因此,基底的 仅容许在短的时间段内暴露于这样的温度的涂层也是可能的。
[0078] 在施加接下来的组合物之前对样品进行清洗和再次干燥可以是必须的。
[0079] 在接下来的步骤中,将包括用于金属层的至少一种前体化合物的前体组合物施加 至基底。
[0080] 前体组合物通常为至少一种前体化合物的溶液或悬浮液。该溶液还可包括两种或 更多种前体化合物的混合物。另外的助剂(例如还原剂或润湿助剂)也可存在于溶液中。
[0081] 前体化合物优选为金属络合物。其包括至少一种金属离子或金属原子和至少一种 类型的配体。所述金属为例如银或金。在优选的实施方式中,前体化合物为银或金络合物, 特别优选地银络合物。所述前体化合物还可包括若干种类型的金属、或者金属络合物的混 合物。
[0082] 螯合物配体通常用作配体。这些可形成特别稳定的络合物。它们是具有多个羟基 和/或氨基的化合物。优选的是具有小于200g/mol的分子量的化合物、特别优选具有至少一 个羟基和至少一个氨基的化合物。可能的化合物的实例为3-氨基-1,2-丙二醇、2-氨基-1-丁醇、三(羟甲基)氨基甲烷(TRIS )、NH3、烟酰胺或6-氨基己酸。还可以使用这些配体的混合 物。在优选的银络合物的情况中,优选TRIS作为配体。
[0083]前体组合物还可额外地包括另外的助剂,例如表面活性剂或辅助的还原剂。
[0084] 可以任何期望的方式将前体组合物施加至基底。为此,如此施加前体组合物使得 金属离子到金属的还原可直接或间接地被引发剂层的活性物质触发。通常,这通过将前体 组合物直接施加至引发剂层而发生。
[0085] 为了施加前体组合物,可使用常规的方法,例如浸渍、压延、刮涂、流涂 (flooding)、牵引、喷涂、旋涂或刷涂。可完全或部分地进行施加。
[0086] 在本发明的进一步的实施方式中,前体组合物为乳液。因此,可以某些结构将金属 化合物施加至基底。
[0087]特别优选的是具有含量在15重量%和48重量%之间的油相的乳液,基于总的组合 物,在0/W乳液的情况中优选在30重量%和45重量%之间,以及在W/0乳液的情况中优选在 60重量%和80重量%之间。乳液还可包括另外的分散剂或乳化剂。
[0088] 在接下来的步骤中,通过引发剂化合物将前体化合物的金属离子还原成金属。还 原活化的类型取决于使用的引发剂化合物。其可以是热、化学或光化学的活化。
[0089] 由于至少一种施加的组合物的图案化,金属仅沉积在其中前体化合物和引发剂组 合物的活性物质在表面上被彼此叠加布置的区域中。
[0090] 如果引发剂组合物已作为乳液被施加,那么之后金属仅沉积在具有乳液的活性物 质的相所在之处。在优选的活性物质的皮克林乳液的情况中,金属仅在由纳米颗粒稳定化 的液滴周围沉积。
[0091] 优选的是光化学活化。对引发剂的电磁辐射的作用引起向金属的还原。在该过程 中形成金属层。电磁辐射是用于活化引发剂的波长的辐射。在此,可通过使用平的束来源例 如灯、或借助于激光来实现辐照。优选的是使用在电磁波谱的可见光或紫外线范围内的波 长、优选具有〈500nm、例如在200nm和450nm之间、或在21〇111]1和41〇111]1之间的波长的福射。优 选具有<400nm的波长的辐射。
[0092] 使用的光源可以是任何合适的光源。光源的实例为水银蒸气灯或氙气灯。
[0093]将光源布置在离待暴露于光的基底合适的距离处。此处的距离可例如在2.5cm和 50cm之间。在此,福射强度于250nm-410nm的光谱范围内可为lmW/cm2至400mW/cm2。
[0094] 所述辐照应相对于待暴露于光的表面以尽可能垂直的方式进行。
[0095] 在足以形成金属层的时间内进行辐照。在此,所述时间取决于涂料、引发剂的类 型、灯的类型、使用的波长范围和辐照的强度。如果要制造导电结构,则较长时间的辐照可 以是必要的。优选的是5秒-10分钟、优选地20秒-4分钟的辐照时间。
[0096] 如果将激光用于辐照,可使用具有IOmW的氩离子激光(351nm),例如其激光束被聚 焦和校准并以2mm/s的速度通过待辐照的基底。
[0097] 在本发明的进一步的实施方式中,在辐照和前体化合物的还原之后对基底进行进 一步处理。因此,例如,未被还原的多余的前体组合物可通过例如使用去离子水或其它合适 的物质漂洗表面而去除。
[0098] 还可以施加另外的层,例如来保护经涂覆的表面免于氧化和防水或者免于UV辐 射。
[0099] 在本发明的一个实施方式中,在施加前体组合物时和/或在还原期间额外地进行 图案化。在本发明的上下文中,这被理解为意指金属结构的在空间上受限的生长的积累。这 可具有不同的方式。一方面,可用引发剂组合物仅在一定的区域对基底进行涂覆。此外,可 将前体组合物仅施加在一定的区域。另外,电磁辐射的作用当然也可被限制在一定区域。这 些方法当然还可被组合使用。
[0100]在本发明优选的实施方式中,预处理包括等离子体处理、电晕处理、火焰处理和/ 或有机-无机涂料的施加和固化。特别地针对膜基底、特别是塑料膜,考虑等离子体处理、电 晕处理和/或火焰处理。在这种情况下,发现这样的处理改善了所得到的光催化层的品质。
[0101] 在真空条件下获得等离子体的可能的方式已常在文献中被描述。电能可通过感应 或电容装置来连接。它可以是直流或交流电;交流电的频率范围可从几 kHz至MHz的范围。微 波范围(GHz)的能量输入也是可能的。
[0102] 可使用的初级等离子气体为例如He、氩气、氙气、犯、02、出、蒸气或空气、以及这些 化合物的混合物。优选的是氧等离子体。
[0103] 通常事先对基底进行清洗。这可借助于使用溶剂的简单的漂洗进行。然后任选地 对基底进行干燥并且之后使用等离子体处理少于5分钟。处理时间可取决于基底的敏感性。 其通常为1-4分钟。
[0104]改善光催化层的品质的其它选择为表面的预先火焰处理。这样的处理是本领域技 术人员已知的。待选择的参数由待处理的特定基底预先给定。例如,火焰温度、火焰强度、停 留时间、基底与火焰之间的距离、燃烧气体的性质、空气压力、湿度均与相关的基底匹配。使 用的火焰气体可为例如甲烷、丙烷、丁烷或70%的丁烷和30%的丙烷的混合物。该处理还可 优选地用于膜的情况、特别优选地针对塑料膜。
[0105] 可能有必要借助于额外的热处理对所得到的金属结构进行烧结。然而,优选的是 不进行额外的热处理。
[0106] 在本发明的优选实施方式中,所述方法不包括超过HKTC的热处理。使用根据本发 明的方法,甚至能够只在低于50°C、或低于40°C的温度工作。
[0107] 根据本发明的方法的优势特别在于,由于后续的金属的沉积,沉积的金属的量以 及由此的结构的导电性可被显著更好地控制。如果直接使用金属颗粒,则有必要使用高含 量的颗粒来工作。同时,需要对结构进行烧结以使颗粒彼此熔合。这可通过使用根据本发明 的方法来防止。
[0108] 此外,特别地,如果引发剂组合物作为乳液、特别是具有作为活性物质的纳米颗粒 的皮克林乳液施加,则可以使用较小含量的纳米颗粒来工作。
[0109] 在根据本发明的方法中,特别是在引发剂组合物的施加和前体组合物的施加以及 后续的金属化之间不向基底施加另外的组合物。由于选择性沉积,在施加前体组合物之前 也无需密封没有涂覆活性物质的基底的区域。
[0110] 进一步的主题是如上所述的用于引发剂组合物的皮克林乳液,其包括水相和至少 一个与水相不溶混的相、和二氧化钛纳米颗粒。该乳液可优选地用于在表面上制造光催化 活性结构,特别地用于金属的沉积。
[0111]本发明进一步提供通过本发明的方法获得的导电性涂层。特别优选的是透明的导 电涂层。
[0112] 根据本发明的透明且导电的涂层可用作例如用于显示器、屏幕和接触面板的透明 电极。
[0113] 从接下来的优选的工作实施例的说明结合从属权利要求给出进一步的细节和特 征。在此,各个特征可独自或多个彼此结合地来实现。解决技术问题的可能性不限于所述工 作实施例。因此,例如,范围数据总是包括所有的-未特别指定的-中间值和所有可能的子区 间。
[0114] 所述工作实施例以图解的方式被示于附图中。各个附图中相同的附图标记是指相 同的或功能上相同的或在其功能方面彼此对应的要素。具体地:
[0115] 图1示出了 a)根据本发明的方法的示意图;b)所得到的网络的示意图;
[0116] 图2示出了基底上的乳液7h在盖玻片下的显微照片(20°C);
[0117] 图3示出了基底上的乳液7k在盖玻片下的显微照片(20°C);
[0118] 图4示出了二氧化钛纳米颗粒乳液(样品7h)在金属化之前的显微照片。比例尺为 ΙΟμπι;
[0119] 图5示出了二氧化钛纳米颗粒乳液(样品7h)在金属化之后的显微照片。比例尺为 ΙΟμπι;
[0120] 图6示出了乳液的显微照片;a)直接在施加后的乳液8a;b)15分钟后的相同的乳 液;c)施加后的乳液8g; d) 15分钟后的相同的乳液;
[0121] 图7示出了干燥的乳液(8a)与入射光成90°C的显微照片;灰色区域是未经涂覆的;
[0122] 图8示出了图7的一部分;
[0123] 图9示出了涂覆了银的乳液(8a)的使用入射光的显微照片;
[0124] 图10示出了具有2重量%的1102的分散体在20°C的DLS测量结果;
[0125] 图11示出了用乙酰水杨酸改性的TiO2颗粒的稀释溶液在20°C的DLS测量结果;
[0126] 图12示出了用水杨酸改性的TiO2颗粒的稀释溶液在20°C的DLS测量结果。
[0127] 图Ia示出了所述方法的优选实施方式的示意图。首先,将包括两个相2、3的引发剂 组合物的乳液施加在基底4上,所述乳液包括纳米颗粒1。优选由纳米颗粒1稳定化的皮克林 乳液。在基底的表面上对施加的乳液进行干燥(步骤10)。这导致纳米颗粒在所述表面上的 乳液的相界面处的浓缩(步骤11)。这导致形成纳米颗粒的薄的栅格状结构5。然后(步骤 12),金属6沉积在纳米颗粒上。这产生栅格状的金属化结构。图Ib中示出了所得到的结构的 理想化示意图。
[0128] 图2示出了具有未改性的二氧化钛颗粒的乳液的显微照片。乳液在基底上呈现30-140μπι的液滴尺寸。图3示出了添加丁醇作为弱的乳化剂的影响。它导致液滴尺寸的显著减 小。
[0129] 图4示出了干燥后的具有未改性的二氧化钛颗粒的乳液,所述乳液在图5中在接下 来的步骤中已用银金属化。该图示出了金属沉积仅在二氧化钛上极具选择性地进行。然而, 液滴的尺寸相对小,意味着样品在金属化之后没有显示出透明性。
[0130] 图6示出了具有表面改性的颗粒的两种乳液在室温下的乳液老化。可以清楚地看 出,较大的液滴从表面形成。相对大的液滴的单层在此处形成。10分钟后,不再观察到动态 变化(dynamics)并且溶剂缓慢蒸发。
[0131] 图7和8示出了干燥的具有表面改性的二氧化钛颗粒的乳液。可以清楚地看到所形 成的二氧化钛的网,其形成蜂窝状图案。
[0132] 如图9中所示,能够以简单的方式使用银将该结构金属化。
[0133] 工作实施例:
[0134] 对于透射电子显微镜(TEM),使用Philips CM200 FEG(200kV加速电压)。
[0135] 使用具有透射光或入射光的Olympus BH2 Series System Microscope记录显微 照片。
[0136] 使用Microtrac Nanotrac Ultra进行动态光散射(DLS)以测量流体动力学半径。
[0137] I .Ti〇2纳米颗粒(锐钛型)的合成
[0138] 将在105 · 45g( 1745mmol)的1-丙醇中的97 · 07g(342mmol)的异丙氧基钛装入250ml 的圆底烧瓶中并进行剧烈搅拌。将6.69g(68mmol)的37 %强度的盐酸添加至20.0 Og (333mmol) 1-丙醇中并且在2分钟后将该溶液缓慢地逐滴加入至反应混合物中。30分钟后, 逐滴地加入8.05g(447mmol)水和40.00g(666mmol) 1-丙醇的混合物。
[0139] 继续搅拌混合物20分钟并将以这种方式产生的溶胶以相等的份置于两个Tef Ion 容器中,以及在高压釜中以30分钟的过程达到225°C并保持该温度120分钟。
[0140]冷却后,倾析掉溶剂并丢弃,在旋转蒸发器上于最高40°C使沉淀物几乎完全干燥。 锐钛矿纳米颗粒作为白色粉末获得。图10示出了以DLS测得的尺寸分布。
[0141]特性:BET:ll·14nm;DLS:第一最大值 :10·52nm(S = 0·31),第二最大值:21·04nm(S =O · 77);拉曼:Eg: 146cm-1,Big: 399cm-SAig:639cm-1,Eg:639cm-、
[0142] 2.使用乙酰水杨酸(ASA)的表面改性
[0143] 使0.18g乙酰水杨酸(Immo 1)悬浮于45g水中并过滤所得到的悬浮液以从饱和溶液 分离出过剩的乙酰水杨酸。
[0144] 在强烈的搅拌下,非常缓慢地逐滴加入IOg具有2.50g(31mmol)二氧化钛颗粒(锐 钛矿)的水的分散体。继续剧烈混合混合物10分钟。通过添加7.03g (7 Immol)的37 %强度的 盐酸,从乙酰水杨酸除去醋酸并且反应混合物变成深黄色(intense yellow)。对所得到的 颗粒进行离心,倾析掉上清液并丢弃。使残留物再次分散在40.OOg水中。这得到澄清的黄色 分散体。
[0145] 图11示出了由相同的方法制得的若干个样品的DLS测量结果。对所得到的经稀释 的分散体进行测量。
[0146] 3.使用水杨酸(SA)的表面改性
[0147] 使0. Hg(Immol)水杨酸悬浮在40g水中并通过过滤分离出过量的水杨酸。
[0148] 在强烈的搅拌下,缓慢地逐滴加入20g水和3.58g(44mmol)二氧化钛的分散体。继 续剧烈地搅拌混合物30分钟。获得略浑浊的黄色分散体。
[0149] 图12示出了由相同的方法制得的若干个样品的DLS测量结果。对所得到的经稀释 的分散体进行测量。
[0150] 4.制备二氧化钛皮克林乳液
[0151] 依据表El,在250ml的烧瓶中合成不同的乳液,这些乳液在甲苯、水、丁醇和二氧化 钛纳米颗粒的比率方面有所不同。原则上,引入水和二氧化钛纳米颗粒并然后使用TKA li T25U1 traTixrmx?以25000rpm均质化2分钟。然后,添加有机溶剂并伴随冷却以25000rpm继 续将混合物均质化3分钟。
[0152] 表El:具有TiO2纳米颗粒(未改性)的甲苯/水乳液
[0154]具有丁醇作为弱乳化剂的乳液表现出显著降低的液滴尺寸。由于使用的二氧化钛 颗粒表面上的游离的OH基团,这些优选地使0/W乳液稳定化。正如所料,W/0乳液7d、7e、7f没 有通过这些二氧化钛颗粒稳定化。在所有的其它情况中,形成了乳液。
[0155] 5.制备具有表面改性的颗粒的二氧化钛皮克林乳液
[0156] 依据表E2和E3,在20ml的玻璃容器中合成各种乳液。使用0.06g(lmmol)氯化钠和 10 .OOg水制备NaCl溶液。
[0157] 最初引入来自实施例2(具有ASA的TiO2)或实施例3(具有SA的TiO2)的分散体,并添 加所述NaCl溶液。在添加有机相之后,加入盐酸(37%)并使用振动混合器(Heid〇lph KReax Controlκ)以25000rpm使混合物乳化。在第一分钟内,取决于溶剂,可能产生乳液分层。这 种情况下,将乳液分层后的上部相用作乳液并称为乳液。表E2和E3示出了所制得的乳液。
[0158] 表E2:基于甲苯的乳液
[0162] 6.无表面改性的引发剂组合物的施加
[0163] 将200μ1乳液7h放置在载玻片上。以三种不同的方式制备样品:(1)用第二载玻片 将其覆盖;(2)在无覆盖的情况下对其进行干燥;(3)用滤布将其覆盖。在干燥后,用蒸馏水 彻底清洗载玻片以分离出过剩的二氧化钛。
[0164] 图7示出了在20 °C干燥26小时后的样品7h。
[0165] 7.表面改性的引发剂组合物的施加
[0166] 在每种情况中,将200μ1所制得的乳液8a_81放置在载玻片上并在无覆盖的情况下 干燥。表4E示出了乳液的干燥条件。然后,使用蒸馏水从载玻片漂洗掉任何过剩的二氧化钛 和氯化钠并使用压缩空气干燥样品。
[0167] 表E4:

[0169] ^在所有的情况中,均观察到自组织,即,形成栅格状结构。
[0170] 图7和8示出了在90°C和3分钟的乳液8a的干燥结构的显微照片。
[0171]表面改性的颗粒由于其水杨酸改性而位于乳液的两个相的界面处。它们自身在干 燥期间排列在液滴之间并且这形成网络。虽然氧化钛肋条(rib)的宽度在1μηι-3μηι的范围内 变化,但获得了大的直径在40μπι-90μπι范围内的未涂覆的区域。于干燥之前存在于图像中的 较小的液滴在干燥期间由于聚结和乳液的老化而消失。
[0172] 仅有肋条的少数明显的加宽使得载玻片上的涂层部分地可见。在其中不存在或至 少几乎不存在这些错误涂覆(遗漏涂覆,miscoating)的区域中,干燥的样品显示为光学透 明的。
[0173] 8.制备前体组合物(Ag-TRIS)
[0174] 在强烈的搅拌下,将1.69g( IOmmol)硝酸银在20g水中的溶液缓慢地逐滴加入至 2.57g三(羟甲基)氨基甲烷(9mmo 1)在20g水中的溶液。
[0175] 9.施加前体组合物
[0176] 使用Ag-TRIS对干燥的样品进行流涂(flood)并且之后暴露在Hg-Xe灯(1000瓦)下 10-30秒。银仅沉积在二氧化钛肋条处。
[0177] 图5示出了具有未表面改性的二氧化钛颗粒的乳液的经暴露的样品(30秒;Hg-Xe 灯;1000瓦)。圆形的未镀银的区域的分布是明显的。镀银的肋条约6μπι宽。因此,尽管样品被 均匀地、选择性地金属化,样品是不透明的。
[0178] 图9示出了具有表面改性的二氧化钛颗粒的乳液的经暴露的样品(15秒;Hg-Xe灯; 1000瓦)。该样品也仅在涂覆有二氧化钛颗粒的区域镀银。由于肋条是相当薄的,因而光学 透明性不变。
[0179] 引用的文献
[0180] W02012/084849A2
[0181] US2009/0269510A1
[0182] W093/21127
[0183] DE4212633
[0184] W096/31572
【主权项】
1. 用于制造结构化的金属涂层的方法,其包括以下步骤: a) 将包括至少一种活性物质的引发剂组合物施加至基底; b) 将包括用于金属层的至少一种前体化合物的前体组合物施加至所述基底; c) 通过所述引发剂组合物的所述活性物质使所述前体组合物沉积出金属层; 其中步骤a)和/或步骤b)中的组合物中的至少一种是乳液。2. 如权利要求1所述的方法,其特征在于所述活性物质包括还原性基团或其前体或者 光催化的活性无机物质。3. 如权利要求1或2所述的方法,其特征在于所述活性物质为ZnO或Ti02。4. 如权利要求3所述的方法,其特征在于其为ZnO或Ti02的纳米级颗粒。5. 如权利要求4所述的方法,其特征在于所述颗粒是经表面改性的。6. 如权利要求1至5之一所述的方法,其特征在于所述引发剂组合物为乳液。7. 如权利要求6所述的方法,其特征在于所述乳液为皮克林乳液。8. 如权利要求1或7之一所述的方法,其特征在于所述引发剂组合物中的纳米颗粒的含 量超过0.1重量%。9. 如权利要求1至8之一所述的方法,其特征在于在步骤a)和步骤b)之间进行干燥。10. 皮克林乳液,其特征在于该乳液包括水相和至少一个与水相不溶混的相以及二氧 化钛纳米颗粒。11. 通过如权利要求1至9之一所述的方法制造的金属涂层。12. 如权利要求11所述的金属涂层,其特征在于其为透明的。
【文档编号】C23C18/08GK105829575SQ201480069139
【公开日】2016年8月3日
【申请日】2014年12月4日
【发明人】P.W.德奥利韦拉, T.多尔, K.莫
【申请人】新型材料莱布尼兹研究所公益性有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1