在陶瓷基质复合材料中产生内腔室的方法及用于其的心轴与流程

文档序号:16547280发布日期:2019-01-08 20:55阅读:147来源:国知局
在陶瓷基质复合材料中产生内腔室的方法及用于其的心轴与流程

本发明在能源部授予的合同No.DE-FC26-05NT42643下利用政府支持完成。政府具有本发明中的某些权利。

技术领域

本发明大体涉及陶瓷基质复合材料(CMC)制品及其生产过程。



背景技术:

当寻找较高操作温度以提高涡轮机的效率时,涡轮机中的使用已经变得特别感兴趣的是CMC材料。CMC材料和特别地提出用于燃气涡轮发动机应用的这些CMC材料典型地包括嵌入在陶瓷基质材料中的陶瓷纤维增强材料。增强材料用作CMC的承载组分,并且陶瓷基质保护增强材料,保持其纤维的方位,并且用于使负载散开至增强材料。

高温应用特别感兴趣的是硅基复合材料,诸如作为基质材料和/或增强材料的碳化硅(SiC)。在共同转让的美国专利No.5,015,540、5,330,854、5,336,350、5,628,938、6,024,898、6,258,737、6,403,158和6,503,441,以及共同转让的美国专利申请公开No.2004/0067316中公开SiC/Si-SiC(纤维/基质)CMC材料和过程的值得注意的实例。一种这种过程被称为"预浸料坯(prepreg)"熔渗(MI),其大体上需要使用多个预浸料坯层(每个呈包括期望的增强材料的带状结构的形式)、CMC基质材料的前体(precursor)、粘合剂和其它可能的成分来制造CMC。预浸料坯必须经历加工(包括固化,也被称为焚烧),以使前体转变成期望的陶瓷。多个预浸料坯板层(ply)被堆叠和压实以形成层压预成型件,该过程被称为"铺层"。在铺层之后,层压预成型件将典型地经历压实和固化,同时经受施加的压力和升高的温度,诸如在高压釜中。熔渗过程大体需要在真空或惰性气氛中加热层压预成型件,以分解(烧尽)粘合剂并且产生多孔预成型件以备熔渗,在此之后,可利用例如从外部供应至预成型件的熔融的硅熔渗预成型件。熔融的硅渗透到孔隙中,并且优选为与基质内的组分(例如,碳源)反应以形成硅基陶瓷(例如,碳化硅),其填充孔隙以产生期望的CMC构件。

对于一些应用,具有内腔室的CMC制品为合乎需要或必要的,该内腔室包括但不受限于限定翼型构件内的冷却槽/孔和复杂的冷却通路的腔室,以及意图大体实现减轻重量的腔室。可通过围绕心轴形成层压预成型件而在CMC制品中产生内腔室。然而,在熔渗之前必须移除心轴。在烧制(burnout)期间保持固体的心轴必须被物理地移除,如果期望的腔室具有扭曲或为锥形,则这可为不可能的。图1示意性地示出了实例,其中,常规钢心轴30意图在层压预成型件10的区段20中形成随后的腔室。钢心轴30由于其被在预成型件10的一个端部处由板层限定的肩部22捕获而不可从预成型件10移除。为了解决该问题,已经提出了由易变树脂形成的聚合物心轴。在本说明书的背景下,易变聚合树脂典型地为基于碳氢化合物的固体,其在加热到足够高的温度(典型地为400℃至800℃)之后挥发,从而留下很少的碳残渣或不留下碳残渣。易变树脂的值得注意实例包括聚甲基丙烯酸甲酯或聚乙烯醇。然而,这些树脂具有可比CMC预成型件的材料大五倍至十倍的热膨胀系数。易变树脂的较高膨胀系数可在加热以分解粘合剂树脂期间引起CMC预成型件扭曲。在烧制期间,易变树脂熔化,并且熔融树脂必须从CMC制品的内部内的产生的腔室移除。熔融树脂中的一些可在腔室内侧形成含碳涂层,在随后的熔渗期间与硅反应时,该含碳涂层可改变腔室尺寸。当与较大大小的CMC构件一起使用易变树脂时,在聚合物心轴分解时必须从或通过预成型件逸出的气体的量还增大。这使使用较慢的高温分解循环成为必需,这延长用于CMC构件的加工循环时间。

因此,存在对能够在CMC制品内形成内腔室的改进方法的需要。



技术实现要素:

本发明提供了一种能够通过使用心轴而在CMC制品内形成内腔室的方法,该心轴可与CMC材料的组分有利地反应以便并入到CMC制品中。

本发明的第一方面为一种通过使用反应性心轴而在CMC制品中形成内腔室以实现CMC制品中的腔室的方法。心轴材料在热处理期间润湿CMC预成型件并且与预成型件反应,并且/或者吸收到预成型件中。在本发明的优选实施例中,反应性心轴由元素硅或硅合金制成,该元素硅或硅合金在熔渗期间熔化以提供用于熔渗过程的硅源,并且/或者大部分被从产生的中空内腔室除去。

本发明的第二方面为一种适合于在CMC制品中形成内腔室的目的的心轴。在本发明的优选实施例中,心轴包括硅或硅合金。

本发明的第三方面为通过使用心轴和熔渗预成型件的方法形成具有期望内腔室的CMC制品,该心轴由与CMC预成型件的组分起化学反应和/或能够被CMC预成型件吸收的材料制成,其中,心轴材料润湿CMC预成型件,与预成型件的组分反应,并且被大致吸收。

一种形成具有至少一个内腔室的CMC制品的方法,该方法包括:将至少一个心轴并入到CMC预成型件中;以及使CMC预成型件经受热处理,其中,至少一个心轴熔化以产生熔融材料,其润湿CMC预成型件,并且与CMC预成型件反应并且/或者吸收到CMC预成型件中,从而在CMC预成型件内留下至少一个内腔室。

优选地,至少一个心轴由硅或硅合金构成。

优选地,热处理包括熔渗步骤。

优选地,至少一个内腔室包括多个内腔室,并且至少一个心轴包括多个心轴。

优选地,至少一个心轴包含与CMC预成型件的组分起化学反应的材料。

一种并入到CMC预成型件中的心轴,其中,心轴在熔化时产生熔融材料,其在热处理期间与CMC预成型件反应并且/或者吸收到CMC预成型件中,以在CMC预成型件中留下内腔室。

优选地,心轴由硅或硅合金制成。

优选地,心轴包括CMC预成型件的组分不可渗透的涂层。

优选地,涂层包括丙烯酸树脂。

优选地,丙烯酸树脂为甲基丙烯酸甲酯。

优选地,心轴包括烧结的粉末材料。

优选地,心轴由包括3D打印的过程制成。

一种具有至少一个内腔室的CMC制品,其中,至少一个内腔室由如下方法制成,该方法包括:将至少一个心轴并入到CMC预成型件中,至少一个心轴包括与CMC预成型件的组分起化学反应的材料;以及熔渗CMC预成型件,其中,至少一个心轴熔化,并且其材料润湿CMC预成型件,与CMC预成型件的组分反应,并且被大致消耗,从而在CMC预成型件中留下至少一个内腔室。

优选地,至少一个心轴的材料为元素硅。

优选地,至少一个心轴的材料为硅或硅合金。

优选地,至少一个腔室包括多个内腔室,并且至少一个心轴包括多个心轴。

优选地,至少一个腔室为冷却槽/孔。

优选地,CMC制品为翼型构件。

优选地,CMC制品基于硅化合物。

优选地,硅化合物为SiC。

本发明的技术效果为,因为心轴被熔化以与CMC预成型件反应或吸收到CMC预成型件中,所以可在用于生产制品的CMC预成型件没有不期望的扭曲或变形的情况下产生CMC制品中的内腔室。此外,可消除易变树脂用于产生腔室时典型地需要的长加工时间。

本发明的另一个技术效果为,可出于减轻重量和/或冷却的目的,在没有典型地与移除非反应性金属心轴相关的困难或与除去在非反应性心轴中使用的易变树脂相关的问题的情况下,在CMC制品中实现期望且复杂的形状的腔室。

将从下列详细描述进一步认识到本发明的其它方面和优点。

附图说明

图1示意性地示出具有非反应性心轴的CMC预成型件的截面。

图2示意性地示出具有反应性心轴或另外可吸收心轴的CMC预成型件的截面。

图3示意性地示出通过使用反应性心轴或另外可吸收心轴而实现的具有腔室的CMC制品的截面。

部件列表

10、110 预成型件

20、120 区段

22、122 肩部

30、130 心轴

40、140 心轴

50、150 腔室

100、1100 制品。

具体实施方式

本发明涉及在CMC制品内形成内腔室,例如以形成冷却通道,实现减轻重量和/或任何其它期望的目的。形成这种腔室的常规过程利用由诸如易变树脂或非反应性金属的材料形成的心轴。这些方法两者具有如先前描述的若干限制和缺点。本发明通过如下方法解决现有技术的困难和缺点,该方法并入由如下材料制成的心轴的使用,该材料可由CMC制品的制造中使用的CMC预成型件吸收,并且优选为与该CMC预成型件反应。特别地,与本发明一起使用的心轴的优选材料在预成型件的热处理温度下熔化,例如,在于层压预成型件上执行固化(焚烧)步骤以形成多孔预成型件之后执行的熔渗期间。

可通过以CMC预成型件吸收并与CMC预成型件反应而有利地除去的心轴材料的优选特性包括如下能力:形成为心轴的适合形状、在熔渗温度下润湿CMC预成型件、与CMC预成型件的组分反应以形成对最终制品有利的或至少不是不利的反应产物,以及通过反应、通过渗透或两者而由CMC预成型件几乎完全吸收。

用于这种心轴的优选材料为硅和硅合金。烧结的含硅心轴可通过例如湿压和烧结大堆粉末材料而制造,以最小化成本。元素硅和硅合金粉末材料在烧结期间能够呈现几乎为零的收缩,还呈现足以承受处理和高压釜固化压力的强度。此外,烧结的含硅心轴可在熔渗之前的整个过程顺序期间保持在预成型件内,并且呈现与CMC预成型件的热膨胀特性相似的热膨胀特性。虽然硅或硅基材料可非常适合作为用于在基于SiC的CMC制品内形成腔室的心轴的材料,但是能够预见的是,具有不同的反应和/或渗透特性的不同心轴材料可存在,或者被开发,并且将能够与CMC制品的化学性质相容。

本发明的心轴可完全由元素硅或硅合金形成。可选地,烧结的含硅心轴还可包含易变粘合剂,诸如丙烯酸树脂或聚乙烯醇。可添加少量的水或酒精以使初始粉末混合物潮湿并适合于在模具中压制。可在足够的压力下压制粉末混合物以产生期望的独立形状,在下文中被称为内核。在优选的非限制性方法中,该内核可被干燥,并且接着装入真空炉中以经历烧结(例如,在大约1385+/-10℃的温度下烧结大约九十分钟),以使其独立并能够承受以陶瓷复合材料前体预浸料坯板层覆盖,以产生层压CMC预成型件。由于内核在烧结操作期间收缩,故必须通过加大原始压制内核形状而产生容差。接着,从真空炉移除烧结的形状。人们还可预想使用3维(3D)打印机,其中,打印油墨中的硅粉末适合于与3D打印机一起使用来作为制作具有优良特征的心轴的方式。如上所述,可烧结利用硅油墨制成的内核。

优选地涂履心轴以产生大致不可渗透表面,其能够防止CMC预成型件的任何树脂在层压CMC预成型件的铺层和固化期间渗透烧结的硅心轴。如果预成型件树脂为将形成硅化合物(诸如,碳化硅)的类型,并且因此可与心轴中的硅反应,并且可能引起由心轴形成的内腔室尺寸改变,则不可渗透表面是特别合乎需要的。用于该目的的适合涂层材料包括但不受限于丙烯喷雾树脂,诸如聚甲基丙烯酸甲酯。

接着,陶瓷复合材料前体预浸料坯板层可包覆在烧结的心轴形状上面,并且在高压釜或匹配的板形模组中固化。在固化之后,可将预成型件和烧结的心轴加热至500℃以上,以移除树脂成分以产生多孔预成型件。接着,可在另一个真空炉或气氛炉中进一步加热多孔预成型件加上烧结的硅内核和任何附加的硅,以引起硅熔化和渗透多孔预成型件。图2示意性地示出并入到层压预成型件10的区段20中的烧结的硅心轴40。在预成型件10的熔渗过程或其它热处理期间,硅心轴40熔化,并且产生的熔融材料润湿CMC预成型件10,渗透到预成型件10中,并且与CMC预成型件的组分起化学反应,以形成例如SiC或另一种硅化合物。任何未反应的硅可简单地保持渗透。图3示意性地示出在图3中表示为最终CMC制品100的完全渗透的CMC预成型件10的区段20中形成的腔室50。

本领域技术人员将注意,使用反应性心轴材料可导致未消耗的心轴材料。可通过适当调整加工条件而避免这种状态。除了必须紧密地控制CMC制品的重量的情况之外,未消耗的心轴材料存在于CMC制品内可不具有任何有害的效果。在该情况下,可通过根据需要的附加加工步骤确保心轴材料的完全消耗。可利用多个心轴和遵循本文中描述的方法在CMC预成型件中形成多个腔室。形成在CMC制品中的单个腔室或多个腔室可出于减轻重量和/或作为冷却槽/孔的目的而利用。

可预见的是,可使用其它材料,其在熔渗过程期间润湿CMC预成型件10并且通过渗透到CMC预成型件10中而被完全吸收,但是将不必如硅那样与CMC预成型件10反应。然而,在这种情况下,人们需要确保这种材料不会有助于由于热膨胀特性或其它物理性质而产生的任何不良效果。因此,本发明的优选实施例涉及利用含硅材料,使得不使用或形成除如下材料之外的无关材料,该材料导致基于SiC的CMC制品的常规CMC熔渗过程。还将注意,公开的方法可用于基于除SiC之外的硅化合物(诸如,作为非限制性实例的SiN)在CMC制品中形成内腔室。

鉴于上文,可看到,本发明的显著优点在于其解决了与在CMC制品内形成中空内腔室相关的问题,而不必须在固化之后从产生的腔室物理地移除心轴,并且不将潜在有害的材料引入到最终CMC制品中。

虽然已经按照特定实施例描述了本发明,但是显而易见的是,其它形式可被本领域技术人员采用。因此,应当理解,本发明不受限于具体公开的实施例。还应当理解,以上使用的措词和用语出于公开本发明和实施例的目的,并且不必用作对本发明的范围的限制。因此,本发明的范围将仅由下列权利要求限制。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1