一种制备层状陶瓷基复合材料的制备方法与流程

文档序号:14935385发布日期:2018-07-13 19:12阅读:121来源:国知局

本发明涉及一种采用光固化技术制备层状陶瓷基复合材料的制备方法。



背景技术:

随着现代科学技术的飞速发展,机械制造、电子电器、载人航天、新型清洁能源,精细化工等各工业部门对新兴材料耐腐蚀性、耐磨性、耐高温等性能均提出了更为苛刻的要求,而满足相关行业对新材料的需求。因此,具有力学性能好、化学稳定性高、耐腐蚀等优异性能的陶瓷材料日益受到关注。但陶瓷材料所固有的高脆性限制了其相关性能的发挥,因而提高陶瓷材料的脆性,进而提高陶瓷材料的可靠性一直是国际材料行业的研究热点之一。

层状结构材料是近几年发展起来的陶瓷增强、增韧新技术,它利用自然界中某些贝壳类生物如珍珠壳、虾壳的复合结构,在高强度、但韧性差的陶瓷层间加入较软或较韧的材料层复合而成。这种结构的材料在应力场中是一种高能量耗散结构,能克服陶瓷突发灾难性断裂的致命缺点。



技术实现要素:

本发明的目的是为了解决现阶段陶瓷材料韧性低、可靠性差,无法满足现代各工业部门对高性能陶瓷基复合材料的需求,进而提供了一种制备层状陶瓷基复合材料的制备方法。

本发明所采用的技术方案:一种制备层状陶瓷基复合材料的制备方法,包括如下步骤:

s1:按质量分数称取epta、udpa、正辛醇,其比例为25~30%:35~40%:30~35%,并混合均匀得到预混液,然后按质量百分比称取陶瓷材料加入到预混液中,并混合均匀得到陶瓷浆料;

s2:将搅拌均匀的陶瓷浆料放入到超声波分散机中进行超声分散10~15分钟,然后将超声分散后的陶瓷浆料放入到塑料罐中,以350~400r/min的转速球磨1.5~2h;

s3:将球磨后的陶瓷浆料取出并置于3d打印机平台上,转动3d打印机平台使陶瓷浆料经过刮刀后变为平整的浆料膜,然后降下3d打印机平台用紫外光以50~80mj/cm2的能量密度进行固化处理30~80s,得到单层固化厚度介于20~50μm之间的陶瓷坯体;

s4:当固化完一层陶瓷坯体之后,升起3d打印机平台,转动料盘,变换陶瓷浆料,然后再降下打印平台,并重复步骤s3,直到获得所需的陶瓷坯体;

s5:将得到固化后的陶瓷坯体取下后以1~2℃/min升温至600℃,保温150~180min,其中每隔100℃保温30~60min进行真空脱脂;再以1~2℃/min升温至750℃,保温150~180min,其中每隔100℃保温30~60min进行空气脱脂,即得到层状陶瓷基复合材料的坯体;

s6:对层状陶瓷基复合材料的坯体进行常压烧结,烧结条件为0.1mpa氮气保护条件下,在1700℃~1800℃保温2h,即得到层状陶瓷基复合材料。

步骤s1中,epta、udpa、正辛醇的比例为30%:40%:30%。

步骤s1中,所述陶瓷材料为氮化物陶瓷,包括质量分数分别为50~70%的氮化硅陶瓷浆料和50~65%六方氮化硼陶瓷浆料。

优选的,所述氮化硅的平均粒径为300~500nm、700~900nm。

优选的,所述六方氮化硼的平均粒径为300~450nm、800~950nm。

步骤s1中,对层状陶瓷基复合材料的坯体进行常压烧结,烧结条件为0.1mpa氮气保护条件下,在1750℃保温2h,即得到具有层状结构的氮化硅-六方氮化硼。

步骤s6中,所述层状陶瓷基复合材料为层状氮化硅-六方氮化硼。

与现有技术相比,本发明的有益效果是:本发明采用光固化3d成型技术,通过制备层间不同成分、不同厚度的陶瓷坯体,经过脱脂、烧结的制备工艺,进而获得具有力学性能优异、高韧性的陶瓷基复合材料。

本发明制备的层状陶瓷基复合材料,是在高强、高模的氮化硅脆性陶瓷层间加入不同材质且相对于主相陶瓷较软的六方氮化硼陶瓷材料层制成。该结构材料在应力场中属于一种能量耗散结构,能避免陶瓷材料突发性的灾难断裂,即当材料受到外加载荷或冲击载荷时,裂纹在扩展过程中多次在强-弱界面层处受到阻碍而偏转,有效地减弱了外加载荷下裂纹尖端的应力集中。同时,该结构材料的强度受缺陷影响较小,是一种对缺陷不敏感材料。因此,该结构可使陶瓷的韧性得到很大幅度的改善,能够有效的避免陶瓷材料突发的灾难性破坏。本发明流程简单,便于操作。

具体实施方式

本发明技术方案不局限于以下所列举的具体实施方式,还包括个具体实施方式间的任意组合。

具体实施方式一:

一种制备层状陶瓷基复合材料的制备方法,包括如下步骤:

s1:按质量分数称取epta、udpa、正辛醇,其比例为25~30%:35~40%:30~35%,并混合均匀得到预混液,然后按质量百分比称取陶瓷材料加入到预混液中,并混合均匀得到陶瓷浆料;

s2:将搅拌均匀的陶瓷浆料放入到超声波分散机中进行超声分散10~15分钟,然后将超声分散后的陶瓷浆料放入到塑料罐中,以350~400r/min的转速球磨1.5~2h;

s3:将球磨后的陶瓷浆料取出并置于3d打印机平台上,转动3d打印机平台使陶瓷浆料经过刮刀后变为平整的浆料膜,然后降下3d打印机平台用紫外光以50~80mj/cm2的能量密度进行固化处理30~80s,得到单层固化厚度介于20~50μm之间的陶瓷坯体;

s4:当固化完一层陶瓷坯体之后,升起3d打印机平台,转动料盘,变换陶瓷浆料,然后再降下打印平台,并重复步骤s3,直到获得所需的陶瓷坯体;

s5:将得到固化后的陶瓷坯体取下后以1~2℃/min升温至600℃,保温150~180min,其中每隔100℃保温30~60min进行真空脱脂;再以1℃/min升温至750℃,保温180min,其中每隔100℃保温30min进行空气脱脂,即得到层状陶瓷基复合材料的坯体;

s6:对层状陶瓷基复合材料的坯体进行常压烧结,烧结条件为0.1mpa氮气保护条件下,在1700℃~1800℃保温2h,即得到层状陶瓷基复合材料。

步骤s1中,epta、udpa、正辛醇的比例为30%:40%:30%。

步骤s1中,所述陶瓷材料为氮化物陶瓷,包括质量分数分别为50~70%的氮化硅陶瓷浆料和50~65%六方氮化硼陶瓷浆料。

优选的,所述氮化硅的平均粒径为300~500nm、700~900nm。

优选的,所述六方氮化硼的平均粒径为300~450nm、800~950nm。

步骤s1中,对层状陶瓷基复合材料的坯体进行常压烧结,烧结条件为0.1mpa氮气保护条件下,在1750℃保温2h,即得到具有层状结构的氮化硅-六方氮化硼。

步骤s6中,所述层状陶瓷基复合材料为层状氮化硅-六方氮化硼。

具体实施方式二:本实施方式与具体实施方式一不同的是:光固化技术制备层状陶瓷基复合材料中按质量分数称取epta、udpa、正辛醇,其比例为30%:40%:30%,并将预混液混合均匀。

具体实施方式三:本实施方式与具体实施方式一至二不同的是:陶瓷颗粒的固相含量按质量百分比换算后,氮化硅陶瓷颗粒占料浆的质量分数为50~70%。

具体实施方式四:本实施方式与具体实施方式一至三不同的是:陶瓷颗粒的固相含量按质量百分比换算后,六方氮化硼陶瓷颗粒占料浆的质量分数为50~60%。

具体实施方式五:本实施方式与具体实施方式一至四不同的是:陶瓷颗粒的固相含量按质量百分比换算后,氮化硅和六方氮化硼陶瓷颗粒占料浆的质量分数为60%。

具体实施方式六:本实施方式与具体实施方式一至五不同的是:所添加的陶瓷颗粒为氮化硅陶瓷,其粒径为300~500nm。

具体实施方式七:本实施方式与具体实施方式一至六不同的是:所添加的陶瓷颗粒为氮化硅陶瓷,其粒径为700~900nm。

具体实施方式八:本实施方式与具体实施方式一至七不同的是:所添加的陶瓷颗粒为六方氮化硼陶瓷,其粒径为300~450nm。

具体实施方式九:本实施方式与具体实施方式一至八不同的是:所添加的陶瓷颗粒为六方氮化硼陶瓷,其粒径为800~950nm。

具体实施方式十:本实施方式中基于光固化技术通过3d打印技术制备的层状陶瓷基复合材料是按以下几个步骤进行的:一、按质量分数称取epta、udpa、正辛醇,其比例为25~30%:35~40%:30~35%,并混合均匀,然后按照质量百分比分别称取质量分数50~70%的氮化硅和50~65%六方氮化硼陶瓷颗粒,并混合均匀,即分别制备出氮化硅浆料和六方氮化硼陶瓷浆料;二、将搅拌均匀的陶瓷浆料放入到超声波分散机中进行超声分散10~15分钟,然后将超声后的陶瓷浆料放入到陶瓷罐中,以350~400r/min的转速球磨1.5~2h;三、将球磨后的浆料取出并置于3d打印机平台上,转动平台使浆料经过刮刀后变为平整的浆料膜,然后降下打印平台用紫外光以50~80mj/cm2的能量密度进行固化处理30~80s,得到的单层固化厚度介于20~50μm之间,固化时间较短时,所获得的单层厚度较薄;四、当固化完一层陶瓷坯体之后,升起打印平台,转动料盘,变换陶瓷浆料,然后再降下打印平台,并重复步骤三,直到获得所需的陶瓷材料坯体;五、将得到固化后的陶瓷坯体取下后以1~2℃/min升温至600℃,保温150~180min,其中每隔100℃保温30~60min进行真空脱脂;再以1~2℃/min升温至750℃,保温150~180min,其中每隔100℃保温30~60min进行空气脱脂,即得到层状陶瓷基复合材料的坯体,其烧结温度以高性能的氮化硅陶瓷材料的烧结工艺为主。选择的烧结方式为常压烧结,烧结条件为0.1mpa氮气保护条件下,在1700℃~1800℃保温2h,即得到具有层状结构的氮化硅-六方氮化硼。

具体实施方式十一:本实施方式与具体实施方式十不同的是:步骤一中光固化技术制备层状陶瓷基复合材料中按质量分数称取预混液为epta、udpa、正辛醇,其比例为30%:40%:30%,并将预混液混合均匀。其它步骤及参数与具体实施方案十相同。

具体实施方式十二:本实施方式与具体实施方式十不同的是:步骤一中按照质量百分比分别称取60%的氮化硅和60%六方氮化硼陶瓷颗粒。其它步骤及参数与具体实施方案十相同。

具体实施方式十三:本实施方式与具体实施方式十至十二不同的是:步骤一中称取的氮化硅陶瓷颗粒其粒径为700~900nm。其它步骤及参数与具体实施方案十至十二相同。

具体实施方式十四:本实施方式与具体实施方式十三不同的是:步骤一中称取的六方氮化硼陶瓷颗粒其粒径为800~950nm。其它步骤及参数与具体实施方案十至十三相同。

具体实施方式十五:本实施方式与具体实施方式十至十四不同的是:步骤三中用紫外光以50mj/cm2的能量密度进行固化处理30~60s。其它步骤及参数与具体实施方案十至十四相同。

具体实施方式十六:本实施方式与具体实施方式十至十五不同的是:步骤三中用紫外光以50mj/cm2的能量密度进行固化处理60s。其它步骤及参数与具体实施方案十至十五相同。

具体实施方式十七:本实施方式与具体实施方式十至十六不同的是:步骤四中在0.1mpa氮气气氛下、于1700℃~1800℃保温2h进行烧结。其它步骤及参数与具体实施方案十至十六相同。

具体实施方式十八:本实施方式与具体实施方式十至十七不同的是:步骤四中在0.1mpa氮气气氛下、于1750℃保温2h进行烧结。其它步骤及参数与具体实施方案十至十七相同。

具体实施方式十九:本实施方式中基于光固化技术制备的层状陶瓷基复合材料是按以下几个步骤进行的:一、按质量分数称取epta、udpa、正辛醇,其比例为30%:40%:30%,并将预混液混合均匀。然后按照质量百分比分别称取60%的氮化硅和60%六方氮化硼陶瓷颗粒,氮化硅陶瓷颗粒粒径为700-900nm,六方氮化硼陶瓷颗粒其粒径为800~950nm,并混合均匀,即分别制备出氮化硅浆料和六方氮化硼陶瓷浆料;二、将搅拌均匀的陶瓷浆料放入到超声波分散器中进行超声分散10~15分钟,然后将超声后的陶瓷浆料放入到塑料罐中,以350~400r/min的转速球磨1.5~2h;三、将球磨后的浆料取出并置于3d打印机平台上,转动平台使浆料经过刮刀后变为平整的浆料膜,然后降下打印平台用紫外光以50mj/cm2的能量密度进行固化处理60s,得到的单层固化厚度约50μm;四、当固化完一层陶瓷坯体之后,升起打印平台,转动料盘,变换陶瓷浆料,然后再降下打印平台,并重复步骤三,直到获得所需的陶瓷材料坯体;五、将得到固化后的陶瓷坯体取下后以1℃min升温至600℃,保温180min,其中每隔100℃保温30min进行真空脱脂;再以1℃/min升温至750℃,保温180min,其中每隔100℃保温30min进行空气脱脂,即得到层状陶瓷基复合材料的坯体,其烧结温度以高性能的氮化硅陶瓷材料的烧结工艺为主。选择的烧结方式为常压烧结,烧结条件为0.1mpa氮气保护条件下,在1750℃保温2h,即得到具有层状结构的氮化硅-六方氮化硼。

对于本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及变形,而所有的这些改变以及变形都应该属于本发明权利要求的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1