一种生物质碳纳米复合微球材料及其制备方法和应用与流程

文档序号:17653005发布日期:2019-05-15 21:39阅读:419来源:国知局

本发明属于负极碳材料技术领域,具体涉及一种生物质碳纳米复合微球材料及其制备方法和应用。



背景技术:

近年来,化石资源作为燃料的大量使用严重地污染了环境,且造成这些宝贵资源的迅速枯竭。而生物质由于储量丰富,是可再生资源,作为获取洁净能源和高附加值化学品的原料而受到广泛关注。在深入了解生物质的组成和结构的基础上优化生物质的利用途径,对减少化石资源的用量和减轻环境污染具有重要的现实意义。生物质主要由纤维素、半纤维素和木质素组成。纤维素和半纤维素已广泛用于造纸、制糖和诸如生物乙醇等燃料的生产。然而,作为仅次于纤维素储量的天然可再生资源的木质素却未得到有效合理利用。全世界每年产生大约1.5-1.8亿吨工业木质素中只有不到2%被利用,主要以木质素磺酸盐的形式用作建筑材料的添加剂,绝大部分作为廉价燃料烧掉或任意排放,不仅造成了资源浪费,还带来严重的环境污染。

因此,如何充分利用生物质材料,将它们的价值最大化,是一件十分有意义的事情。目前在新兴高科技领域,例如生物工程、电子器件和清洁领域,已经有着不错的应用前景。而在电池材料方面,主要是将一些生物质材料作为前驱体,应用到储能领域。

因此我们希望以生物质作为碳源,制备出具有特定形状的碳材料,用于超级电容器及电池负极材料。同时通过物理活化及化学活化等方法来制备具有高孔隙率及高表面积的碳材料,来提高其电化学性能,以此来制备理想的电池材料。



技术实现要素:

本发明所要解决的技术问题在于:如何以生物质作为碳源,同时通过物理活化及化学活化等方法来制备具有高孔隙率及高表面积的碳材料。

本发明采用以下技术方案解决上述技术问题:

一种生物质碳纳米复合微球材料,包括木质素磺酸钠、甲醛、氨水、分散剂、界面改性剂、水、乙醇、造孔剂、改性剂制备而成;其中所述木质素磺酸钠为3-5重量份、甲醛为2-5重量份、氨水为1.5-3重量份、分散剂为1.5-3重量份、界面改性剂1.5-3重量份、水400-600重量份、乙醇40-60重量份、造孔剂为2-5重量份、改性剂为2.5-5重量份。

优选的,所述分散剂为聚乙烯醇、羟丙基纤维素、羟甲基纤维素中的任意一种。

优选的,所述界面改性剂为环氧稀释剂622、环氧稀释剂636、环氧稀释剂215、环氧稀释剂669、聚乙烯吡咯烷酮、聚乙二醇中的任意一种。

优选的,所述造孔剂为koh、zncl2、cocl2、fe(no3)3中的任意一种。

优选的,所述改性剂为钛酸四丁酯、四氯化钛或正硅酸四乙酯中的任意一种。

优选的,一种制备生物质碳纳米复合微球材料的方法,包括以下步骤:

(1)将水、分散剂和木质素磺酸钠加入到1000ml烧杯中,油浴中搅拌分散10-15min;

(2)往步骤(1)的物料中加入氨水,保持温度搅拌分散10-15min,然后加入甲醛,升温至40-45℃,反应20-24h;

(3)将步骤(2)反应物料加热升温至95-100℃,保温18-20h,再加入界面改性剂,保温2-4h,反应结束再降温至55-60℃;

(4)将改性剂溶于乙醇中,滴加至步骤(3)反应物料中,加热升温至95-100℃,保温8-10h后冷却至室温,制得纳米复合微球;

(5)将步骤(4)所得纳米复合微球离心过滤洗涤后,干燥,得到生物质纳米复合微球材料;

(6)将步骤(5)得到的生物质纳米复合微球材料与造孔剂进行混合,在惰性气氛氛围下,升温至350℃进行预处理,继续升温至550℃进行一次碳化,再升温至900℃进行二次碳化,得到生物质碳纳米复合微球材料。

优选的,所述步骤(1)中油浴的温度为0-35℃。

优选的,所述步骤(5)中干燥为真空干燥,真空度-0.09mpa,干燥温度80℃,干燥时间为12h。

优选的,所述步骤(6)中通入惰性气体,在惰性气氛氛围下,以2℃/min速率升温至350℃恒温预处理1.5-2h;再以2℃/min速率继续升温至550℃恒温1.5-2h,进行一次碳化,再升温至900℃恒温1.5-2h,进行二次碳化,得到生物质碳纳米复合微球材料;其中所述惰性气体为氩气、氮气、氦气中的任意一种。

优选的,本发明还公开所述的生物质碳纳米复合微球材料在负极材料中的应用。

本发明技术有益效果:本发明以低成本、可再生、可降解的生物质木质素磺酸钠作为碳源,具有节能环保的优点,在碱性条件下,将木质素磺酸钠与甲醛置于水中缩聚形成球形,再将改性剂作为钛源或硅源,通过缓慢水解,形成二氧化钛或二氧化硅的纳米微球,钛球或硅球负载在体积更大的木质素微球上,并且使木质素球形更加稳固,最终制得直径在200-300nm且具有良好分散性的木质素纳米微球。经过碳化处理,得到的生物质碳纳米复合微球材料具有合适的孔道形貌,比较高的比表面积,能够在电化学领域有着比较广阔的应用前景,且提高了木质素碳材料的使用性能。

附图说明

图1为本发明实施例6所述生物质碳纳米复合微球材料的sem图;

图2为本发明实施例6所述生物质碳纳米复合微球材料的tem图。

具体实施方式

为便于本领域技术人员理解本发明技术方案,现结合说明书附图对本发明技术方案做进一步的说明。

实施例1

本实施例提供一种生物质碳纳米复合微球材料的制备方法,包括以下步骤:

(1)将400-600g、优选为500g水、1.5g聚乙烯醇和3g木质素磺酸钠加入到1000ml烧杯中,0-35℃油浴中搅拌分散10-15min;

(2)往步骤(1)的物料中加入1.5g氨水,保持温度搅拌分散10-15min,然后加入2g甲醛,升温至40-45℃,反应20-24h;

(3)将步骤(2)反应物料加热升温至95-100℃,保温18-20h,再加入1.5g环氧稀释剂622,保温2-4h,反应结束再降温至55-60℃;

(4)将3g钛酸四丁酯溶于40-60g、优选为50g的乙醇中,滴加至步骤(3)反应物料中,将温度升至95-100℃,保温8-10h后冷却至室温,制得纳米复合微球;

(5)将步骤(4)所得纳米复合微球离心过滤洗涤后,于真空烘箱中,真空度-0.09mpa,80℃干燥12h,得到生物质纳米复合微球材料;

(6)将步骤(5)得到的生物质纳米复合微球材料与2gkoh进行混合,在氩气氛围下,以2℃/min速率升温至350℃恒温预处理1.5-2h,使结构稳定;再以2℃/min速率继续升温至550℃恒温1.5-2h,进行一次碳化,再升温至900℃恒温1.5-2h,进行二次碳化,使其完全碳化,得到生物质碳纳米复合微球材料。

实施例2

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(1)加入分散剂聚乙烯醇2g。

实施例3

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(1)加入分散剂聚乙烯醇3g。

实施例4

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(1)加入分散剂羟甲基纤维素1.5g。

实施例5

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(1)加入分散剂羟甲基纤维素2g。

实施例6

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(1)加入分散剂羟甲基纤维素3g。

实施例7

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(1)加入分散剂羟丙基纤维素1.5g。

实施例8

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(1)加入分散剂羟丙基纤维素2g。

实施例9

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(1)加入分散剂羟丙基纤维素3g。

实施例10

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(1)加入木质素磺酸钠4g。

实施例11

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(1)加入木质素磺酸钠5g。

实施例12

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(2)加入氨水2g。

实施例13

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(2)加入氨水3g。

实施例14

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(2)加入甲醛3g。

实施例15

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(2)加入甲醛4g。

实施例16

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(2)加入甲醛5g。

实施例17

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(3)加入界面改性剂环氧稀释剂6222g。

实施例18

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(3)加入界面改性剂环氧稀释剂6223g。

实施例19

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(3)加入界面改性剂环氧稀释剂6361.5g。

实施例20

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(3)加入界面改性剂环氧稀释剂6362g。

实施例21

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(3)加入界面改性剂环氧稀释剂6363g。

实施例22

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(3)加入界面改性剂环氧稀释剂2151.5g。

实施例23

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(3)加入界面改性剂环氧稀释剂2152g。

实施例24

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(3)加入界面改性剂环氧稀释剂2153g。

实施例25

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(3)加入界面改性剂环氧稀释剂6691.5g。

实施例26

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(3)加入界面改性剂环氧稀释剂6692g。

实施例27

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(3)加入界面改性剂环氧稀释剂6693g。

实施例28

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(3)加入界面改性剂聚乙烯吡咯烷酮1.5g。

实施例29

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(3)加入界面改性剂聚乙烯吡咯烷酮2g。

实施例30

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(3)加入界面改性剂聚乙烯吡咯烷酮3g。

实施例31

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(3)加入界面改性剂聚乙二醇1.5g。

实施例32

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(3)加入界面改性剂聚乙二醇2g。

实施例33

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(3)加入界面改性剂聚乙二醇3g。

实施例34

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(3)加入界面改性剂尿素1.5g。

实施例35

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(3)加入界面改性剂尿素2g。

实施例36

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(3)加入界面改性剂尿素3g。

实施例37

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(4)加入改性剂钛酸四丁酯4g。

实施例38

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(4)加入改性剂钛酸四丁酯5g。

实施例39

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(4)加入改性剂四氯化钛3g。

实施例40

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(4)加入改性剂四氯化钛4g。

实施例41

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(4)加入改性剂四氯化钛5g。

实施例42

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(4)加入改性剂正硅酸四乙酯3g。

实施例43

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(4)加入改性剂正硅酸四乙酯4g。

实施例44

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(4)加入改性剂正硅酸四乙酯5g。

实施例45

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(6)加入造孔剂koh3g。

实施例46

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(6)加入造孔剂koh5g。

实施例47

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(6)加入造孔剂zncl22g。

实施例48

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(6)加入造孔剂zncl23g。

实施例49

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(6)加入造孔剂zncl25g。

实施例50

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(6)加入造孔剂cocl22g。

实施例51

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(6)加入造孔剂cocl23g。

实施例52

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(6)加入造孔剂cocl25g。

实施例53

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(6)加入造孔剂fe(no3)32g。

实施例54

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(6)加入造孔剂fe(no3)33g。

实施例55

本实施例提供的一种生物质碳纳米复合微球材料的制备方法,与实施例1的区别在于,在步骤(6)加入造孔剂fe(no3)35g。

对比实施例

本实施方式与实施例1的区别在于:在生物质碳纳米复合微球材料的制备方法中没有加入改性剂和乙醇。

将上述各实施例所述的生物质碳纳米复合微球材料的制备方法所得的纳米复合微球材料和对比实施例所述的方法所得纳米复合微球材料的性能进行对比,结果见表1。

表1纳米复合微球材料性能测试结果

由表1可知:实施例4、5、6使用羟甲基纤维素作为分散剂,制得的样品粒径明显比使用分散剂聚乙烯醇和羟丙基纤维素要小,分散效果也更好。实施例19、20、21使用环氧稀释剂636作为界面改性剂,制得的样品比表面积更大,效果比环氧稀释剂622、环氧稀释剂215、环氧稀释剂669、聚乙烯吡咯烷酮、聚乙二醇、尿素要稍好一些,但具体的用量也会对样品造成比较大的影响。实施例50,51,52使用cocl2作为造孔剂,效果极为明显,相比与使用zncl2、fe(no3)3作为造孔剂,比表面积有极大的提升。同时,实施例45、46表明使用koh作为造孔剂也有着不错的造孔效果。

将依照实施例6所述的方法制得的生物质碳纳米复合微球材料在普通烘箱中90℃下烘干,碾磨成粉末后,分别进行sem测试和tem测试,测试结果参见图1和图2,图1为依照本实施例所述的方法制得的生物质碳纳米复合微球材料sem图像;图2为依照本实施例所述的方法制得的生物质碳纳米复合微球材料tem图像。由图1的sem图像显示:纳米粒子在170-180nm左右,粒子表面光滑,分散性良好,尺寸比较均一。图2的tem图像显示复合微球尺寸在180nm左右,球型结构清晰明显,分散良好,达到了我们预想的结果。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1