复合陶瓷制品及其制作方法

文档序号:97812阅读:634来源:国知局
专利名称:复合陶瓷制品及其制作方法
本申请是一九八五年二月四日以马克·斯·纽柯克等人(Morc S·new kirk etal)的名义提出的题名《复合陶瓷制品及其制作方法》的未决美国专利申请697,876的部分继续申请。
本发明广泛地涉及新型复合陶瓷结构及其新的制作方法。具体地讲,本发明涉及具有包绕或镶嵌惰性填充材料的多晶基质的复合陶瓷结构,以及用母体金属氧化反应产物向可渗透的填料中生长以形成复合陶瓷结构的方法。
制作陶瓷的传统方法,无法把陶瓷自身制成陶瓷基质的复合方材料,特别是增强纤维和或增强丝网的复合结构。复合结构是包括多相材料,实体或由两种以上的不同原料构成的物体的结构,为了获得这种复合物的理想性能,应将这些不同的原料紧密地结合在一起。例如把一种材料嵌入另一种材料的基质中,两种不同的材料便可紧密地结合在一起。典型陶瓷复合结构由包含一种或多种不同填料,如颗粒、纤维、棒杆以及其它填料的陶瓷基质组成。
制作陶瓷的传统方法,一般包括以下几个步骤(一)将原料制作成粉末;
(二)将粉末碾成非常精细的颗粒;
(三)将粉末制成所要求的物体的几何形状。
(要考虑到后面的加工过程中的收缩)例如,这一步可通过单向压制、均衡压制、喷灌模塑、束模塑、粉浆浇铸和其它几种技术来完成。
(四)将成形体加热到较高温度,使之硬化。这就使单个粉状颗粒结合在一起,形成一种整体结构。虽然在某些情况下,需要另外的驱动力,并能够通过使用单向的或均衡的(如热均衡压力)外部压力提供,但是,完成这一步最好不要使用压力(而用烧结的方法)。
(五)按需要,用金钢石多次研磨处理。
在制作陶瓷基质复合材料的过程中,对于传统方法来说,最困难的是上述(四),即硬化这一步,如果原料不是非常合适的,通常优先选用的方法,无压烧结可能很难,甚至不可能把颗粒复合。更主要的是,即使原料合适,大多数情况下,正常的烧结也不可能有纤维复合,这是因为容易妨碍硬化的粉末颗粒必要的位移的纤维妨碍了颗粒的结合。在有些情况下,通过高温条件下外部压力的作用,用强制硬化的工艺已经部分地克服了这一困难。然而,这样的制作也会产生许多的问题,其中包括因外力的使用,使增强纤维受到破裂或损伤,限制了制作复杂形状的制品的能力(特别是在单向热压的情况下),并且由于生产效率低,有时还需要大量的后处理工作,而导致很高的成本。
如果要想在基质内部保持复合物第二相颗粒的分布,另外一些困难也可能在物体成形的过程即上述步骤(三)中产生。例如,在纤维陶瓷复合物的制作过程中,包括在物体成形步骤中的粉末和纤维流动过程会产生增强纤维的非均匀性和不需要的取向性。结果造成特殊性能的损失。
其它方法也被用作形成陶瓷基复合物的手段。例如对于碳化硅纤维加强碳化硅基质复合物,通常采用其它反应形成需要的陶瓷的方法(化学蒸汽沉积工艺)形成基质结构。使用这种方法,只能取得有限的成功,这部分是因为基质的沉积过程容易立即在所有复合物第二相的表面上发生,这就造成基质的发展只能到生成表面交叉时才能发生,物体内的多孔性几乎是必然结果。另外,基质的沉积速度慢到这样的程度,以致于,除了最神秘的使用之外,使得这种复合物昂贵到禁止性的程度。
第二种非传统的制作方法包括,含有需要的元素的流动有机原料和复合物颗粒或纤维的渗透作用,借此形成需要的陶瓷基质。把这种物质加热到高温,使其产生化学反应,从而形成陶瓷。同样,由于在加热期间,除去了大量的挥发性物质,开始流动组合物中的必要成分,容易留下多孔和/或容易破裂的陶瓷体,所以也只取得了有限的成功。
美国专利第3,437,468号(Seufert)公开了某些用熔化铝进行反应而获得的复合材料。可是,这些材料的基质成分原来就含有大量的铝酸镁,这种材料的性能没有某些其它陶瓷,如氧化铝理想(如硬度较低)。另外,该专利的技术要求,主要依靠铝与氧化镁和二氧化硅的反应(以游离或结合的形式)形成的陶瓷,这就降低了工艺过程的灵活性。并限制了存在于最后的陶瓷产品基质中的实际硅含量(除去铝酸镁)。
本申请的主题与下列美国同属未决专利申请相关一九八六年一月七日提交的第 号,它是一九八五年九月十七日提交的第776,964号的部分继续申请,第776,964号是一九八五年二月二十六日提交的第705,787号的部分继续申请,第705,787号是一九八四年三月十六号提交的第591,392号的部分继续申请,所有这些都是马克·斯·纽柯克·等人的名义,标题为《新型陶瓷材料及其制作方法》;以及一九八六年一月提交的第 号,它是一九八五年九月十七日的第776,965号的部分继续申请,第776,965号是一九八五年六月二十五日提交的第747,788号的部分继续申请,第747,788号是一九八四年七月二十日提交的第632,636号的部分继续申请,所有这些都是以马克·斯·纽柯克·等人(Marc S·Newkirk et al)的名义,标题为《制作自供陶瓷材料的方法》。上述每一个相关专利申请所公开的全部内容都合并到此处。
上述同属专利申请第591,392;705,787;776,964和 号公开透露了用氧化母体金属的手段形成氧化反应产物,以生产自供陶瓷体的新方法。更具体地讲,为了形成在与气相氧化剂接触时发生反应,形成氧化反应产物的母体金属熔融体,将母体金属加热到高于自己的熔点,但又低于氧化反应产物的熔点的温度。延伸到熔融金属母体与氧化剂之间,并且与之接触的氧化反应产物,或者至少是部分氧化反应产物,保持在这个温度;而熔融的金属通过多晶氧化产物被抽吸,且是朝氧化剂抽吸,被抽吸的熔融金属在和氧化剂接触时,就形成氧化产物。当这个过程继续进行的时候,通过多晶氧化反应产物的形成,后面的金属继续输送,于是就连续“生长”出互相结合在一起的晶体陶瓷结构。通常陶瓷体内会含有通过多晶材料抽吸的母体金属的末氧化成分,并在生成过程终结之后,随陶瓷体冷却而凝固在其中。正如这些同属专利申请所说,新型陶瓷材料是通过母体金属与气相氧化剂之间的氧化反应生成,气相氧化剂是一种汽化材料或通常的气体,它们提供氧化气氛。在氧化物作为氧化反应产物的情况下,氧气或者含有氧的混合物都是适用的氧化剂。由于空气比较经济,优先选用空气,然而,氧化作用在同属专利申请和本申请中使用的是广义的氧化,是指金属对可以是一种或多种元素和/或化合物的氧化剂给出或其有电子。所以,不是氧的元素可以用作氧化剂。在某些情况下,为了有利于和促进陶瓷体的生成,母体金属可能需要一种或数种掺杂剂,而且掺杂剂作为母体金属的合金成分。例如,在铝作为母体金属和空气作为氧化剂的情况下,镁、硅一类的掺杂物与作为母体金属的铝合金掺杂在一起,命名没有使用两种较多的掺杂物。
上述同属专利申请第632,636、747,788、776,965以及 号,在发现上述生长条件的基础上公开了进一步发展。对于需要掺杂剂的母体金属,在铝是母体金属,空气是氧化剂的情况下,从外部将一层由一种或数种掺杂剂组成的材料施加在母体金属的表面上,这样,就避免了将母体金属与镁、锌、硅之类的掺杂剂制成合金的必需性。从外部施用一层掺杂剂就允许局部地导致金属通过氧化反应产物的输送,也允许从选择掺杂的母体金属表面上或部分表面局部地生成陶瓷。这一发现具有很大的价值,其中包括陶瓷可以在一个或几个选定的母体金属表面区内有区别地生长;由此,能更有效地应用这一工艺过程,例如,通过只在母体金属板的一个表面或部分该表面掺杂,以生长陶瓷平板。这项业经证实的发明也具有这样的效益,能够产生或者促进氧化反应产物在没有必要以合金的形式掺杂的母体金属中生长;由此,使这一工艺过程容易进行,例如,对原来不含合适的掺杂成分的市售金属和合金的使用。
因此,上述同属专利申请叙述了,氧化反应产物容易地生长成所希望的厚度的生产过程;用常规的陶瓷生产技术达到这样的效果,在此之前是令人难以置信的。金属的温度上升到其熔点以上的一定范围,又在掺杂剂存在(如果需要)的情况下,金属就通过它自己或渗透性的氧化反应产物输送,使新鲜金属露置在氧化环境中,从而产生进一步氧化反应产物。这种现象的结果是继续生长出致密的相互联结的,选择性地含有普遍分布在生长结构中的某些未氧化母体金属的陶瓷。
根据本发明,提供了一种制作自供陶瓷复合结构的方法,该复合结构包括(一)通过母体金属如铝合金的氧化作用得到陶瓷基质。形成一种主要由以下几种材料组成的多晶物质。
(1)氧化反应产物(例如α-氧化铝),它是上述母体金属与气相氧化剂(如氧)发生反应的产物;以及选择性地含有,(2)一种或多种未氧化的母体金属组份;
(二)嵌入基质的填料。
一般来说,本发明是基于这样的发现,如上述参考同属专利申请所述,从金属(以后称为母体金属,定义见后文)氧化得到的多晶材料能够直接向与母体金属毗连的填充材料的渗透颗粒中生长。填料卷进并嵌入所生成的多晶材料中,形成一种复合陶瓷结构。在适当的工艺条件下,熔融母体金属,由于通过自身或可渗透的氧化反应产品的结构的迁移,从其初始表面(暴露于氧化剂的表面)朝着氧化剂和填充料向外氧化。氧化反应产物长入可以由多种难熔和/或非一难熔的颗粒、纤维,或其它材料组成的填充料的空隙中。这样得到的新型陶瓷基质复合结构是由嵌入填充材料的陶瓷多晶材料基质组成。集结或颗粒形式的填充材料置于设定的氧化反应产物生长的路线中,与金属母体毗连的位置。填充材料既可是松散的,也可是联结布置的,这种布置要有空隙,开口,插入间隔或类似间隙,以给氧化剂,氧化反应产物的生长提供渗透通道。另外,填料可以是同质的,也可以是多相的,正如本文所使用的,“填料”或“填料原料”这一术语,其意是指一种或数种材料,除非上下文另有说明。源于氧化反应产物的生成基质,只是简单地围绕着填料生成,因此实际上是在不弄乱和移动填料的情况下,把填料嵌入。因此,不使用按已知的常规工艺得到致密复合陶瓷结构所需的高价而棘手的高温,高压处理手段,以及可能损坏或搅乱填料的布置的外力。另外,对常压烧结形成陶瓷复合物,本发明大大减弱了或完全消除了化学上和物理上的适合性的严格要求。
在陶瓷基质的生长过程中,把母体金属热到其熔点以上,低于氧化反应产物的熔点的温度,从而形成熔化的母体金属,它与氧化剂反应,形成氧化反应产物。在这个温度,或者在这个温度的范围内,熔化金属与延伸到金属和氧化剂之间的至少部分氧化反应产物相接触,通过氧化产物,熔融金属向氧化剂,向毗连的填充料抽吸,使得氧化剂和先前形成的氧化产物之间的界面上,保持继续生成氧化反应产物。要有充分的时间继续保持这种反应,这样才能把至少部分填料通过氧化反应产物的形成的方法嵌入氧化反应产物之中,以形成复合结构,氧化反应产物中,可以选择性地包含未氧化的母体金属成分。
本发明的产品通常作为,或经过机械、抛光、研磨加工后作为商业成品;该成品实际包括(但不限定于)工业,结构和技术陶瓷体;用于其电气,耐磨、热,结构或其它特性十分重要,或能有有益的效果的应用中的本发明的产品不包括循环材料或废料,例如,熔融金属工艺中可能产生的不需要的副产品。
在本说明和附加权利要求
中所使用的“氧化反应产物”一词是指一种或数种在各种氧化状态下的金属,这时,金属与其它元素、化合物或它们的结合共有电子,或失去了电子。因此在这一定义上,“氧化反应产物”就包括了一种或数种金属与下列氧化剂发生反应的产物,例如氧、氮、囟素、硫、磷、砷、碳、硼、硒、碲以及它们的化合物和上述物质的结合,如甲烷、乙烷、丙烷、乙炔、乙烯、丙烯以及下述混合物。如空气、H2/H2O和CO/CO2,后面这两种用于减小环境中氧的活性。
在此处和附加权利要求
中所使用的术语“氧化剂”、“气相氧化剂”以及其它氧化剂,都指含有特定的气体或汽体氧化剂,意义在于,在氧化剂中的这类气体或汽体是唯一的,是起主导作用的,或者说至少在使用的氧化环境条件下,能有效地氧化母体金属。例如,虽然空气的主要成分是氮,但空气中氧的成分却是唯一的,具有主要作用的母体金属氧化剂,这是因为氧是一种比氮更强的氧化剂。因此,此处和权利要求
中使用的术语。空气属于“含氧气体”的氧化剂,而不是“含氮气体”的氧化剂。“含氮气体”氧化剂的实例是“成形气体”(forming gas),其典型大约含有96%(体积)的氮、4%的氢。
本说明和附加权利要求
中所使用的术语“母体金属”涉及到这样的金属,例如铝,它是多晶氧化反应产物的前身,而且包括相对的纯金属,市售含杂质的金属,和或含有合金成分的金属,以及上述前身为主要成分的合金;并且当将一种特定的金属称之为母体金属时,例如铝,除非另有上下文的说明,指明的金属应当限定在上述含意内。虽然本发明已在此文中特别强调了用作母体金属的铝,但是,符合本发明要求的其它金属,如钛、硅、锡以及锆之类也是适用的。
本说明和附加权利要求
中所使用的术语“陶瓷”并没有限定在传统意义的陶瓷体中。也就是说,在 个意义上,这个术语的含义不是,它全部由非金属和无机物质组成;而是指下述物体,就其组分或主要性质而言,它主要是陶瓷,虽然它可以含有大量的一种或多种金属,其典型含量为1~40%(体积),甚至更多的金属。
图1A,是纵向截面示意图,表示固定在耐火容器内的由颗粒状填料围绕的母体金属锭的配合。
图1B,是放大了的示意图,表示母体金属氧化反应产物的一部分渗透填料后,部分图1A所示的组合。
图2A~2D表示对按本发明处理的掺杂母体铝和填料的组合,相应的锭块重量增加和相应的单位重量增加。
图3A~3D表示,按本发明,使低纯度的填料颗粒嵌入氧化反应产物中的处理后,各种铝合金的相对重量的增加。
图4A~4D表示,按本发明,使325目的铝酸镁尖晶石填料嵌入氧化反应产物中的处理后,铝母体的组合的单位重量的增加和锭块重量增加。
图5A~5D表示,按本发明把90筛目和95%纯度的Sic填料嵌入氧化反应产物,所述铝母体组合件的相对锭块重量增加和相对单位重量增加。
图5E是根据本说明书中例五所制的复合陶瓷结构的400倍放大照像。
图5F,是根据本说明中的例五所制作的陶瓷复合结构粉末样品的X射线衍射图。
图6A~6D表示,按本发明把90筛目和99%的纯度Sic填料嵌入氧化反应产物,所述的铝基金属相对的锭块重量增加和相对单位重量增加。
图7A~7B,是根据本发明的技术,把金属丝和氧化铝颗粒以填料的形式嵌入氧化铝陶瓷后的复合陶瓷结构的200倍和40倍放大照像。
图8,是幅以400X放大的陶瓷复合结构截面图。陶瓷复合结构是根据本发明的技术而制作的含有一层氧化铝编织物填料的结构。
图9,是幅以1000X放大的陶瓷复合物的显微照片。陶瓷复合物是根据例二十,把碳化硅颗粒和碳化硅陶瓷嵌入α-氧化铝基质而构成的。
在本发明的实践中,为了通过生成的氧化反应产物渗入填料,或部分填料而在其入嵌入填料,可将由铝、硅、锆、锡或钛组成的母体金属和渗透性的填料安排成彼此毗连并且彼此的取向,使氧化反应产物向着填料的方向生成。母体金属和填料彼此之间的定位和取向,可以用以下几种方法来完成。把金属体简单地嵌入颗粒填料床内,如图1A所示;把一个或数个母体金属体定位在填料床或其它填料组合内,或者与其毗连。例如,填料可以包括,增强杆,棒,金属丝、板、薄片、空心物体的格子,球形(实心或空心)、粉末或其它的颗粒、集聚体、耐火纤维布,如金属编织品,钢丝绒、纤维,管子、小管、小球丸,须晶等组成的床,或上述的结合,在任何情况下,都要这样安排组合使氧化反应产物生长的方向朝着填充料,氧化产物渗透至少部分填料,这样才能使生长的氧化反应产物基质进入填料颗粒或填料体之间的空隙。
如果需要一种或数种添加材料(如下所述)以促进氧化反应产物的生成,可以在母体金属的上面或在里面使用添加剂,或者,在填料上使用添加剂,或者由填料提供添加剂。
虽然本发明在下文的叙述中,对用作母体金属的铝及其实施作了特别的强调,但只是出于举例的目的;应当理解,象硅、锡、锆这类的其它金属也可以使用,它们符合或掺杂后符合本发明的标准。
在使用铝及其合金作为母体金属,含氧气体用作氧化剂的情况下,按下文所作的更为详尽的叙述,将适量的掺加剂,合金或者施用到母体金属中去。然后,把母体金属放在坩埚或其他耐火的容器内,使金属表面暴露或包围在上述的容器内的与之毗连的填料中,并且存在氧化环境(典型的是四周有大气压力的空气中)。再后,把得到的组合放在炉内加热,使其温度升高到约850℃到1450℃的范围内;约900℃到1350℃之间更好,这要根据填料,掺加剂和掺加剂的浓度或它们结合,依靠这些因素,开始发生母体金属穿过自己正常的氧化层保护膜的输送。
母体金属持续的高温暴露在氧化剂面前,使母体金属不断氧化,从而使多晶反应产物层的厚度不断增加。这种生成的氧化反应产物以相互连结的基质(基质还可包含未氧化的母体金属成分)的形式浸渍了毗连的具有渗透性的填料,这样就形成了结合在一起的复合物。在炉内要提供足够的空气(或氧化性气体)交换,保持其中相对恒定的氧化剂源,这样生长的多晶基质就以基本恒定的速度(也就是厚度以基本恒定的速度增加)浸渍或渗透填充料。氧化气氛的更换,在空气的情况下,可很方便地用炉内通用的方法提供。基质的生长,一直要进行到至少发生下列情况的一种1)所有的母体金属全被耗尽,2)氧化气氛被非氧化气氛取代,或者氧化剂用尽,或者氧化剂被排出;3)反应温度实际上不在氧化温度范围之内,例如,低于母体金属的熔点。通常情况下,降低炉温之后,再把材料从中取出。
依赖于母体金属和选择的氧化系统,对本发明有用的填料实例,包括一种或数种氧化铝、碳化硅、硅铝氧氮,氧化锆、硼化锆、氮化钛、钛酸钡、氮化硼、氮化硅、铁合金,例如,铁铬铝合金,碳、铝及它们的混合物。然而,任何合适的填料都可用于本发明。三个特殊类别的有用填料可识别如下第一类填料包括这样一些化学物质,在工艺过程的温度和氧化条件下,它不挥发,具有热力学上的稳定性,既不参加反应也不过多地溶解在熔化的母体金属中。对于本技术领域
的人员,已知多种材料在铝母体金属和空气或氧气作为氧化剂使用的情况下,符合上述标准。这些材料包括下述金属一元氧化物,铝Al2O3;铈Ce O2;铪Hf O2;镧La2O3;钕Na2O3;等多种氧化物;Sm2O3;钪Se2O3;钍Th O2;铀UO2;钇Y2O3和锆Zr O2。此外,还有大量二元的、三元的和更多数目的金属化合物,例如,铝酸镁尖晶石和Mg O·Al2O3也都是这类中的既稳定又耐火的化合物。
第二类适用填料,这一类物质在工艺过程的氧化性高温条件下,它们不具有内在的稳定性;而由于动力学上的降解反应比较慢,它能够作为填料结合在陶瓷体内部。在氧化铝陶瓷基质的情况下,其典型例子是碳化硅,在用氧气或空气按本发明氧化金属铝的必备条件下,这种材料会完全氧化,这是因为它不形成复盖碳化硅颗粒的氧化硅保护层,去限制碳化硅的进一步氧化。
第三类适用的填料,这样一类从热力学和动力学的角度来说,不能指望它在本发明的实践中所要求的氧化环境或者显露在熔化金属面前残留。下述条件能使这样的填料与本发明的工艺过程要求相配合1)如果氧化环境的活性较低,2)通过在其上施加使这类填料在氧化环境中动力学上失去反应性。这样一类填料的一个例子是与熔化铝母体金属相联接的碳纤维。如果用空气或氧在1250℃的高温上把铝氧化,产生纤维结合的基质,碳纤维就容易和铝(形成碳化铝)和氧化环境(形成CO或CO2)产生反应。这些不需要的反应可以通过以下方法加以避免。涂复碳纤维的方法(如用氧化铝涂复)防止和母体金属和/或氧化剂反应;选择性地使CO/CO2气氛作为氧化剂,它容易氧化金属铝,但不氧化碳纤维。
不希望用解释氧化过程的内容,使其受到约束。熔化金属是沿着在氧化反应产物相内的某些高能晶粒断面上的通道迁移。不难理解,任何一种多晶材料都依赖于在材料内毗连的晶粒之间的界面上晶格失配的程度,而表现出一定范围的晶界能(表面自由能)。一般说来,低角度失配的晶界表现低表面能,而高角度晶界则表现出高表面能。虽然,由于在中间角度上有时会出现更有利的原子排列,使这种关系可能不是简单的单调的角度增加的函数。相似的是,在三个晶粒的交线上,在多晶宏观结构中也典型地具有高能特性。
正如上述同属专利申请中所作的进一步说明,但不希望受其约束,母体金属和氧化剂明显地形成一种具有与熔化母体金属的表面自由能关系有利的多晶氧化反应产物,这样,在母体金属熔化的温度范围的某一部分内,至少上述多晶氧化反应产物的晶粒的某些断面(即晶界或三晶交线)被熔化金属的面性或线性通道取代。例如,考虑两个实质上,几何形状上等价的晶体/熔融金属界面的变换结构有较高表面自由能的晶界。在这样的环境中,那种高能晶界或是不形成,或是立即分解成有利于被两个晶体/金属界面所限制的熔融金属的面性通道。当熔化金属保持在熔化环境中和有效的温度范围内时,它就沿着这样的通道向氧化剂抽吸或迁移。更具体的是,这种现象在下述情况发生1)当液体金属浸润多晶氧化反应产物相(即γSL<γSG,在这里γSL表示晶体/熔化金属界面的表面自由能,γSG表示晶体/汽体界面上的表面自由能);
2)某些晶界能γB大于晶体/液体金属界面能的2倍,即γBMAX>2γSL,在这里γBMAX是多晶材料的最大晶界能。如果金属取代了部分或全部材料中的三晶交线,具有线特性的熔化金属通道就能够很简单地形成。
由于通道至少是部分地联结在一起(即多晶材料的晶界是联结在一起的),所以,熔化金属通过多晶氧化反应产物向熔化金属表面迁移,与氧化环境相接触,在这里金属经过氧化,结果不断地长成氧化反应产物。而且,由于沿着通道而行的熔化金属的毛细作用使迁移过程比大多数正常的氧化现象的离子状态动力要快的多,所以对于这种氧化过程观察到的氧化反应产物的生成速度比在其它氧化现象中一般观察到的要快得多。
当本发明的氧化反应产物被沿着高能晶粒断面而行的金属渗透时,多晶反应产物相自身沿着不符合γB>2γSL标准的相对的低角度晶界在一维或多维,最好是三维方向进行自身结合。这样,本发明的产品显示了传统陶瓷许多理想的性能(如坚硬、耐火、抗磨损等等);同时从所分布的金属相的存在获得了另外的优点,显著的韧性和抗破裂性。
本发明的另一方面是,提供一种由陶器基质和在基质内结合的填料组成的自供陶瓷复合物。用气相氧化剂氧化母体金属形成多晶氧化反应产物而得到的基质的特性是,由基本单相多晶氧化反应产物和散布的金属、或者空隙,或者两者皆有表明,还由在氧化反应产物晶粒边界的晶格失配小于具有分布在相邻晶体之间的面性金属通道和/或面性空隙的那些相邻的氧化反应产物晶体之间晶格失配表明。在某些实例中,上述氧化反应产物相中的所有晶界,实际上都只有约小于五度的相邻晶格之间的失配角。
在特定的温度和氧化气氛的情况下,某些母体金属不用特殊的掺加或改性对本发明的氧化现象需要的标准就可满足。然而,正如在上述同属专利申请中所述,使用和母体金属结合的添加剂,能够有利地影响和促进氧化反应过程的进行。在不希望受到添加剂作用的任何特定理论和说明的限制的同时,似乎是,有些添加剂在母体金属和它的氧化反应产物之间肯定的表面能关系并不是固有地存在的情况下,是有用的。所以,能减少固-液界面能的某些添加剂和组合添加剂,将容易促进和加快,按新的过程的要求的需要,在金属氧化时形成一种含有熔融金属迁移通道的多晶结构的发展,添加剂的另一作用可表现使产生陶瓷生长现象引发,显然或者是由它作为形成稳定氧化反应产物晶体的成核剂,或者是由它以某一方式破坏初始氧化产物的纯态层,或者是两者皆有。这后一类的添加剂对产生本发明的陶瓷生成现象可能是不必要的,但是,这样的添加剂对受工业实施限制的某些母体金属系的这种生长的引发和缩短任何酝酿时间可能非常重要。
添加剂原料的作用可能与许多因素有关;除了添加剂原料本身,这些因素包括,如,特定的母体金属、理想的最终产品,在使用两种或数种添加剂时,特定的添加剂组合,与合金添加剂结合的外用添加剂的使用,添加剂的浓度、氧化环境以及工艺条件。
一种添加剂或者多种添加剂,1)可以作为母体金属的合金成份加以提供;
2)可以至少用于部分母体金属的表面;
3)可以通过填料或者部分填料床,或者其结合的方式提供;或者采用上述(1)、(2)和(3)项技术的任何组合。例如,一种合金添加剂可以与外用添加剂结合使用,在一种或几种添加剂施用于填料的(3)项技术情况下,这种施用可以通过任何适当的手段完成,例如,将添加剂充分地分散到全部或部分细颗粒形式的填料质中去的方法,最好是分散到毗邻母体的部分填料床中。也可以把一种或多种添加剂层施用到填料床中,包括填料床上或填料床中,包括填料床的任何内部的开口,缝隙,通道,插入间隙等任何能提供渗透性者,由此可完成任何添加剂向填料的施用。也可以通过将含添加剂的刚性体放在至少部分母体金属表面和填料床之间,并用与之接触的方式,提供添加剂源。例如,如果需要硅添加剂,就可将含硅的玻璃或其它材料的薄片放到事前已经施用了第二添加剂的母体金属表面上。当上面有含硅材料的母体金属在氧化环境中熔化的时候,(例如,铝在空气中的情况下,温度大约在850℃到1450之间,比较好的大约是在900℃~1350℃)多晶陶瓷材料向具有渗透性能的填料中的生长就会发生。在添加剂外部施用于至少部分母体金属表面的情况下,多晶氧化物结构一般在具有渗透性能的填料之中生长,且实际上长过添加剂层(也就是超出了所施用的添加剂层的厚度)。在任何情况下,一种或多种添加剂都可外部施用于母体金属的表面上,和/或具有渗透性能的填料床上。另外,用施用在填料床的添加剂可以增强合金在母体金属内的添加剂和/或外部施用在母体金属上的添加剂的作用。因此,合金在母体金属内和/或外施在母体金属上的任何添加剂浓度的不足,都可以用向填料床施用相应附加浓度的添加剂的方法补充;仅之亦然。
对于铝母体,特别是空气作为氧化剂时,有用的添加剂包括,如,金属镁和锌,它们的组合,或与下述添加剂的组合。这些金属或其适当的源,都可以按得到掺合金属总重量计,每种占0.1~10%的浓度合金到铝母体金属中。对任何添加剂,其浓度范围取决于添加剂的组合和工艺温度等因素。在这个范围的浓度表现出引发陶瓷生长,增强金属迁移并且对得到的氧化反应产物的生长形态产生有利的影响。
对于铝基母体金属体系而言,其它对促进多晶氧化反应产物生长有效的掺杂剂的例子有硅、锗、锡和铅,特别是和镁和锌一起使用时更好。把这些掺杂剂中的一种或多种,或能转变成为它们的适当原料掺合到铝母体金属体系中去的浓度是每一种约从0.5到约15%的总合金重量;而且,掺杂剂的浓度范围是约1~10%的总母体金属合金重量时,从生长动力学和生长形态上考虑更为合适。用铅作掺杂剂掺合到铝基母体金属中去时一般至少在1000℃,这是因为它在铝的低溶解度所要求;然而,当添加了其他的掺合成份时,例如锡,它一般能增加铅的溶解度,所以允许在较低的温度加入掺合物质。
如上所述,根据不同情况,可使用一种或多种掺杂剂。例如当空气作为氧化剂时,对铝母体金属,特别有用的掺杂剂的搭配是(d)镁和硅或(b)、锌和硅。在这样的实例中,镁的最佳浓度是在约0.1到约3%重量范围之内,锌的范围是从约1到约6%(重量),而硅的范围是从约1到约10%重量。
用于铝母体金属的其它掺杂剂的例子还有钠、锂、钙、硼、磷和钇,可以单独使用也可以根据氧化剂和处理条件搭配一种或多种其它掺杂剂一起使用。钠和锂的用量很少,是以ppm计,典型的是约100-200ppm,可以单独使用或同时使用,或和其它的一种或几种掺杂剂搭配使用。稀土原素如铈、镧。镨、钕和钐都可用作掺杂剂,而且尤其是和其它掺杂剂搭配使用更好。
如上所指,没有必要把任何一个掺杂剂都掺合到母体金属内部去。例如可以选择一种或几种掺杂物以薄层的形式施用到母体金属的全部或部分表面上,就能够从母体金属表面或部分表面上局部生长陶瓷,并且有助于多晶陶瓷材料本身在所选定的区域内向渗透性填料中生长。这样就可以用在母体金属表面上局部安置掺杂材料的方法,来控制多晶陶瓷材料向可渗透性床中的生长。施用的掺杂剂涂层或薄层比母体金属主体的厚度要薄些,向可渗透床里生长或成形的氧化反应生成物实际上延伸到掺杂剂层之外,即延伸过施用的掺杂剂层的深度。可以把液体的或糊状的掺杂材料用涂抹、浸渍、绕丝、蒸发或其它方法造成这样的掺杂剂层,或者用喷镀、或简单的沉积一层固体粒状掺杂剂或掺杂剂的固态薄片或膜到母体金属表面上。掺杂材料可以,但不一定包含有机的或无机的粘合剂,载体、溶剂、和/或增稠剂。最好是用粉末状的掺杂剂材料加到母体金属的表面上或至少通过一部分填料分散到母体金属。把掺杂剂加到母体金属表面上去的一个特别可取的方法是把掺杂剂在水/有机粘合剂混合物中的液态悬浮体喷到母体金属表面上,以便得到一个粘附涂层,这就减化了掺杂母体金属加工前的处理。
当外部加入掺杂剂材料时,总是以它的均匀的涂层形式加到母体金属的一部分表面之上。相对于母体金属量的掺杂剂的有效用量的范围是宽的,对于母体金属是铝时,实验还没有找到操作的上限和下限。例如,对于铝基母体金属以空气或氧作为氧化剂用二氧化硅形式的硅作为外加掺杂剂时,每克母体金属的硅的量低达0.0001克,同时用了由镁和/或锌源提供的第二掺杂剂也造成多晶陶瓷生长现象。也已发现,用空气或氧作为氧化剂,用Mg O作为掺杂剂,每克被氧化的母体金属用0.0005克以上的掺杂剂,而且每平方厘米掺有Mg O的母体金属表面的掺杂剂大于0.005克,从铝基母体金属可以得到陶瓷结构。当掺杂物用量增加时,在某种程度上产生陶瓷复合材料的所需的反应时间就会减少一些,但是,这是和掺杂剂类型,母体金属和反应条件等因素有关的。
本发明的另一个重要特点是用改变处理条件的方法影响和控制生成的陶瓷基体的微结构和各种性质。例如维持各种条件使固-液界面能相对于氧化反应产物中的晶粒边界能明显地减少时就会产生一种金属含量增加的结构,并且使得氧化反应产物的相互连接程度降低;相反,如果使相应的表面能往相反方向改变,就会生成一个含金属相较少,而相互之间连结更多的氧化反应产物,也就是金属输送通道形成得更少。这种改变是能够实现的,例如通过改变掺杂剂的性质或浓度或改变温度和大气等氧化环境。由于本方法具有这样的特点,最后得出的材料的性质,对于例如韧度和电导率之类的高度地受25%或30%(体积)或更多的金属相的存在所影响的性质,可以按从接近纯陶瓷的性质到相对很高等级之间定作。
当母体金属是铝,用镁作内部掺杂且氧化介质是空气或氧时,已观察到在约820到950℃温度时至少有部分的镁从合金中被氧化掉。在这样的镁-掺杂体系中,镁在熔融合金的表面形成了一个氧化镁和/或铝酸镁尖晶石相,而且在生长过程中这样的镁化合物主要保留在正在生长陶瓷结构中的母体金属合金的原始氧化物表面上(即所谓“初始表面in it iation surfucc”)。因为在这种镁-掺杂体系中,产生的氧化铝-基结构和创始表面上的较薄的铝酸镁尖晶石层是离开的。须要时可以容易地用磨、刮、抛光喷砂把原始表面去掉。
关于母体金属内的非功能合金成份,特别是那些其氧化物具有较小负形成自由能的成份,它们总是无害的,且会集结在保留的金属包体相之中。例如,商品级铝中都含有的少量合金杂质象锰、铁、铜、钨和其它金属,它们存在于铝母体金属中时是会兼容的,而且对本发明的方法的陶瓷生长机理不产生干扰。
从图5E的氧化铝陶瓷基质产物载面的显微照相看来,氧化反应产物和金属相之间的界面基本上是弧形的且是交织着的,或在网络中形成曲折的微结构。当形成的空隙代替金属时,也已观察到这种微结构。以前的陶瓷基质复合材料中,当基质的骨架是单相时,基质微晶和空隙之间的界面基本上是交刻着的,也就是更多的棱角和参差不齐。而本发明的陶瓷产品主要有弧形或园形的交界面。这对于某些不具有这种弧形结构的典型的互相交联结构讲来可望有较低程度的应力集中和较低的弹性模量。在某些具体实例中,本发明的陶瓷复合产品基本上是单相的,相互连结的陶瓷基质骨架结构,其中,骨架结构中的微晶复合连接处的晶粒界面内不存在其它的相。用熔结的办法要做成这样的具有清楚的晶粒界面的陶瓷复合产品是困难的,甚至是不可能的,因为在熔结处理时杂质会沉积在晶粒界面上。这样的杂质可能是非有意出现的,或者为了促进熔结或限制高温处理时晶粒的生成而有意添加的。而且产品基质骨架结构中清楚的粒子界面这一特征是有意义的,因为它们能提供优良的品质如高温强度保持性和抗蠕变能力。
本发明的其它实例中的陶瓷复合材料是致密的连结体,在陶瓷基质中含有占复合材料总体积的约5%到约98%的一种或多种填充物。陶瓷基质的总重量中含60%到约99%重量的相互连接的氧化铝,还有约1%到约40%重量的含铝金属成份,其中还含有以原始表面的形式存在的约不到30%重量,最好是不到10%重量的铝酸镁尖晶石。
本发明的另一方面,提供一种复合材料包括(a)单一相的三维相互连接的氮化物陶瓷基质,(b)一种或多种金属组分,在整个基质中还可以有分散的空隙,(c)被基质包裹着的一种或多种填料。下面将给出氮化铝,氮化锆。氮化钛和氮化硅的基质复合材料的例子。这样的复合材料是独特的,而且有综合了的力学的,热学的和电学的性质的优点。
下面的例子说明本发明实施的一些方面。在一些实例中包括了各种氧化铝陶瓷基质的形成,氧化反应是在中等速率下进行的,所以没有由于反应的放热特性产生的显著温升。但对于谈及的其它基质体系,氧化反应趋于更快,以致总观察到实验装置的瞬时加热高于炉子的给定温度。
例1为了对本发明的氧化反应产物的生长效果进行观察,用一定体积的含有氧化铝颗粒的填料,选定一种含有一定数量的内掺杂剂镁和/或硅的铝合金,开始时把铝合金完全埋在颗粒性的氧化铝填料床中,用空气作为氧化剂在给定的从1100到1400℃的温度范围内进行处理。
每次试验中所用的合金样品是从在800~900℃熔融铸锭上割下的1寸直径及7~8吋长的圆柱体锭块。把锭块垂直放在一个适当的耐热钳埚内的一层90目工业纯度为99.5%的纯氧化铝磨料粒子(Norton Co.38 Alundum)上面,然后把所有面上覆盖上一层厚度约为1/4到1/2吋的同样的材料。图1A示出母体金属锭块被完全埋在颗粒填料中,二者都放在耐热钳埚之内。
每次实验在一个炉子中同时处理使用不同掺杂剂浓度的六个装置。炉子允许周围空气通过炉壁上的无规则开口通过自然对流和扩散进入炉内,这和传统的实验室用炉一样,同时,还通过炉门上的1/4吋通气孔进入。名牌上的炉回路允许五小时使炉子达到给定温度,在给定温度下处理八十小时,然后经五小时使炉子冷却到600℃以下,然而把样品从处理环境中取出。这样某些填料粒子就渗透到陶瓷基质中从而生成了连结的复合材料。
图1B示出的截面图使人相信,在操作条件下进行一段时间以后(例如,需要的完成时间的一半),图1A的氧化反应产物生长区域的状态图示了氧化反应产物的形成,以及随着氧化反应消耗有效提供的熔融母体金属,形成的多晶基质向着相邻的粒状填料中生长渗透并把它们包埋起来。
每次实验称重四次如下1)铝母体金属锭块的重(“Wi”);2)处理前的钳埚和它的全部装载(粒子床加上母体金属锭块)的重量(“Wc”);3)处理后的钳埚和它的全部装载的重量(“Wc/a”)和4)处理后的余下的母体金属锭块和固着的陶瓷复合结构,并包括所有未被氧化的组份的重量(“Wi/a”)。利用这些数据就可计算出作为钳埚加上它的总装载由于炉循环处理引起的重量变化和原母体金属锭块的重量之比的单位重量增益(unit useight gain“UWG”)。换言之,单位重量增益(UWG)等于装置的最后重量减去装置的原重量除以母体金属锭块的原重。上述关系亦可用公式表示UWG= (Wc/a-Wc)/(Wi)理论上单位重量增益可以高达0.89,它等于铝完全转化成了Al2O3,它和0.89的差数是主要归结为未被氧化的铝合金母体金属或它的未被氧化成份。
对于不同的实例,从这些数据推导出第二个量即锭块重量增益(“IWG”),它是(a)处理完毕从钳埚中移出来后的余下的母体金属锭块和固着的陶瓷复合结构以及它的所有的未被氧化掉的成分的重量(“Wi/a”)和(b)铝母体金属锭块的原重量(“Wi”)之比。换言之,锭块重量增益(IWG)等于陶瓷复合结构和所有的未氧化掉的母体金属成分的重量减去母体金属锭块的原重量除以母体金属锭块的原重量。上述关系亦可用公式表示为IWG= (Wi/a-Wi)/(Wi)当锭块重量增益(“IWG”)显著大于单位重量增益(“UWG”)时,例如达到从1~2.5的程度或更大时,说明填料被占优势的陶瓷多品材料所包埋引起显著的增重。
代表的数据中没有对一些项目作校正,如易挥发性物从耐火材料中的脱去,填料和氧化性气氛的反应及其它类似的因素。对实验中所得到的材料用包括目察、切割和对选定样品作力学测量以核实复合体的性质等方法进行了评价。
图2 A-2D示出了图1A和图1B所描述的一系列铝合金在所选的给定炉温下氧化80小时,使多晶材料往氧化铝填料床中生长的单位重量增加和锭块重量增加。在本图和所有相似的图例中符号X/Y代表标称掺杂剂浓度,X是硅浓度而Y是镁浓度,二者都是用母体金属总重的重量百分数表示,这些结果表明,铝母体金属在使用特定的掺杂剂和用空气为氧化剂时主要在1100~1400℃温度范围内产生陶瓷复合结构的迅速形成。而且图2A-2D中各曲线的差异说明了在用氧-基气态氧化剂时二元掺杂体系对于铝-基母体金属起着有益的作用,而且表示对掺杂剂材料的浓度作适当选择可以扩大有效的温度范围。
下面的进一步的试验表明,用本发明的操作方法得出的陶瓷复合结构体组合了填料和多晶基质材料的各种特性,力学的,电学的,热学的,其它诸如强度、硬度、韧度和电导率方面表现出新的组合性。各陶瓷复合结构的各种测得的特性是用下述试验确定的。断裂模量(modulus of rupture.“MOR”)的确定是对宽度(“W”)为0.375吋厚度(“d”)为0.125吋而长度超过一寸的矩形材料条进行试验测得的。把试验条的0.375吋宽表面平放着而0.125吋的纵深表面立置在试验中。试验机通过一根1/4吋直径的圆柱形钻杆向试验条的底部加一个向上的力,即作用在下面的0.375吋的宽表面上,并在上面的0.375吋宽表面上对着向上运动的力提供一对阻力点。二个阻力点沿着试验条的长度排列,且相隔一吋,二者的中心是提供向上的作用力的钻杆位置。如果F是以磅为单位的向上作用力,则以每平方吋为单位的断裂模量(“MOR”)可用下式计算MOR= (3Fl)/(2Wd)其中“W”和“d”如上所述,而“1”是对抗向上作用力的二个阻力点之间沿着试验条的距离,以吋为单位。在试验前在Blanchard-型磨床用50号金刚砂轮将试验条磨过,而钻杆是以每分钟0.002吋的十字头速度作用在试验条上。
根据本发明生产的陶瓷复合结构的磨蚀速率是用怀特工业产品公司的H-型喷气磨机(by S..White Industrial Produts Airbrasivejet machining unit,Modcl-H)测定的。从二个不同的角度,一为90°(即垂直于试件的表面)另一为30°用空气推动一股50微米粗细的氧化铝颗粒(S.S.White #3)撞击到陶瓷复合结构样品板的平面上,撞击角为90°时喷射2分钟,30°时为4分钟。90°和30°的试验是在样品不同的位置上进行的,撞击试验造成的陷坑的深度是用刻度指示深度规测量。在所有试验中使用了下列参数样品的原表面和喷嘴之间的距离是0.625吋;喷射的空气压力是80磅/平方吋[表压](psig);空气流量是每分钟0.4标准立方呎;喷嘴的孔内径是0.026吋。粉末流量是在用上述参数作标准试验时用90°撞击角(2分钟)在Coors AD 998氧化铝样品上能给出深度为0.056±0.004吋的陷坑,以及用30°撞击角(4分钟)给出0.029吋深度的陷坑。Coors AD 998氧化铝是一种99.8%纯度的氧化铝的材料。
本发明的陶瓷复合结构的腐蚀速度的测定是在室温把样品片分别浸在10%试剂级盐酸溶液或10%试剂级硫酸溶液中。每种情况下都是周期地把试验样品从酸溶液中拿出来,冲洗,干燥,称重再回到酸浴中。把不同浸酸试样的所有暴露表面上每平方厘米损失的重量损失作比较。
对于在1250°从含10%硅和3%镁的铝合金而且填料是例1中所述的氧化铝颗粒生产出来的陶瓷复合结构,用上述断裂试验测得其断裂模量值超过25,000磅/每平方吋,测得其Rockwell A标度的常量硬度为83,用上述的喷砂磨蚀试验测得它的磨耗速度比标准的99.8%纯度,致密的氧化铝片(Coors AD 998)低2到3倍,用上述的腐蚀试验测得在10%HCl和10%HSO中的腐蚀速度大致和标准氧化铝片(Coors AD998)相同。
例2为了观察本发明的陶瓷材料往装有细粒度的氧化铝颗粒体中的生长效果,从850℃的熔体铸成一块1/2吋厚9吋长2吋宽且含有10%重量的硅3%重量的镁作为掺杂剂的铝/镁/硅合金样品条。把此铝合金母体金属条放在一层商品纯的粒度为6微米的氧化铝(Norton Co.E67 alumina,1000目)的上面,然后用同样材料将其覆盖到1/2吋的深度。把这块氧化铝颗粒复盖了的样品条放入和例1相同的气氛的炉中,在起始后五小时使炉子达到给定度以后,再在给定温度1.250°下处理72小时。在72小时加热以后,再用五小时使样品冷却到600℃以下,然后把样品从炉子中取出来。得到单位重量增益为0.72和锭块重量增益为1.24。从得到的陶瓷复合结构上切割一条1/8×3/8×1-1/4吋的样品,用断裂模量(modulusof rupture)试验测得它的破裂强度(breaking strength)为30,000磅每平方吋,测得洛氏(Rockwell-A)标度的硬度为85.7。这些数据说明作为结构陶瓷使用时是强而且硬的复合材料,从其性质上看来是优于例1中用较大粒度填料形成的那些复合材料。
例3为了观察本发明基础陶瓷多晶材料向纯度比例1中所用的更低的氧化铝颗粒体中的生长效果,把含有不同量的硅和/或镁掺杂剂的一系列铝合金母体金属锭块包埋在含约95%氧化铝,3%二氧化钛、1%硅石,和1%其它杂质的90目工业磨料颗粒填料中(Norton Co.,El Alundum),然后用从1100°到1325℃的范围内的不同给定温度,其余和例1相同的工艺方法进行处理。这些试验得出的单位重量增益和锭块重量增益都示于图3A-3D中。在1250℃的处理温度下,含二种掺杂剂的那些母体金属的单位重量增益在0.5到0.75之间,锭块重量增益高达2.4到2.6,说明对于填料中存在的污染物是允许的。在1300℃的给定温度或更高温时得到的产物的重量增益比在1200-1250℃的给定温度下得到的要明显地低。在得到较大的锭块重量增益时(例如大于1时),得到的是含有磨料级填料颗粒的α-氧化铝为主的基质组成的复合材料。
例4这些试验是观察本发明中的基础陶瓷多晶材料,向在处理条件下热力学稳定的或接近于稳定的粒状二元金属氧化物组成的填料体中生长的效果。把掺合有硅和/或镁掺杂剂的母体金属铝合金样品包埋在325目铝酸镁尖晶石中,然后用例1中相同的方法进行处理,但是,是在从1025℃到1500℃范围内的不同给定温度下加热94小时。图4 A-4D得出的重量增益数据说明生长温度范围至少达到1500℃,示于图4A-4D。现在合金不含有故意掺合的镁掺杂剂而明显地形成了本发明的基础陶瓷多晶基体材料,从而说明用镁的氧化物(现在是Mg Al O)作外掺杂,而没有这种掺杂剂作内掺合的功效。换言之,填料也起了掺杂剂的作用。得到的复合物表明基质是由生长的α-氧化铝和未氧化的母体金属成分,以及结合进去的尖晶石填料粒子组成。
例5进行这些另外的试验是观察本发明的基础陶瓷多晶材料向填料中生长的效果,碳化硅坚硬耐火,导电导热,但在本发明的铝母体金属氧化的条件下不是热力学稳定的。把选好的用内掺杂剂镁和/或硅掺合了的铝合金包埋在90目工业纯度98%的Si C磨料颗粒(Norton Co.37 Crystolon)中,用和例1的同样方法处理,但不同的是在给定炉温下加热48小时。得出的单位和锭块重量增益数据都图示在图5A-5D之中。各图中标出的“区域2”是指在所用的最高温度下由于Si C相的氧化产生的重量增益部分。另外,还指出了最佳生长温度区间,实验还表明了在整个填料中分散掺杂剂的效果。这里的硅掺杂剂是用铝去化学还原二氧化硅层得到的,在处理条件下该层复盖着碳化硅颗粒。
为了确定本例中98%纯度Si C填料制成的较大复合陶瓷体的特性,用例2所述的方法制成含有10%硅和3%镁掺杂剂,大小为2×9×1/2吋的铝合金样品,放在适当的耐火容器内,用90目95%纯度的氧化铝耐火颗粒(El Alundum)将样品的五个面包埋起来,用铝箔把露着的2×9吋的表面隔开以免也被盖住。在这露着的表面上盖上一吋厚的一层90目98%纯度的Si C磨料颗粒(Norton Co.37 Crystolon)。在5小时内炉子达到给定温度1300℃以后,把样品在1300℃下处理60小时。加热期之后再用5小时让样品冷却到600℃以下,然后再从炉中取出。得到的单位重量增益是0.61而锭块重量增益是1.14。观察到的主要是向着碳化硅填料中生长的复合结构的显微照相,从图可看到碳化硅颗粒,氧化铝基质的网状结构和金属成分。从粉碎的样品取得了X射线衍射数据,它显示是α-氧化铝,碳化硅,铝和硅相,如图5F中所示。这种陶瓷复合结构是导电的,即,用Simpson欧姆计用点探头测量有很小的电阻,用上述断裂模量试验测得断裂强度是16,000磅/每平方吋。
用98%纯度具有更细粒度,220目的Si C颗粒作为填料完成了和上述相似的另外的一些实验。比用90目碳化硅作填料,材料有更高的强度(23,000psi)。用90或220目颗粒作成的陶瓷复合材料的耐磨蚀性都显著高于99.8%纯度的氧化铝片(Coors AD 998),这是用上述的喷砂磨蚀试验测出的。下面特地把本发明的分别用90和220目碳化硅颗粒制造的陶瓷复合结构的结果和标准氧化铝作比照被试验的材料 90° 试验 30° 试验陷坑深度,寸90目 Si C 0.044 0.024220目 Si C 0.037 0.016标准 0.056 0.029(Coors AD 998)例6
为了确定本发明材料向含有较高纯度的碳化硅磨料颗粒的空间中生长的效果,用99+%纯度90目Si C(Norton Co.39 Crystolon)作为填料用例1中相同的方法完成实验。图6A-6D绘出了这一系列实验的结果。可看出温度区间低至接近825℃就有多晶基质材料的生长,这一数据对于限制碳化硅在形成本发明的碳化硅-填充复合材料之前就被氧化为二氧化硅和二氧化碳这一倾向是有意义的。
各试验使用由粒度更细的(220和500目)99+%纯度Si C磨料颗粒(Norton Co.39 Crystolon)组成的填料,本例中的多晶陶瓷基质材料和上述一样向填料中生长。测量从这些试验得出的材料,其断裂模量有显著的增加,其范围从90目填料的12,000磅/每平方吋到220目填料的37,000磅/每平方吋,到500目填料的59,000磅/每平方吋。
还说明了向由90,220,和500目的99+%纯度Si C颗粒的各种混合物组成的填料中生长的情况。这些混合物比单一粒度的填料有更大的装填密度。
还说明了从含2.5%镁掺杂剂,同时也约含1%(组合的)包括Fe,Cr,Si和Cu杂质的商品5052铝合金向这些不同的碳化硅填料中生长的本发明的陶瓷复合材料的情况。在72小时的炉循环中商品合金被氧化,并且向着550目99+%纯度的Si C中生长,形成了陶瓷复合结构。得到的材料表现有54,000到62,000磅每平方吋的断裂模量,硬度为84洛氏度(Rockwell-A标度),用下述的单边开槽条(singleedge notched beam)断裂韧度试验测得断裂韧度为7.5百万一帕斯卡一表度(Mega-Pascale-meter)。因之,铝母体金属合金中的各杂质并不妨碍或根本上干扰使用的复合陶瓷结构的产生。得到的韧度值和传统的碳化硅陶瓷复合材料相比,如硅/碳化硅复合物,其断裂韧度一般约3-5百万一帕斯卡一表度(Mega-Pascale-meter)高得多。
断裂韧度试验是用本发明的陶瓷复合材料的矩形试验条进行的,其宽度为0.118吋(“W”),厚度为0.379吋(“d”),在其下表面上有一高度“a”为0.036吋的等腰三角形槽口,槽口横跨试验条的整个宽度。依据开槽的0.118吋宽的下表面把试验条定位,把0.118吋宽度表面作为底面而水平放置,使0.379吋的厚度方向直立。在试验条底面槽口相对的两边对等的位置上,用一对1/4吋直径的钻杆加一对朝上的力。受朝上的力作用的二个部位沿着试验条长度方向的距离为S1。在试验条的上表面与槽口位置相对的两边且对等的二点上加一对阻力以阻止向上的力。这对阻力点沿着长度方向的距离为S2,S2比S1小。则断裂韧度(“FT”)由下式计算FT= (3F(S-S)a y)/(2Wd)其中F代表作用在试验条底面上两点每个点的向上作用力,用磅为单位;a,W,d,S和S定义如上,而y是一个常数其值为y=1.99-2.47a+12.97a-23.7a+24.8a其中a= (a)/(d)在已完成的各试验中,S取1.5吋,S取0.5吋,向上作用力F是用速度为0.002吋/每分钟的十字头施加的。用一台Instron Model 1123试验机来完成断裂模量和断裂韧度二个试验。
还有一个实例是用由10%重量的硅和3%重量的镁掺杂剂掺合到99.7%纯度的铝中作成铝合金,相似地在1150℃,在90目99+%纯度Si C中处理95小时。把生成的带有碳化硅填料的铝-基基质复合材料切割成11cm长1.34cm宽0.45cm厚的条,在条上加25伏约25安培的电流令其自热。用光学高温计观察,在约一分钟内便热到1350℃,在3小时内保持试验条中点在1350℃±20℃,而且从中点到整个11厘米长度的条上温差也为±20℃。电阻加热效应说明了样品条的电导率。整个试验条温度的均匀性说明复合物有良好的均匀性,在三小时之内能保持恒定(1350℃±20℃)能力说明了它的热稳定性。几次快速加热(从室温到1350℃在约一分钟内)再快速冷却而不致使样品破坏说明它有良好的抗热冲击性。
例7用大小为2×9×1/2吋的商品纯1100铝合金板作一样品,涂上4克含氧化镁的酪蛋白(casein slip)以对铝母体金属提供镁掺杂剂。将板包埋在90目98%纯度的碳化硅(Norton Co.37 Crystolon)中,由于复盖在碳化硅颗粒上的二氧化硅层的化学还原将会得到硅掺杂剂。把样品在1200℃的给定温度下作72小时炉循环处理,另加起始5小时将炉子升到给定温度,以及加热期后的另外5小时将样品冷却600℃以便从炉中取出。样品具有0.88的单位重量增益(对碳化硅材料的氧化未作校正)和1.48的锭块重量增益。这就表明了通过对母体金属的外掺杂从商品纯1100铝合金形成了本发明的铝-基基体陶瓷复合结构。
例8为了确定本发明的铝-基陶瓷基体材料向含金属填料空间中的生长效果,用含75%铁,20%铬,和5%铝(Kanthal Co.A-1合金丝)的商品合金丝绕五匝制成1吋高,1 1/4 吋直径的线圈。将此线圈在1200℃在氧气中氧化24小时使在其上生成一层氧化铝的保护表层。用例1中所述的方法,制成一含7%硅和3%镁掺杂剂的1吋直径,7/8吋长的铝合金锭块,并将它和已氧化的线圈同心放置,相隔1/8吋一起包埋在90目99+%纯度的氧化铝颗粒(Norton Company,38 Aumdum)中。将此组合体在使炉温达到给定温度的起始六小时之后,在1200℃的给定温度下处理96小时。再使样品冷却十小时之后,将其从炉中取出。得到的单位重量增益为0.74,锭块重量增益为2.56。观察样品的横切面,看出既有可锻的金属丝相同时还有其中捕获了99+% α-氧化铝颗粒材料的本发明的α-氧化铝为基的陶瓷基质的连结性复合物。这说明当用惰性保护层把其它的不稳定物质或相,从处理环境中隔开时,本发明的方法和材料与固态活性填料之间的兼溶性。
例9为了确定本发明的材料向适当的填料中的二维织物中生长成本发明的复合物的效果,用编织氧化铝陶瓷纤维布(Du Pont Co.F P alumina)来进行这些试验。本例中使用的母体金属是含2.5%镁和约1%(综合总量)的其它金属如铁,铬,硅和铜的商品铝合金(Number 5052)。制造二块2×9×1/2吋的样品并把一块放在另一块上从而构成一个2×9×1吋的母体金属块。样品块的上表面涂盖一层由2~5克二氧化硅掺杂剂和聚乙烯醇粘合剂及水组成的混合物。把锭块平放在一层90目的95%纯度氧化铝耐火颗粒(El Alundum)中,只留下涂过的上表面暴露着。把六层氧化铝布铺在此表面上,每层布的尺寸是3×10吋,用耐火砖碎块固定布的四周边使之松松地定位。把这个装配体放入和例1一样的炉中,在空气中加热到1125℃,180小时。图8是生成的含纤维陶瓷复合材料的横切面的照相,看出织布填料陷在由一部分相互联接的α-氧化铝基体和未氧化金属组成的陶瓷基质中。制造出了用其它材料包括氧化锆布和一种以碳化硅为基的相似的嵌布复合材料。如果陶瓷纤维-基质之间的界面结合不是很强,且母体金属和氧化剂没有侵袭纤维,那么这种复合物能够潜在地具有织物所赋与的,和/或由于材料的韧性增加而导致的很高的二维-使用强度,此处所说的韧性增加是材料内部裂纹缺陷和纤维拉断机理的贡献。
例10为了说明本发明的陶瓷复合物在低于空气的氧化作用的气氛中的形成,实验是在流经热水槽的惰性气体中进行的。在一个实例中,将含有其重量10%的硅和3%的镁的母体金属铝加工成三英寸长,四分之一英寸厚,八分之三英寸宽的棒状,并用纯度99%的500目Si C(Norton39人造碳化硅)环绕在耐热容器中。将其放入加热炉中予热到1200℃,为能进入加热区域要求予热15分钟。该样品上部通过纯度99.998%的氩气,氩气已流经加热到50℃的蒸馏水的槽。在这种情况下,水分用作氧化剂。大约20小时时之后将样品从加热炉取出,测得其单位重量增加为19%,得到了含有碳化硅颗粒的α-氧化铝陶瓷基质复合物。这表明本发明的陶瓷材料能够在低于空气的氧气活性的氧化环境中形成。
例11为了说明陶瓷复合材料依附于氮化铝基质形成,准备一个2英寸×1英寸×1/2英寸的380.1铝(来自Belmont金属公司)的锭块。除了一个1×2英寸的面之外,这个锭块由一层(大约1/8英寸厚)有机粘合的Al N颗粒复盖所有表面。该合金的重量标准组成为8~8.5%的Si,2~3%的Zn和0.1%的活性掺杂剂Mg,以及3.5%的铜和铁、锰和镍,但有时镁的含量高达0.17~0.18%。然后将涂好的锭块放入在耐火坩埚中的24目α-氧化铝的填料床中,未涂复的一面实际上也被填料浸没。将上述体系在耐火炉中在成形气体(96%氮气和4%氢气)的气氛里以1250℃的给定温度加热24小时。
氮化铝基质通过Al N颗粒的薄层生长进入包含氧化铝填料床的空间并形成连结成一体的氮化铝/氧化铝复合材料。在复合材料中氮化铝基质和氧化铝填料的存在可被X-射线粉末衍射实验所证实。
上述样品单位重量增加为0.41。铝全部转化为氮化铝的理论单位重量增加为0.52。于是,在这个实验中取得了铝向氮化铝的良好转化和复合体的良好生长。
例12
准备两种不同的填充材料,它们各自是以20∶80和50∶50的重量百分比率含有氮化铝和氧化铝粉末的混合物。两种填料的筛目尺寸对氮化铝和氧化铝分别是-325和220。在每一种填料中嵌入工业用的380.1铝合金的锭块,该锭块的尺寸是3/4英寸×1/2英寸×1/2英寸。将每一个组合在感应炉中在成形气体(96%氮气和4%氢气)的气氛里以1300℃给定温度加热36小时,成形气体以100cc/min的连率流经加热炉。
从上述每个体系都观察到氮化铝向床填料中生长,从而在氮化铝加上某些未反应的母体金属组分的基质中形成一种氮化铝和氧化铝颗粒的连结复合体。X-射线粉末衍射实验证实了氮化铝和氧化铝在得到的复合材料中的存在。上述样品的单位重量增加列于下表12。
表12Al N基质复合物的重量增加填料 单位重量增加20/80(Al N/Al O) .38550/50(Al N/Al O) .437这个例子进一步说明用Al N-基质生长的复合物。,同时还表明具有多相填料的复合物能够按本发明的过程制得。
例13为了说明进入含有填充材料的空间的氮化锆的生长及因之而生成一种填料和氮化锆基质的复合物,将高度为3/4英寸、直径为1/2英寸的锆的圆柱体嵌入锆的二硼化物粉末(-100+325粒度)填料床中。将该体系在感应炉中在成形气体(组成同例11)里以稍超过2000℃的给定温度用直接接触锆的方法加热15分钟,气体流速为400cc/min。
其结果生长进入含有锆的二硼化物填充材料的空间是锆的氮化物,并因此获得氮化锆/锆的二硼化物的连结为一体的复合材料。X-射线粉末衍射实验证实了在得到的复合材料中氮化锆和锆的二硼化物的存在。
除了氮化锆长入含有氮化锆粉末(1~5μm的粒度)的空间,和作为氧化气氛的成形气体流速为200cc/min之外,重复上述过程。其结果是氮化锆基质长入氮化锆填料,并因此获得连结为一体的氮化锆/氮化锆复合材料。X-修饰粉末衍射证实了最终产物中氮化锆组分的存在。
例14为了说明进入含有填充材料的空间的氮化钛的生长及因之产生填料与氮化钛基质的复合物,将高度为3/4英寸、直径为1/2英寸的钛的圆柱形锭块嵌入氧化铝填料床中(38铝氧粉,90目)。将上述体系在感应炉中在成形气体(组成同例11)里以大约2000℃的给定温度用直接接触钛的方法加热2.5小时,气体流速为400cc/min。
从上述体系观察到进入含氧化铝空间的氮化钛的生长,得到连结成一体的氮化钛/氧化铝复合材料。对上述复合材料进行X-射线粉末衍射分析证实了氮化钛,氧化铝和微量金属钛的存在。
除了用钛的氮化物粉末作为填料之外,重复上述过程。该反应在稍超过2000℃的给锭温度下进行20分钟。
上述过程产生连结的氮化钛/氮化钛复合材料。X-射线粉末衍射分析证实了复合物中氮化钛成分的存在。
除了用钛的二硼化物粉末代替作为填充材料和用纯氮作为氧化气氛之外,将上述过程再次重复。该反应进行10分钟,氮气流速为600cc/min。
X-射线粉末衍射分析证实所获得的连结复合物由氮化钛和钛的二硼化物组成。
例15为了说明利用不同于例6的Al/Mg/Si合金的母体铝合金生长进入精细的碳化硅填料的α-氧化铝陶瓷基质,将19英寸×2英寸×1/2英寸的工业用380.1铝合金片嵌入碳化硅填料床(Norton 39人造碳化硅,粒度500目)。将该体系在耐火炉中在空气里加热到1000℃的给定温度75小时。
在这个体系中,进入碳化硅的α-氧化铝的生长,导致了在含有氧化铝和微量未反应的母体合金组分的基质中含有碳化硅颗粒的连结复合材料的形成。
对所获得的复合物进行X-射线粉末衍射分析,证实了α-氧化铝和碳化硅的存在。上述体系的单位重量增加为0.478,它表明进入碳化硅填料的铝母体实际上已氧化。
例16为了说明含有氧化锆的复合填充材料的应用,用本发明的方法使α-氧化铝长入工业用Norton ZF Alundum,一种含氧化铝和氧化锆的研磨用颗粒材料的空间。在这个说明中,将一长1英寸直径7/8英寸的工业用380.1铝的圆柱形锭块嵌入上述氧化铝-氧化锆填料床中。将该体系在耐火炉中,在空气里加热到1000℃的反应给定温度95个小时。
进入氧化铝-氧化锆空间的α-氧化铝氧化反应产物的生长,导致了一种连结的α-氧化铝/氧化锆复合材料的形成,在该复合材料中,ZF材料被俘获在按本发明的过程形成的α-氧化铝基质中。
对所获得的复合材料进行X-射线粉末衍射分析,证实了α-氧化铝和氧化锆的存在。上述体系的重量增加比率为0.32,它表明进入氧化锆/氧化铝填料的铝母体实质上已氧化。
除了用氧化锆粉末(Muscle Shoals,被氧化钙所稳定,-30目)代替上述填充材料之外,重复上述过程。进入含氧化锆空间的铝锭块实质上发生氧化,产生连结为一体的α-氧化铝/氧化锆复合材料,同样被X-射线粉末衍射分析证实。
例17为了说明进入含氧化铝颗粒(-75+100目)的空间的锡的氧化物基质的生长,及由此产生一种二氧化锡/氧化铝复合材料,将一高为2cm,直径为3cm和圆柱体锭块嵌入氧化铝填料床中。将该体系在空气中加热到1100℃的设定温度48小时。
锡被氧化并生长成进入铝填料的陶瓷基质,导致了连结为一体的二氧化锡/氧化铝复合材料的生成。X-射线粉末衍射分析证实了在所获得的材料中二氧化锡和α-氧化铝的存在。
与二氧化锡的理论重量增加0.27相比上述体系单位重量增加为0.28,因此可以说进入α-氧化铝的锡母体基本上完全氧化。
例18为了说明进入氧化铝“泡”(即空心氧化铝体,Norton,E163 Alundum,4到28目)填充材料的α-氧化铝基质在不同反应温度下的生长,将长1英寸直径7/8英寸的不同铝合金圆柱体锭块分别嵌入上述填充材料床中,有时表面掺杂。使这些合金在空气中,在950~1250℃的给定温度范围内进行反应,反应时间分别为48和80小时。上述体系的单位重量增加,按各自的反应时间,分别列于表18(a)和18(b)。
表18(a)48小时的单位重量增加Al 合金 外部掺杂物 反应温度(℃)950 1050 1150 12502.5% Mg 140 磨料 Si O .01 - .58 .286% Zn+无 .63 .67 .70 .6510% Si3% Zn+无 .04 .12 .72 .747% Mg6% Zn Mg O粉末 .73 .70 .71 .71表18(b)80小时的单位重量增加
Al 合金 外部掺杂物 反应温度(℃)950 1050 1150 12502.5% Mg 140 磨料 Si O .02 .52 .66 .586% Zn+无 .63 .67 .68 .6310% Si3% Zn+无 .04 .26 .74 .727% Mg6% Zn Mg O粉末 .60 .72 .68 .7110% Si+无 .07 .71 .71 .753% Mg380.1 无 .65 .69 .69 .13表18(a)和18(b)的数据和样品的检验证实按本方法的过程形成复合物,并且每一复合物都具有α-氧化铝基质和氧化铝泡状填充材料。
例19为了说明含有氮化硅基质的复合材料的形成,将10.70g纯度98.4%的硅片浸没在含有90%(重量)氮化钛粉末(-325目)和10%(重量)金属钛(加入钛是为了增加熔融硅浸润)的填料中,把该体系在流速为600cc/min的成形气体气氛中加热到1500℃的反应温度30分钟。
X-射线粉末衍射分析和对按上述步骤取得的样品的检验证明氮化钛填料的存在,氮化硅的形成和填料中的金属钛向氮化钛的转化。样品的陶瓷图形和X-射线能量分布分析表明具有氮化硅基的连结的复合材料的形成。
例20为了说明与碳化硅陶瓷纤维结合的α-氧化铝基质复合材料的形成,将两根工业380.1铝棒,每一根为9英寸×2英寸×1/2英寸,一个迭在另一个上面,并放入氧化铝颗粒(El铝氧粉,90目)的耐火填料床里,并使上面棒的9×2英寸的表面暴露,并且基本上陷入氧化铝床。将一薄层碳化硅颗粒(Norton 39人造碳化硅,220目)施加于暴露的铝表面,在这一层的上面再放入5层尼卡隆(Nicalon)碳化硅纤维布(Nippon碳公司制造),它们各自被一薄层上述碳化硅颗粒隔开。将上述体系在空气中加热到1000℃的给定温度75小时。
上述过程产生一种具有α-氧化铝基质的连结复合材料,该基质交替地嵌入碳化硅颗粒层和碳化硅纤维布层,而且不影响纤维织物和所布置的排列。图9是上例中产生的复合材料的显微照相。
例21为了说明嵌入一种由钛酸钡颗粒构成的填充材料的α-氧化铝基质的复合材料的形成,将工业用712铝的圆柱体锭块浸没在耐火炉的Ba Ti O3颗粒填料床中,该锭块高为1英寸直径为7/8英寸,712铝是熔入10%硅的合金。将锭块、填料床和坩埚一起放进耐火炉,在空气中加热到1100℃的给定温度95小时。
上述体系的单位重量增加为0.71,它证明铝锭块基本转化为α-氧化铝基质。对所获得的复合材料进行的X-射线粉末衍射分析说明了α-氧化铝基质,Ba Ti O3,硅,以及各种被氧化的和没有被氧化的从712合金出来的组分的存在。
上述实例说明钛酸钡填充材料结合α-氧化铝基质,并因此产生一种连结的复合物。
虽然上面详细地阐述的仅仅是本发明的几个典型的具体实例,但是精通工艺的人很快就会体会本发明还有许多不同于举例的变化。
权利要求
1.一种生产适用于或能加工成商业制品的自供陶瓷复合结构的方法,该陶瓷复合结构包含(1)一种由母体金属氧化形成多晶物质而得到陶瓷基质,该多晶物质实质上是由(i)上述母体金属与气相氧化剂的氧化反应产物和选择性的(ii)一种或多种金属组分构成;(2)一种或多种被上述基质嵌入的填料,本方法的步骤为(a)放置上述母体金属与填料的可渗透实体相毗邻,并且固定上述母体金属和上述填料的相互方法,使上述氧化反应产物的形成在朝着或进入上述填料实体的方向出现;(b)将上述母体金属加热到高于其熔点而低于上述氧化反应产物熔点的某一温度,以形成母体金属的熔融体;使熔融的母体金属与上述氧化剂在上述温度进行反应,以形成上述氧化反应产物,以及在上述温度下保持至少部分上述氧化反应产物接触并在上述母体金属熔融体和氧化剂之间扩展,使熔融金属能够通过氧化反应产物向氧化剂和向进入邻接的填料实体抽吸,这就使得在氧化剂和先前形成的氧化反应产物的界面的填料物质之中继续形成氧化反应产物,并且将上述反应继续足够长的一般时间以使至少一部分填料嵌入所述多晶材料之中。
2.权利要求
1的方法,其中母体金属选择于由钛、锆、硅和锡组成的系列。
3.权利要求
1的方法,其中上述母体金属包括铝。
4.权利要求
1,2或3的方法,其中包括以至少一种掺杂剂掺加上述母体金属。
5.权利要求
4的方法,其中上述掺杂剂选自由镁、锌、硅、锗、锡、铅、硼、钠、锂、钙、磷、钇和稀土金属所组成的系列中的一种或多种。
6.权利要求
1,2或3的方法,其中包括至少两种掺杂剂的混合物掺加上述母体金属。
7.权利要求
6的方法,其中上述掺杂剂由镁和锌中一种或两种的源,加上硅、铅、锡、锗、钠、锂、钙、硼、磷、钇和稀土金属中的一种或多种源所组成。
8.权利要求
7的方法,其中上述母体金属包括铝,上述掺杂剂包括镁源和硅源。
9.权利要求
4的方法,其中至少有一种掺杂剂熔进该母体金属。
10.权利要求
4的方法,其中至少有一种掺杂剂作为上述母体金属表面的一层掺杂剂被施用,并且包括形成实际上超过所应用的掺杂剂层厚度的氧化反应产物。
11.权利要求
4的方法,其中包括将至少一种掺杂剂掺入至少一部分上述填料。
12.权利要求
11的方法,其中包括将至少是第二种掺杂剂与上述母体金属相熔或施用到上述母体金属的表面,或者二者兼有。
13.权利要求
11的方法,其中上述母体金属包括铝。
14.权利要求
12或13的方法,其中上述掺杂剂由镁锌中的一种或两种源,加上硅、铅、锗、钠、锂、钙、硼、磷、钇和稀土金属的一种或多种源所组成。
15.权利要求
1或5的方法,其中上述氧化剂选择自由含氧气体、含氮气体,囟素、硫、磷、砷、碳、硼、硒、蹄、H2/H2O混合物、甲烷、乙烷、丙烷、乙炔、乙烯、丙烯和CO/CO2混合物,或者它们的化合物或混合物所组成的系列。
16.权利要求
4的方法其中上述氧化剂选择自由含氧气体、含氮气体、囟素、硫、磷、砷、碳、硼、硒、蹄、H2/H2O混合物、甲烷、乙烷、丙烷、乙炔、乙烯丙烯和CO/CO2化合物,或者它们的化合物或混合物所组成的系列。
17.权利要求
12或13的方法,其中上述氧化剂是常压空气。
18.权利要求
4的方法,其中上述母体金属是铝,上述气相氧化剂是空气,上述氧化反应产物是α-氧化铝以及上述掺杂剂选择自由镁、锌、硅、铅、锡、锗、钠、锂、钙、硼、磷、钇和一种或多种稀土金属及它们的混合物所组成的系列。
19.权利要求
1、5或6的方法,其中上述母体金属是铝、上述气相氧化剂是含氮气体及上述氧化反应产物是氮化铝。
20.权利要求
1的方法,其中上述母体金属是锆、上述气相氧化剂是含氮气体及上述氧化反应产物是氮化锆。
21.权利要求
1的方法,其中上述母体金属是钛、上述气相氧化剂是含氮气体及上述氧化反应产物是氮化钛。
22.权利要求
1的方法,其中上述母体金属是锡,上述氧化剂是含氧气体及上述氧化反应产物是锡的氧化物。
23.权利要求
1的方法,其中上述氧化反应产物选择自由氧化物、氮化物、碳化物、硼化物、或者氮氧化合物所组成的系列。
24.权利要求
3的方法,其中上述温度是从大约850℃到1450℃,并且本方法包括以至少一种掺杂剂掺加上述母体金属。
25.权利要求
24的方法,其中上述气相氧化剂是空气及上述氧化反应产物是α氧化铝。
26.权利要求
1、2或3的方法,其中上述填料是在上述温度下对上述氧化剂基本热力学稳定的物质,或者是产自上述氧化反应的物质。
27.权利要求
1、2或3的方法,其中上述填料含有一种金属的一种或多种单一的氧化物,这种金属选择自由铝、铈、铪、镧、钕、镨、钐、钪、钍、钇和锆所组成的系列。
28.权利要求
1、2或3的方法,其中上述填料是二元的、三元的,或者更高数目的金属氧化物。
29.权利要求
28的方法,其中上述金属氧化物是铝酸镁尖晶石二元氧化物。
30.权利要求
1或3的方法,其中上述填料由碳纤维和碳颗粒中的一种或二者组成。
31.权利要求
1的方法,其中上述母体金属是铝,上述气相氧化剂是含氧气体,及上述氧化反应产物是氧化铝。
32.权利要求
1的方法,其中上述母体金属是硅,上述气相氧化剂是含碳化合物的气体,及上述氧化反应产物是碳化硅。
33.权利要求
1的方法,其中上述母体金属是硅,上述气相氧化剂是含氮气体,及上述氧化反应产物是氮化硅。
34.权利要求
1、2或3的方法,其中上述填料包括选择自由氧化铝,碳化硅,硅铝氧氮化合物,氧化锆,硼化锆,氮化钛、钛酸钡,氮化硼,氮化硅,铁-铬合金,铝,以及它们的混合物所组成的系列。
35.权利要求
34的方法,其中包括以至少一种掺加剂掺加上述母体金属。
36.权利要求
1、2、3、18、19、20、21、22、23、24或25的方法,其中上述填料包括选择自由空洞体、颗粒、粉末、纤维、晶须、泡体、球体、钢化毛制品、薄板、聚集体、丝、棒、杆、薄片、压丸、管、耐热纤维织物,细管,或它们的混合体所组成的系列。
37.权利要求
3或6的方法,其中填料包括碳化硅,其温度范围的低端大约为850℃。
38.权利要求
34的方法,其中上述填料包括一种耐火纤维织物或碳纤维。
39.权利要求
4的方法,其中上述母体金属是铝及上述多晶物质还包括尖晶石的原始表面,尖晶石是作为上述母体金属、掺杂剂和氧化剂的氧化反应产物形成的。
40.一种由陶瓷基质和结合在该基质中的填料组成的,适用于或适于加工成商业制品的自身提供的陶瓷复合物,上述基质含有基本上一相的多晶氧化反应产物和金属通道或空隙或两者皆有,其特征是在氧化反应产物微晶晶界处的晶格失配小于在那些具有面形金属通道或面形空隙或两者皆有的,相邻的氧化反应产物微晶之间的晶格失配,这些通道或空隙分布于上述相邻的微晶之间。
41.权利要求
38的复合结构,其中基本上所有上述晶界都具有大约小于5度的角度失配。
42.一种其中嵌入填料的陶瓷基质组成的,适合用于或适合用于加工成商品制件的自身提供的陶瓷复合物,上述基质含有基本上一相的微晶互相连接的多晶氧化反应产物,它是在低于上述氧化反应产物的熔点的温度下在熔融金属母体的氧化反应中形成的,在上述复合物中含有较小体积的母体金属或空穴或二者兼有,而其中在微晶和末被氧化的金属之间和/或在微晶和空穴之间,弧形界面边界实际上起主要作用。
43.一种其中嵌入填料的陶瓷基质组成的,适合用于或适用于加工成商品制件的自身提供的陶瓷复合物,其中上述基质是在熔融的母体金属与气相氧化剂的氧化反应中形成的,它基本上是由多晶氧化反应产物和选择性的一种或多种金属组分和/或空穴所组成,其特征在于本质上是一相的互相连接的陶瓷基质骨架结构,其中上述陶瓷骨架结构的晶粒界面没有其它相存在。
44.一种其中嵌入填料的陶瓷基质组成的适合用于或者适用于加工成商品制件的自身提供的陶瓷复合物,该陶瓷基质本质上由单相多晶的,互相连结的、无机的、非金属的骨架结构所构成,其特征是骨架结构晶粒界面处无任何其它相,且该基质还含有由上述骨架结构分散的金属本身和/或空穴,这些金属和/或空穴互相交连或者隔离,或者二者兼有。
45.一种其中嵌入填料的陶瓷基质组成的,适用于或适用于加工成商品制件的自身提供的陶瓷复合物,上述基质本质上由单相的、多晶的,互相连接的、无机的、非金属骨架结构,以及包含的金属本身和/或空穴所组成,金属和/或空穴由骨架结构分散成相互交连和/或隔离的状态,并且在骨架结构中表现出内部颗粒断裂的性质。
46.权利要求
40、41、42、43、44或45的复合物,其中至少包括占体积1%的金属。
47.权利要求
40、41、42、43、44或45的复合物,其中上述复合物含有一种或多种主要以互相连结的排列方式充分分散的金属。
48.权利要求
40、41、42、43、44或45的复合物,其中上述复合物含有一种或多种以基本上非互相连结的包含物的形式充分分散的金属。
49.权利要求
40、41、42、43、44或45的复合物,其中上述复合物含有至少占体积1%的或是主要以互相连结的排列,或是以基本上非互相连结的包含物的形式充分分散的空穴。
50.权利要求
40、41、42、43、44或45的复合物,其中上述金属的母体是铝和上述氧化反应产物是α-氧化铝。
51.权利要求
40、42、43、44或45的复合物,其中上述金属母体是铝和上述氧化反应产物是氮化铝。
52.权利要求
40、43、44或45的复合物,其中上述金属母体是钛和上述氧化反应产物是氮化钛。
53.权利要求
40、43、44或45的复合物,其中上述金属母体是硅和上述氧化反应产物是碳化硅。
54.权利要求
40、43、44或45的复合物,其中上述氧化反应产物选自由氧化物,氮化物、碳化物、硼化物和氮氧化物组成的系列。
55.权利要求
40、43、44或45的复合物,其中上述氧化反应产物选择自由氧化铝、碳化硅、铝的氮氧化物、硼化锆、氮化钛、氮化硅、氮化锆、硼化钛、硼化硅、碳化铪、硼化铪、碳化钛、氧化锡、氮化铝和硼化铝所组成的系列。
56.权利要求
40、43、44或45的复合物,其中上述金属陶瓷是锆和上述氧化反应产物是氮化锆。
57.权利要求
40、43、44或45的复合物,其中上述金属母体是锡和上述氧化反应产物是氧化锡。
58.权利要求
40、43、44或45的复合物,其中上述金属母体是硅和上述氧化反应产物是氮化硅。
59.一种由占复合物总体积大约5%到98%的一种或多种填充材料和上述基质所组成致密的、连结为一体的陶瓷复合物,该填料被包含在陶瓷基体之内,该陶瓷基体含有占其总重量大约60%到99%的互相连接的氧化铝和大约1%到40%的含铝金属组分,上述基质含有小于其重量30%的铝酸镁尖晶石初始表面层。
60.权利要求
59的一种陶瓷复合物,其中上述填料选择自由空洞体、颗粒、粉末、纤维、晶体、泡体、钢化毛制品、薄板、聚集体、丝、棒、杆、薄片、压丸、管、耐火纤维织物,细管或它们的混合物所组成的系列。
61.一种含有占复合物总体积大约5%到98%的一种或多种填充材料组成的致密的、连结为一体的陶瓷复合物,该填料包含在陶瓷基质之内,该陶瓷基质含有占其总重量大约60%到99%的互相连接的氮化铝和大约1%到40%的含铝金属组分。
62.权利要求
61的一种陶瓷复合物,其中上述填料选自由空洞体、颗粒、粉末、纤维、晶须、球体、泡体、钢化毛品制品、薄板、聚集体、丝、棒、杆、薄片、压丸、管、耐热纤维织物、细管,或它们的混合体所组成的系列。
63.一种适用于或适用于加工成商品制件的复合物,它由(a)一种单相的、三维交连的陶瓷基质;(b)通过该基质分散和/或延伸的一种或多种金属组分和/或空穴;和(c)一种或多种嵌入该基质的填料所组成,其中上述陶瓷基体是氮化物。
64.一种适用于或者适用于加工成商品制件的复合物,它由(a)一种一相的,三维交连的陶瓷基质;(b)通过该基质分散和/或延伸的一种或多种金属组分和/或空穴;和(c)一种或多种嵌入该基质的填料所组成,其中上述陶瓷基质选自由氮化铝,氮化锆,氮化钛和氮化硅所组成的系列。
65.权利要求
63或64的复合物,其中上述填料由空洞体、颗粒、粉末、纤维、晶须、球体、泡体、钢化毛制品、薄板、聚集体、丝、棒、杆、薄片、压丸、管、耐热纤维织物,细管或者它们的混合物所组成。
专利摘要
制造具有嵌入填料的自身提供陶瓷复合结构的方法,它包括以多晶物质渗入填料的过程。该多晶物质含有母体金属(象铝)的氧化反应产物,并可能含有金属组分。通过母体金属与填料接触并加热使母体金属熔化而提供金属熔融体,使该熔融体保持与气相氧化剂接触,在一定的温度,并在母体金属内部或其上选择施加掺杂剂,熔融金属将通过先形成的氧化反应产物进行迁移,与氧化剂接触,使反应产物生长,以便嵌入相邻的填料而提供复合结构。
文档编号C04B35/74GK86101293SQ86101293
公开日1987年2月11日 申请日期1986年2月4日
发明者马克·史蒂芬·纽基克, 哈利·R·茨威克, 恩德里·W·尤尔奎哈特 申请人:兰克西敦公司导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1