制备阿扎那韦硫酸氢盐的方法和新的形式的制作方法

文档序号:3475689阅读:251来源:国知局
专利名称:制备阿扎那韦硫酸氢盐的方法和新的形式的制作方法
技术领域
本发明涉及制备HIV蛋白酶抑制剂阿扎那韦(atazanavir)硫酸氢盐的方法及其新的形式。
背景技术
授予Fssler等的美国专利5,849,911号公开一系列氮杂肽HIV蛋白酶抑制剂(包括阿扎那韦),其结构为 其中R1是低级烷氧基羰基,R2是仲或叔低级烷基或低级烷硫基-低级烷基,R3是未被取代或被一个或多个低级烷氧基基团取代的苯基,或C4-C8环烷基,R4是苯基或环己基,各自在4-位被通过环碳原子结合的不饱和杂环基取代,所述杂环基具有5至8个环原子,包含1至4个选自氮、氧、硫、亚磺酰基(-SO-)和磺酰基(-SO2-)的杂原子且未被取代或被低级烷基或被苯基-低级烷基取代,
R5,独立于R2,具有对R2提及的含义之一,且R6,独立于R1,是低级烷氧基羰基或其盐,前提是至少存在一种成盐基团,包括其各种药学上可接受的酸加成盐。
提供几种制备氮杂肽的方法,包括制备其中R1和R6及R2和R5各自是两种相同基团的化合物,其中将下式结构的二氨基化合物(a) 与下式结构的酸(b) 或其活性酸衍生物稠合,其中R1和R2分别如R1和R6以及R2和R5的定义。
用上述方法形成阿扎那韦时,具有下式结构的二氨基化合物(a) 的制备如下使环氧化物 与肼基氨基甲酸盐
在异丙醇的存在下偶合,形成受保护的二胺 将其用盐酸在溶剂例如四氢呋喃的存在下处理,形成二胺(a) 将二胺离析用于下一偶合步骤,在该步骤中其与酸(b) 或其活性酯反应,其中所用偶合剂为例如O-(1,2-二氢-2-氧代-1-吡啶基)-N,N,N’,N’-四甲基脲-四氟-硼酸盐(TPTU)。
业已发现二胺游离碱不稳定,因此用于制备阿扎那韦的游离碱并不理想。
授予Singh等的美国专利6,087,383号公开了称为阿扎那韦的氮杂肽HIV蛋白酶抑制剂的硫酸氢盐,其结构为
(也称为阿扎那韦硫酸氢盐或阿扎那韦硫酸盐)。
Singh等的实施例3描述了阿扎那韦硫酸氢盐II型晶体(水合吸湿晶形)和I型晶体(以乎是无水/去溶剂化晶形)的制备。
发明简述根据本发明,提供新形式的阿扎那韦硫酸氢盐,包括C模式(Pattern C)物质和E3形。优选C模式物质。
此外,根据本发明,提供制备A形晶体形式的阿扎那韦硫酸氢盐(主体药物)(在授予Singh等的美国专利6,087,383号的实施例3中称为I型晶体)的方法。通过本发明方法制备的A形晶体具有所需的基本上一致的粒度分布和基本上一致的平均粒度,并用于转化为C模式物质(一种部分结晶物质),将其与各种赋形剂配制以制备药品。
本发明制备阿扎那韦硫酸氢盐A形晶体的方法运用改良的三次结晶技术,其中根据三次方程以增加的速率加入硫酸(如下所述),包括的步骤有使阿扎那韦游离碱在有机溶剂(其中阿扎那韦硫酸氢盐基本上是不溶的)中的溶液与第一部分浓硫酸反应,浓硫酸的量使其与少于约15%、优选少于约12%重量的阿扎那韦游离碱反应,将阿扎那韦硫酸氢盐A形晶体晶种加入至反应混合物中,当阿扎那韦硫酸氢盐晶体形成时,根据三次方程以增加的速率分多个阶段加入另外的浓硫酸,以有效形成A形晶体。
此外,根据本发明,提供制备来源于且包括阿扎那韦硫酸氢盐并称为C模式物质的阿扎那韦形式的方法。可通过将A形晶体悬浮于水中并干燥得到C模式。或者,可通过使A形晶体处于大于约95%RH(水蒸气)的高相对湿度中至少24小时,形成C模式物质。也可通过将阿扎那韦硫酸氢盐或阿扎那韦硫酸氢盐和赋形剂的组合湿法制粒并将湿颗粒干燥,形成C模式物质。
在优选实施方案中,使A形晶体与配制用赋形剂例如一种或多种填充剂(例如乳糖)、一种或多种崩解剂(例如交聚维酮)混合,并湿法制粒,直接形成与赋形剂混合的C模式物质。
根据本发明,还提供一种新形式的阿扎那韦硫酸氢盐(称为E3形),是阿扎那韦硫酸氢盐的三乙醇溶剂合物的高度晶形。
E3形的制备如下形成阿扎那韦游离碱在乙醇中的浆料,用浓硫酸处理浆料,加热并将乙醇湿E3晶体接种至生成的溶液内,用庚烷(或其它溶剂例如甲苯或己烷)处理混合物,过滤并干燥。
根据本发明,还提供制备阿扎那韦硫酸氢盐A形晶体的方法,包括下列步骤制备下式结构的三胺盐(优选HCl(3摩尔)盐) 不离析三胺盐,使三胺盐与活性酯、优选具有下式结构的活性酯 在碱和有机溶剂的存在下进行反应,形成阿扎那韦游离碱,不用离析,通过本文描述的改良三次结晶技术(cubic crystallization technique)将其转化为阿扎那韦硫酸氢盐。
此外,根据本发明,提供新的阿扎那韦硫酸氢盐组合物,包括阿扎那韦硫酸氢盐A形晶体或C模式物质,及其药学上可接受的载体。药学上可接受的载体可包括填充剂、粘合剂、崩解剂、润滑剂及其它常规赋形剂。
可用操作已为本领域技术人员熟知的各种技术,表征根据本发明的各种形式阿扎那韦硫酸氢盐。可用单晶X射线衍射鉴定和区分各晶形,单晶X射线衍射基于固定分析温度下对一种形式单晶的晶胞测定。有关晶胞的详细描述可参阅Stout & Jensen,X-Ray StructureDeterminationA Practical Guide,Macmillan Co.,New York(1968),第3章,其在此引入作为参考。或者,可根据实测的部分原子坐标(fractional atomic coordinates),表征晶格内空间关系中原子的独特排列。另一种表征晶体结构的方法是通过粉末X射线衍射分析,将实验或实测的衍射图与代表纯粉末材料的模拟图比较,两者都在相同分析温度下进行,所述形式的测量值以一系列2θ值表示。
可用其它鉴定晶形的方法,例如固态核磁共振(SSNMR)、差示扫描量热法(DSC)和热重量分析(TGA)。可联合使用这些参数表征所述晶形。
A形晶体可用基本上如下的晶胞参数表征晶胞大小a=9.86(5)b=29.245(6)c=8.327(2)α=93.56(2)°β=114.77(3)°γ=80.49(3)°空间群1分子/不对称单元2其中晶形在约+22℃。
A形的部分原子坐标特征可基本上如表3列举,晶体结构特征基本上如图2显示。
A形的模拟和实测粉末X射线衍射图表征可基本上如

图1显示。
A形的差示扫描量热(DSC)热分析图特征可基本上如图3显示,其中吸热峰在约165.6℃开始。
A形的热重量分析(TGA)曲线特征可基本上如图4显示,在至高约100℃至150℃有可忽略不计的重量损失。
A形的固态NMR(SSNMR)化学位移特征可基本上如表4显示,波谱特征基本上如图5显示。
A形的部分原子坐标特征可基本上如表5列举。
A形盐的吸湿等温线的特征是在25℃从25至75%RH范围内重量增加约0.1%。
在本发明一方面,C模式的实测粉末X射线衍射图特征可基本上如图5显示。
在本发明的不同方面,C模式的差示扫描量热热分析图特征基本上如图7显示,通常在约76.7至约96.6℃和约156.8至约165.9℃范围内有吸热。
在本发明的不同方面,C模式的热重量分析曲线表征基本上如图8显示,在约125℃重量损失约2.4%和在至高约190℃重量损失约4.4%。
根据本发明,E3形的晶体学数据特征,如表5显示,基本上如下a=10.749b=13.450(4)c=9.250(2)α=98.33(2)°β=95.92(3)°γ=102.82(3)°空间群P1分子/不对称单元1其中晶形在约-23℃。
在本发明的不同方面,E3形的部分原子坐标特征基本上如表6列举。
在本发明的不同方面,E3形的模拟和实测粉末X射线衍射图特征可基本上如图9显示。
在本发明的不同方面,E3形的差示扫描量热热分析图特征基本上如图11显示,通常在约89.4至约96.6℃范围内有吸热。
在本发明的不同方面,E3形的热重量分析曲线特征基本上如表8显示,在约150℃重量损失约14.7%。
在本发明的不同方面,E3形的晶体结构特征基本上如图10显示。
附图概述图1显示A形的计算(模拟)(22℃)和实测(在室温实验)粉末X射线衍射图(CuKαλ=1.5418);图2显示A形的晶体结构;图3显示A形的差示扫描量热(DSC)热分析图;图4显示A形的热重量分析曲线(TGA);图5显示A形的C-13固态NMR;图6显示C模式的实测(在室温实验)粉末X射线衍射图(CuKαλ=1.5418);图7显示C模式的差示扫描量热热分析图;图8显示C模式的热重量分析曲线;图9显示E3形的计算(模拟)(22℃)和实测(在室温实验)粉末X射线衍射图(CuKαλ=1.5418);图10显示E3形的晶体结构;和图11显示E3形的差示扫描量热(DSC)热分析图,以及E3形的热重量分析曲线。
发明详述本发明至少部分是提供阿扎那韦硫酸氢盐形式的新材料,称为E3形和C模式,特别是药学上可接受的形式。术语“药学上可接受的”在此处是指那些化合物、材料、组合物和/或剂型,其在合理医学判断范围内,适合接触人和动物的组织,无过量毒性、刺激性、过敏反应或其它问题并发症,而具有合理的利益/危险比率。在某些优选实施方案中,游离碱I及其盐的晶形基本上是纯形式。术语“基本纯的”在此处是指纯度大于约90%的化合物,包括例如纯度约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、约99%和约100%的化合物。
“多晶型”在此处是指具有相同化学组成但形成晶体的分子、原子和/或离子的空间排列不同的晶形。
“溶剂合物”在此处是指还包含掺入到晶体结构中的一种或多种溶剂分子的分子、原子和/或离子的晶形。溶剂合物中的溶剂分子可处于规则排列和/或无序排列。溶剂合物可包含化学计量或非化学计量量的溶剂分子。例如,含非化学计量量溶剂分子的溶剂合物可能来自溶剂合物中溶剂的部分丧失。
可提供基本上纯相均匀性的晶形样品,表明存在优势量单一晶形和任选少量一种或多种其它晶形。可用例如粉末X射线衍射(PXRD)或固态核磁共振波谱法(SSNMR)的技术确定样品中存在一种以上晶形。例如,实验测定的PXRD图与模拟PXRD图比较时存在附加峰可提示样品中存在不止一种晶形。模拟PXRD可用单晶X射线数据计算,见Smith,D.K.,“AFORTRAN Program for Calculating X-RayPowder Diffraction Patterns,”Lawrence Radiation Laboratory,Livermore,California,UCRL-7196(1963年4月)。优选在实验测定的PXRD图中少于10%、优选少于5%且更优选少于2%总峰面积来自在模拟PXRD图中不存在的附加峰,表明晶形具有基本上纯相均匀性。最优选具有基本上纯相均匀性的晶形,其中在实验测定的PXRD图中少于1%总峰面积来自在模拟PXRD图中不存在的附加峰。
本领域已知制备晶形的步骤。可通过各种方法制备晶形,包括例如从合适溶剂中结晶或再结晶、升华、从熔体生长、从另一相固态转换、从超临界流体中结晶以及射流喷雾。从溶剂混合物中使晶形结晶或再结晶的技术包括例如蒸发溶剂、降低溶剂混合物温度、向分子和/或盐的超饱和溶剂混合物中引入晶种、将溶剂混合物冷冻干燥以及将抗溶剂(反萃溶剂)加入溶剂混合物中。
包括多晶型在内的药物晶体、制备方法以及药物晶体的特征描述于Solid-State Chemistry of Drugs,S.R.Byrn,R.R.Pfeiffer和J.G.Stowell,第2版,SSCI,West Lafayette,Indiana(1999)。
对于使用溶剂的结晶技术,一种或多种溶剂的选择通常取决于一种或多种因素,例如化合物的溶解度、结晶技术以及溶剂的蒸汽压。溶剂可联合使用,例如可将化合物溶于第一种溶剂得到溶液,接着加入抗溶剂降低该化合物在溶液中的溶解度以形成晶体。抗溶剂是化合物在其中溶解度低的溶剂。用于制备晶体的合适溶剂包括极性和非极性溶剂。
在一种制备晶体的方法中,使阿扎那韦硫酸氢盐悬浮于和/或在合适溶剂中搅拌得到浆料,可将其加热以促进溶解。术语“浆料”在此处是指阿扎那韦硫酸氢盐或其盐的饱和溶液,也可包含附加量阿扎那韦硫酸氢盐或其盐以得到阿扎那韦硫酸氢盐或其盐和溶剂在指定温度下的均匀混合物。在这方面合适的溶剂包括例如极性非质子溶剂和极性质子溶剂以及本文描述的两种或更多种溶剂的混合物。
可将晶种加入任何结晶混合物以促进结晶。正如技术人员应清楚的,放入晶种用作控制特定晶形生长的方法或控制晶体产物粒度分布的方法。因此,所需晶种量的计算取决于可获得的晶种大小和需要的平均产物颗粒大小,例如描述于“Programmed cooling of batchcrystallizers,”J.W.Mullin和J.Nyvlt,Chemical Engineering Science(1971)26369-377。通常,需要小尺寸晶种来有效控制批料中晶体的生长。可通过筛分、研磨或使较大晶体微粉化,或通过溶液的微结晶产生小尺寸晶种。应当注意晶体的研磨或微粉化不要引起所需晶形结晶形式的任何变化(即变成非晶态或另一种多晶型)。
可真空过滤冷却的混合物,可用合适溶剂(例如冷的再结晶溶剂)洗涤离析的固体,在氮气吹扫下干燥得到所需晶形。可通过合适的波谱法或分析技术(例如SSNMR、DSC、PXRD等)分析离析的固体,以确保形成产物的优选晶形。通常获得的晶形产量大于离析产量的约70%重量,但优选大于开始用于结晶步骤中的阿扎那韦硫酸氢盐重量的90%重量。如果需要,可将产物共研磨或通过网筛使产物块分开。
晶形可直接从制备阿扎那韦硫酸氢盐的终步骤反应介质中制备。例如,这可通过在终步骤中使用阿扎那韦硫酸氢盐可从中结晶的溶剂或溶剂混合物来实现。或者,晶形可通过蒸馏或溶剂添加技术获得。实现该目的的合适溶剂包括本文描述的那些溶剂,包括质子极性溶剂(例如醇)和非质子极性溶剂(例如酮)。
作为一般性指导,可将反应混合物过滤以除去任何不需要的杂质、无机盐等,然后用反应或结晶溶剂洗涤。可将生成的溶液浓缩以除去过量溶剂或气体组分。如果用蒸馏,则最后收集的馏出物的量可能不同,取决于方法因素,包括例如容器大小、搅拌力等。作为一般性指导,可在进行溶剂替换前将反应溶液蒸馏至约{馏分(1/10)}原始体积。可根据标准方法技术将反应物取样并分析以确定反应程度和产物的wt%。如果需要,可加入或除去附加的反应溶剂以优化反应物浓度。优选将终浓度调节至约50wt%,在该点通常形成浆料。
可优选将溶剂直接加入反应器而不蒸馏反应混合物。实现该目的的优选溶剂是如上所述与溶剂交换有关的最终参与晶格的溶剂。虽然终浓度可因所需纯度、回收率等而不同,但溶液内游离碱I的终浓度优选为约4%至约7%。加入溶剂后可将反应混合物搅拌并同时温热。作为说明,可将反应混合物搅拌约1小时同时加热至约70℃。优选将反应物热过滤并用反应溶剂、加入的溶剂或其组合洗涤。可将晶种加入任何结晶溶液以启动结晶。
可通过用本领域技术人员已知的各种分析技术,将本文描述的各种形式相互区分开来。这样的技术包括但不限于固态核磁共振(SSNMR)波谱法、X射线粉末衍射(PXRD)、差示扫描量热(DSC)和/或热重量分析(TGA)。
本领域技术人员会理解,获得的X射线衍射图可能有测量误差,这取决于所用的测量条件。具体地说,通常已知X射线衍射图中强度可因使用的测量条件、晶体的形状或形态而波动。还应理解,相对强度也可因实验条件而不同,因此,不应考虑强度的精确等级。另外,常规X射线衍射图的衍射角的测量误差通常为约0.2%或更小,优选约0.1%(如下讨论),这样的测量误差度应视为适合上述衍射角。因此,应理解的是,本发明的晶形并不限于提供与本文公开的附图描述的X射线衍射图完全相同的X射线衍射图的晶形。提供与附图所公开的基本上相同的X射线衍射图的任何晶形都落入本发明范围内。确定X射线衍射图基本上同一性的能力在本领域技术人员的技术范围内。
关于A形和E3形的术语“形”在本文是指均匀的晶体结构。
关于C模式物质的术语“模式”在本文是指特征性X射线衍射图。
术语“阿扎那韦硫酸氢盐”在本文是指阿扎那韦硫酸氢盐以及阿扎那韦硫酸盐。
在实施本发明制备阿扎那韦硫酸氢盐A形晶体的方法时,用改良三次结晶技术,其中使阿扎那韦游离碱溶于阿扎那韦硫酸氢盐基本上不溶于其中的有机溶剂(包括丙酮、丙酮和N-甲基吡咯烷酮混合物、乙醇、乙醇和丙酮混合物等)中,得到阿扎那韦游离碱浓度在约6.5至9.7%重量、优选约6.9至约8.1%重量阿扎那韦游离碱的溶液。
将阿扎那韦游离碱溶液在约35至约55℃、优选约40至约50℃范围内温度下加热,并与浓硫酸(含约95至约100%H2SO4)反应,浓硫酸的量可使其与少于约15%、优选约5至少于约12%、更优选约8至约10%重量的总阿扎那韦游离碱反应。因此,阿扎那韦游离碱的起始溶液最初将与少于所用硫酸总量的约15%、优选约5至约12%重量反应。在反应期间,将反应混合物保持在约35至约55℃、优选约40至约50℃范围内的温度。
让反应继续进行约12至约60分钟,优选约15至约30分钟。
将阿扎那韦硫酸氢盐A形晶体引晶至反应混合物中,晶种用量在保留在反应混合物中的阿扎那韦硫酸氢盐重量的约0.1至约80%重量、优选约3至约8%重量范围内,同时反应混合物的温度保持在约35至约55℃、优选约40至约50℃范围内。
让反应继续进行直至开始结晶。其后,根据下文描述的三次方程以增加的速率分多阶段加入硫酸,形成阿扎那韦硫酸氢盐,后者干燥后产生A形晶体。
所形成的阿扎那韦硫酸氢盐的晶体粒度和形态取决于硫酸的添加速率,其决定结晶速率。已发现改良的“三次”结晶技术(按三次方程以增加的速率加入酸)与恒定添加速率结晶相比,提供相对更大、更好确定的阿扎那韦硫酸氢盐晶体,同时粒度范围更窄和费用更少。已显示缓慢的起始酸流率利于晶体生长超过二次成核。因此,由于表面积随粒度增加,晶种床能够接受增加的酸流率而不引起二次成核。缓慢的起始添加速率使晶体有时间生长更大,使平均尺寸增加。三次结晶提供压缩性较小的滤饼,有助于使滤饼有效脱水和洗涤,以及得到比恒定添加速率结晶的产物更少硬块的更容易干燥的产物。
所用的三次结晶方法是温度控制结晶,来自Mullin,“Crystallization,第3版”,1993,Butterworth-Heineman,Pubs,由以下简化方程确定
T=Tmax-(Tmax-Tmin)×[timetimetotal]3---(1)]]>其中Tmax=结晶的起始温度Tmin=结晶的终止温度time=结晶的实耗时间timetotal=总结晶时间因为阿扎那韦硫酸氢盐的结晶是通过硫酸的添加速率控制的,所以用酸体积替换方程(1)中的温度变量。在该方程中,去掉了代表最小体积的变量。
Vtime=Vtotal×[timetimetotal]3---(2)]]>其中Vtime=实耗时间内加入的硫酸的体积Vtotal=代表90%原料的酸的总体积time=结晶的实耗时间timetotal=总结晶时间方程(2)被称为“三次方程”。
通过用这种表达式控制结晶速率,由于系统保持恒定低水平的过饱和状态,所以可将成核作用控制在可接受的限度之内。
鉴定A形晶体的粉末X射线衍射图和晶体结构各自如图1和2显示。
如上描述制备的阿扎那韦硫酸氢盐的A形晶体或C模式物质以及E3形是最终的阿扎那韦硫酸氢盐,可用作药品给药于患者。
根据本发明的方法,可通过将A形晶体暴露于水然后干燥制备C模式物质。
根据本发明的另一种方法,通过将A形晶体暴露于大于约95%RH、优选约95至约100%RH(水蒸气)的相对湿度中至少24小时、优选约24至约48小时,可形成C模式物质。
在本发明另一个实施方案中,可通过将阿扎那韦硫酸氢盐A形湿法制粒生成阿扎那韦硫酸氢盐颗粒、然后将颗粒干燥制备C模式物质。
在实施湿法制粒法时,阿扎那韦硫酸氢盐将在水中形成颗粒,在约40至约80℃范围内、优选约50至约60℃范围内温度下干燥。干燥步骤优选进行至少约2小时、至多约20小时、优选约8至约10小时。
也可通过将阿扎那韦硫酸氢盐A形在常规药用赋形剂例如一种或多种填充剂(优选乳糖)、一种或多种崩解剂(优选交聚维酮)中湿法制粒,并如上描述干燥以形成与赋形剂混合的C模式物质而形成C模式物质。
正是C模式物质、A形或E3形(优选C模式物质)可配制用于给药,以治疗下文描述的病毒导致的疾病。
C模式物质的粉末X射线衍射图特征如图3显示。
E3形如下制备使阿扎那韦游离碱在乙醇中形成浆料,用浓硫酸处理浆料,所用酸游离碱的摩尔比率范围为约1∶1至约1.1∶1,在约30至约40℃加热生成的溶液,将阿扎那韦硫酸盐的乙醇润湿E3晶体接种至溶液内,用庚烷(或其它溶剂例如己烷或甲苯)处理混合物,过滤并干燥,得到阿扎那韦硫酸氢盐E3形(三乙醇溶剂合物)。
引晶步骤使用的晶种量将有效形成E3晶体,例如阿扎那韦硫酸氢盐E-3晶种∶游离碱的摩尔比率范围为约0.02∶1至约0.04∶1。
鉴定E3形的粉末X射线衍射图如图7显示,晶体结构如图6显示。
根据本发明,游离碱形式的阿扎那韦如下制备用酸、优选盐酸(其中用Boc)或碱(其中用三氟乙酰基)在有机溶剂(例如二氯甲烷、四氢呋喃或甲醇,其中溶剂优选二氯甲烷)的存在下、在约25至约50℃、优选约30至约40℃范围内的温度处理具有下式结构的受保护的三胺盐溶液 (其中PG表示保护基团,例如叔丁氧基羰基(Boc)或三氟乙酰基,优选Boc),形成三胺酸盐,优选下式结构的盐酸盐 且不离析三胺酸盐,用下式结构的酸的活性酯 优选下式结构的活性酯 在碱(例如K2HPO4、二异丙基乙胺、N-甲基吗啉、碳酸钠或碳酸钾,优选K2HPO4)的存在下,在有机溶剂(例如二氯甲烷、乙酸乙酯和乙酸丁酯混合物、乙腈或乙酸乙酯,优选二氯甲烷)的存在下,在约25至约50℃、优选约30至约40℃范围内的温度处理三胺酸盐,形成阿扎那韦游离碱。
受保护的三胺起始材料如下制备使环氧化物 其中PG优选是Boc,例如N-(叔丁氧基羰基)-2(S)-氨基-1-苯基-3(R)-3,4-环氧基-丁烷,与其中PG优选是Boc的肼基氨基甲酸盐 在异丙醇或其它醇例如乙醇或丁醇存在下反应。
阿扎那韦硫酸氢盐可给药于温血动物(特别是人),用于治疗或预防对抑制逆转录病毒蛋白酶(特别是逆转录病毒天冬氨酸蛋白酶,例如HIV-1或HIV-II gag蛋白酶)有反应的疾病,例如逆转录病毒疾病(例如AIDS或其潜伏期(preliminary statge))。
可将阿扎那韦硫酸氢盐(特别是C模式物质、A形或E3形,优选C模式物质或A形)用于治疗病毒(特别是逆转录病毒)引起的疾病(特别是AIDS或其潜伏期)的方法中,其中给予治疗有效量阿扎那韦硫酸氢盐C模式物质、A形或E3形,其剂量可有效治疗所述疾病,特别是温血动物,例如患上述疾病之一(特别是AIDS或其潜伏期)需要这样治疗的人。对温血动物,例如约70kg体重的人,优选的给药剂量是每人每天约3mg至约1.5g,优选约10mg至约1.25g,例如约50mg至约600mg,优选分成1至4次单剂量,所述单剂量可以例如是相同大小。通常,儿童接受成人剂量的一半。优选口服给药。
将阿扎那韦硫酸氢盐C模式物质、A形或E3形用于上述药用用途。口服给药用的含C模式物质或A形或E3形的合适组合物包括片剂、粉剂、胶囊和酏剂。将约10-600mg活性成分与生理学上可接受的溶媒、载体、赋形剂、粘合剂、防腐剂、稳定剂、调味剂等混合在可接受的药学实践要求的单位剂型中。
通过使活性成分与固体载体混合,需要时则将生成的混合物制粒,如果需要或必需,在添加适当赋形剂后,将混合物加工成片剂、锭核、胶囊或粉剂用于口服,可获得口服给药的药用组合物。还可将活性成分加入塑料载体内,使活性成分扩散或以测量量释放。
本发明药用组合物中填充剂或填料的含量在组合物重量的约0至约95%重量、优选约10至约85%的范围内。适用于本文的填充剂或填料的实例包括但不限于纤维素衍生物(例如微晶纤维素或木纤维素)、乳糖、蔗糖、淀粉、预胶凝淀粉、葡萄糖、甘露醇、果糖、木糖醇、山梨醇、玉米淀粉、改性玉米淀粉、无机盐(例如碳酸钙、磷酸钙、磷酸二钙、硫酸钙)、糊精/葡聚糖结合剂、麦芽糖糊精、可压缩糖及其它已知的填充剂或填料,和/或其中两种或多种的混合物,优选乳糖。
粘合剂任选存在于本发明药用组合物中,其量在组合物重量的约0至约20%重量、优选约1至约10%的范围内。适用于本文的粘合剂的实例包括但不限于羟丙基纤维素、玉米淀粉、预胶凝淀粉、改性玉米淀粉、聚乙烯吡咯烷酮(PVP)(分子量范围从约5,000至约80,000,优选约40,000)、羟丙基甲基纤维素(HPMC)、乳糖、阿拉伯胶、乙基纤维素、醋酸纤维素,以及蜡粘合剂例如巴西棕榈蜡、石蜡、鲸蜡、聚乙烯或微晶蜡,以及其它常规粘合剂和/或其中两种或多种的混合物,优选羟丙基纤维素。
崩解剂任选存在于本发明药用组合物中,其量在组合物重量的约0至约20%重量、优选约0.25至约15%的范围内。适用于本文的崩解剂的实例包括但不限于交联羧甲基纤维素钠、交聚维酮、马铃薯淀粉、预胶凝淀粉、玉米淀粉、淀粉乙醇酸钠、微晶纤维素或其它已知的崩解剂,优选交联羧甲基纤维素钠。
润滑剂任选存在于本发明药用组合物中,其量在组合物重量的约0.1至约4%重量、优选约0.2至约2%的范围内。适用于本文的压片用润滑剂的实例包括但不限于硬脂酸镁、硬脂酸锌、硬脂酸钙、滑石粉、巴西棕榈蜡、硬脂酸、棕榈酸、硬脂酰富马酸钠或氢化植物油脂,或其它已知的压片用润滑剂和/或其中两种或多种的混合物,优选硬脂酸镁。
胶囊是硬胶囊,也可以是由明胶和增塑剂(例如甘油或山梨醇)制成的软密封胶囊。硬胶囊可包括颗粒形式的活性成分,例如与填充剂(例如乳糖)、粘合剂(例如淀粉、交聚维酮)和/或助流剂(例如滑石粉或硬脂酸镁)一起,如果需要还可加入稳定剂。在软胶囊中,优选使活性成分溶解或悬浮于合适的油性赋形剂(例如脂肪油、石蜡油或液体聚乙二醇)中,同样也可加入稳定剂和/或抗菌剂。
以下实施例表示本发明的优选实施方案。
实施例11-[4-(吡啶-2-基)苯基]-5(S)-2,5-二{[N-(甲氧基羰基)-L-叔亮氨酰基]氨基}-4-(S)-羟基-6-苯基-2-氮杂己烷,硫酸氢盐(A形)(阿扎那韦硫酸氢盐-A形)A.
(1-[4-(吡啶-2-基)苯基]-5(S)-2,5-二[叔丁氧基羰基)氨基]-4(S)-羟基-6-苯基-2-氮杂己烷.3HCl(三胺.3HCl盐))将受保护的三胺1-[4-(吡啶-2-基)苯基]-5(S)-2,5-二[叔丁氧基羰基)氨基]-4(S)-羟基-6-苯基-2-氮杂己烷
(100g,0.178mol)和CH2Cl2(500mL;5mL/g受保护的三胺进料量)(其制备描述于Z.Xu等,Process Research and Development for an EfficientSynthesis of the HIV Protease Inhibitor BMS-232,632,Organic ProcessResearch and Development,6,323-328(2002))加入配置有机械搅拌器、氮气入口和温度传感器的1000mL 3颈圆底烧瓶内,将生成的浆料搅拌,同时保持温度在约5至约22℃。
将浓盐酸(68mL,0.82mole,4.6eq.)以使反应混合物温度保持在5至30℃之间的速率加入反应混合物中。将反应混合物加热至30至40℃并搅拌直至用HPLC分析确定反应完成。
将水(70-210mL,0.7-2.1mL/g受保护的三胺进料量)加入反应混合物中,将反应混合物搅拌15分钟,让各相分离。将上层富产物(三胺.3HCl盐)的含水油状物转移至加液漏斗内。
B.
(N-甲氧基羰基-L-叔亮氨酸( )的活性酯))将N-甲氧基羰基-L-叔亮氨酸(77.2g,0.408mol,2.30eq.)、1-羟基苯并三唑(HOBT)(60.8g,0.450mol,2.53eq.)和N-乙基N’-二甲基氨基丙基碳化二亚胺(EDAC)(82.0g,0.430mol,2.42eq.)加入配置有机械搅拌器、加液漏斗、氮气入口和温度传感器的3000mL 3颈圆底烧瓶内,然后加入CH2Cl2(880mL;8.8mL/g受保护的三胺进料量),在环境温度(18-25℃)搅拌混合物,直至由HPLC确定活性酯的形成完成。
C.1-[4-(吡啶-2-基)苯基]-5(S)-2,5-二{[N-(甲氧基羰基)-L-叔亮氨酰基]氨基}-4(S)-羟基-6-苯基-2-氮杂己烷(阿扎那韦游离碱)使无水磷酸氢二钾(K2HPO4;226g,1.30mol,7.30eq.wrt受保护的三胺)溶于1130mL水(11.3mL/g受保护的胺;5mL/g K2HPO4)。
将K2HPO4溶液加入B部分制备的活性酯溶液内。用1.5至2.0小时将A部分的盐酸盐水溶液缓慢加入搅拌的活性酯/K2HPO4水溶液混合物中,同时保持搅拌且罐温度在5至20℃之间。
A部分盐酸盐溶液的添加完成后,将反应混合物(偶合反应)加热至30-40℃,并搅拌直至HPLC分析确定偶合反应完成。
将偶合混合物冷却至15至20℃,将下层富产物有机相与上层废水相分离。
用1M NaH2PO4(880mL;pH=1.5;8.8mL/g受保护的三胺进料量;5摩尔当量wrt受保护的三胺)洗涤富产物有机相,让各相分离,除去废水相。
将洗涤过的富产物有机相与0.5N NaOH(800mL;8mL/g受保护的三胺进料量)一起搅拌,直至富有机相的HPLC分析显示活性酯各自低于0.3 I.I.。让各相分离并除去废水相。
用5%NaH2PO4(450mL,4.5mL/g受保护的三胺进料量;pH=4.3)洗涤富有机相,让各相分离并除去废水相。
用10w/v%NaCl(475mL,4.75mL/g受保护的三胺进料量)洗涤富有机相并除去废水相。
溶液中标题游离碱的浓度是120-150mg/mL,过程中计算的产率为95-100mol%。
D.从CH2Cl2向丙酮/N-甲基吡咯烷酮的溶剂交换将N-甲基吡咯烷酮(148mL;1.25mL/g C部分游离碱,基于过程中定量分析)加入配置有机械搅拌器、温度传感器和蒸馏冷凝器的3000mL 3颈圆底烧瓶中的富C部分游离碱溶液内。用70℃以下的夹套温度将溶液浓缩至约360mL(2.5-3.5mL/g C部分游离碱);将500mL丙酮(4-5mL/g C部分游离碱)加入浓缩溶液中,将混合物蒸馏至约400mL或更少的体积。
重复添加丙酮和蒸馏直至过程中分析表明CH2Cl2水平已经达到靶终点。在结晶体积处,富有机溶液中的CH2Cl2含量为0.77v/v%。将丙酮加入浓缩的游离碱溶液,得到16mL/g游离碱的总溶液。使浴温度保持在40-50℃以预防游离碱结晶。使溶液通过10微米或更精细的滤器精练过滤(polish filter),同时保持温度在40至50℃。用丙酮(125mL,1.0mL/g游离碱)冲洗精练滤器,将冲洗液加入富游离碱丙酮/N-甲基吡咯烷酮溶液中,用于下一步骤。
E.1-[4-(吡啶-2-基)苯基]-5(S)-2,5-二{[N-(甲氧基羰基)-L-叔亮氨酰基]氨基}-4(S)-羟基-6-苯基-2-氮杂己烷硫酸氢盐通过表面下添加,将浓硫酸总量(19g,1.10e.q.)中约10%(2g)加入D部分的游离碱丙酮/N-甲基吡咯烷酮溶液中,同时保持温度在40-50℃。
将反应混合物用5.0wt%(wrt溶液中计算的游离碱)硫酸氢盐接种。在40-50℃将接种的混合物搅拌至少30分钟,在此期间混合物的混浊度增加,表明此期间硫酸氢盐开始结晶。
在根据三次方程确定的以下方案,分5个阶段,用约5小时加入剩余的硫酸(17.8g),同时保持温度在40-50℃。
每个添加阶段的速率根据上文描述的三次方程确定,如下表显示。
表1
H2SO4的添加完成后,在搅拌下将浆料冷却至少1小时至20-25℃。在20-25℃将浆料搅拌至少1小时。过滤硫酸氢盐,按需将母液再循环以实现完全转换。用丙酮(5-10mL/g游离碱;1200mL丙酮)洗涤滤饼。在真空下NMT 55℃干燥硫酸氢盐直至LOD<1%,得到结晶材料。
用PXRD、DSC和TGA图和SSNMR波谱法分析结晶产物,发现是标题硫酸氢盐的(非溶剂化)A形晶体(见图1至5)。
表2A形的晶体学数据表
T=晶体学数据的温度(℃)Z’=每个不对称单元的药物分子数表3A形的部分参数及其估计标准差表
已省略大部分氢;只包括N9和酸上的氢。
各向异性精制原子采用各向同性等值置换参数(isotropicequivalent displacement parameter)的形式给出,确定为(4/3)*[a2*B(1,1)+b2*B(2,2)+c2*B(3,3)+ab(cosγ)*B(1,2)x+ac(cosβ)*B(1,3)+bc(cosα)*B(2,3)]。
A形的差示扫描量热热分析图特征如图3显示,通常在约165.6℃至约200.9℃范围内有吸热。
A形的热重量分析曲线特征是在至高约100至150℃处有可忽略不计的重量损失。
与用恒定添加速率结晶获得的晶体相比,根据上文描述的三次方程以增加的速率加入H2SO4的三次结晶所产生的晶体相对较大且更好确定,并具有更狭窄的粒度范围和费用(fines)更低。
用三次结晶技术获得的滤饼比用恒定添加速率结晶获得的滤饼压缩性更小,有助于对于滤饼进行有效脱水和洗涤并得到均匀产物。
表4测定的A形相对于TMS(四甲基硅烷)的碳-13 SSNMR化学位移
实施例2阿扎那韦硫酸氢盐-C模式物质方法A使阿扎那韦硫酸氢盐A形晶体(按实施例1描述制备)(25.33g)悬浮于200mL水中,机械搅拌混合物得到粘稠凝胶,将其干燥。
用刮勺研磨干燥混合物得到C模式物质。C模式物质的粉末X射线衍射图如图6显示。
方法B用足量水(约40%w/w)在合适的混合器-制粒机中将阿扎那韦硫酸氢盐A形晶体湿法制粒。在烘箱中干燥湿团块。用合适的筛网将产物筛分为一定大小(size)。所得产物的X射线衍射图与图6显示的C模式物质的一致。
C模式的差示扫描量热热分析图特征如图7显示,通常在约76.7至约96.6℃和约156.8至约165.9℃范围有吸热。
C模式的热重量分析曲线特征如图8显示,在约125℃重量损失约2.4%且在约190℃重量损失约4.4%。
实施例3阿扎那韦硫酸氢盐-E3形(三乙醇溶剂合物)在配置有机械搅拌器、温度传感器和压力平衡加液漏斗的100mL3颈圆底烧瓶中,使阿扎那韦游离碱(按实施例1中C部分制备)(3.0g,4.26mmol)在干燥200规定(proof)乙醇(20.25mL,6.75mL/g游离碱)中制成浆料。
将浓H2SO4(0.25mL,0.46g,4.69mmol,1.1eq.)加入保持在20-25℃的阿扎那韦游离碱浆料中。将生成的溶液(KF 0.2至1.0%水)抛光过滤(Whatman#1纸),用2.25mL无水乙醇冲洗滤器,将冲洗液加入过滤的溶液中。将溶液加热至37℃,用10mg衍生自E3形晶体的非晶态阿扎那韦硫酸氢盐(通过将E3形晶体暴露于环境温度)接种,将混合物搅拌15分钟。用1小时加入庚烷(380mL,8.25mL/g游离碱)。在15-25℃将生成的结晶混合物搅拌8小时。在瓷漏斗上过滤结晶的阿扎那韦硫酸氢盐。用184mL(4mL/g游离碱)1∶1乙醇∶庚烷洗涤产物饼。用46mL(1mL/g游离碱)庚烷洗涤产物饼。在40-50℃真空干燥生成的产物,直至其LOD=0.97%。产物产量为47.7g(0.0594mol,74.3mol%)阿扎那韦硫酸氢盐E3形(三乙醇溶剂合物),HPLCHI=100.0(见图9和10)。
表5E3形晶体学数据表
T=晶体学数据的温度(℃)Z’=每个不对称单元的药物分子数表6E3形的部分参数及其估计标准差表
已省略大部分氢;只包括N9和酸上的氢。
各向异性精制原子采用各向同性等值置换参数的形式给出,确定为(4/3)*[a2*B(1,1)+b2*B(2,2)+c2*B(3,3)+ab(cosγ)*B(1,2)x+ac(cos β)*B(1,3)+bc(cosα)*B(2,3)]。
E3形的差示扫描量热热分析图特征如图11显示,通常在约89.4至约96.6范围内有吸热。
E3形的热重量分析曲线特征如图11显示,在约150℃重量损失约14.7%。
实施例4具有以下组成的阿扎那韦硫酸氢盐C模式胶囊制剂如下所述制备。
a胶囊的阿扎那韦硫酸氢盐原料颗粒(stock granulation)(55.5%w/w游离碱)用于制备50mg、100mg和200mg胶囊。
b该量以100%效能的阿扎那韦硫酸氢盐表示,等于55.5%w/w游离碱。
c乳糖、水合量将随阿扎那韦硫酸氢盐纯度和硬脂酸镁用量的不同而变化。
d硬脂酸镁的用量可从0.4%w/w至0.8%w/w变化。
e这只用于操作中且通过干燥清除。
阿扎那韦硫酸氢盐的原料颗粒如下制备,从中形成C模式物质。
在行星式混合器中将阿扎那韦硫酸氢盐A形、乳糖水合物和一部分交聚维酮(占3%总交聚维酮重量)混合。用纯净水将生成的混合物湿法制粒以将A形转化为C模式物质。在厢式干燥器中干燥湿颗粒并用锤磨机制成一定大小(size)。将剩余的交聚维酮加入研磨的颗粒并在PK V-混合器中将混合物混合。加入硬脂酸镁,搅拌混合物直至形成基本上均匀的原料颗粒。
将适量原料颗粒填入胶囊内,得到含阿扎那韦硫酸氢盐的50mg、100mg和200mg胶囊。
实施例5具有以下组成的用于口服制剂的阿扎那韦硫酸氢盐A形物质粉末如下制备。
在合适混合器中将阿扎那韦硫酸氢盐A形与阿司帕坦、橙香草调味剂和蔗糖混合。用锤磨机研磨混合物,然后进行第二次混合以获得均匀混合物。将产物填入高密度聚乙烯瓶内。
权利要求
1.一种制备A形晶体形式的阿扎那韦硫酸氢盐的方法,包括使阿扎那韦游离碱在有机溶剂中的溶液与第一部分浓硫酸反应,其中阿扎那韦硫酸氢盐基本上不溶于所述有机溶剂,所加入量的浓硫酸可与少于约15%重量的阿扎那韦游离碱反应,将阿扎那韦硫酸氢盐A形晶体接种至反应混合物中,当阿扎那韦硫酸氢盐晶体形成时,分多阶段加入另外的浓硫酸以有效形成阿扎那韦硫酸氢盐晶体,将阿扎那韦硫酸氢盐干燥以形成A形晶体。
2.权利要求1所述的方法,其中最初与阿扎那韦游离碱溶液反应的硫酸占总用量的约5至约15%重量。
3.权利要求1所述的方法,其中最初与阿扎那韦游离碱溶液反应的硫酸占总用量的约8至约12%重量。
4.权利要求1所述的方法,其中阿扎那韦游离碱与第一部分硫酸在约35至约55℃范围内的温度反应。
5.权利要求1所述的方法,其中阿扎那韦游离碱溶液在与硫酸反应前被加热至约35至约55℃范围内的温度。
6.权利要求1所述的方法,其中将阿扎那韦游离碱重量的约0.1至约80%重量A形晶体接种至阿扎那韦游离碱和硫酸的反应混合物中。
7.权利要求1所述的方法,其中在约35至约55℃范围内的温度加热经接种的反应混合物。
8.权利要求1所述的方法,其中用于阿扎那韦游离碱的有机溶剂是丙酮、丙酮和N-甲基吡咯烷酮的混合物、乙醇、或乙醇和丙酮的混合物。
9.阿扎那韦硫酸氢盐C模式物质。
10.权利要求9所述的作为阿扎那韦硫酸氢盐C模式物质的化合物,其粉末X射线衍射图特征基本上与图6显示的一致。
11.权利要求9所述的化合物,其差示扫描量热热分析图特征基本上与图7显示的一致。
12.权利要求9所述的化合物,其热重量分析曲线特征基本上与图8显示的一致。
13.权利要求9所述的化合物,其是如下制备的使阿扎那韦硫酸氢盐A形晶体悬浮于水中,或使阿扎那韦硫酸氢盐A形晶体经受至少约95%RH的相对湿度至少24小时,或将阿扎那韦硫酸氢盐A形晶体湿法制粒然后干燥。
14.通过权利要求24的方法制备的C模式。
15.药用组合物形式的权利要求9所述的化合物,其如下制备使阿扎那韦硫酸氢盐A形晶体与一种或多种配制用赋形剂和水混合然后干燥。
16.阿扎那韦硫酸氢盐的E3形。
17.权利要求16所述的化合物,其制备成阿扎那韦硫酸氢盐的三乙醇溶剂合物。
18.权利要求16所述的化合物,其粉末X射线衍射图特征基本上与图9显示的一致。
19.权利要求16所述的化合物,其晶体结构基本上如图10显示。
20.权利要求16所述的化合物,其部分原子坐标特征基本上如表6中所列。
21.权利要求16所述的化合物,其晶体学数据特征基本上如下晶胞大小a=10.749(5)b=13.450(4)c=9.250(2)α=98.33(2)°β=95.92(3)°γ=102.82(3)°空间群P1分子/不对称单元1其中所述晶形处于约-23℃。
22.权利要求16所述的化合物,其差示扫描量热热分析图数据特征基本上与图11显示的一致。
23.权利要求16所述的化合物,其热重量分析曲线特征基本上与图11显示的一致。
24.一种制备权利要求9所述的阿扎那韦硫酸氢盐C模式物质的方法,包括(a)使阿扎那韦硫酸氢盐A形晶体悬浮于水中并将悬浮液干燥,形成C模式物质;或(b)使阿扎那韦硫酸氢盐A形晶体经受大于约95%RH的高相对湿度至少24小时,形成C模式物质;或(c)将阿扎那韦硫酸氢盐湿法制粒并将湿颗粒干燥形成C模式物质;或(d)使A形晶体与一种或多种配制用赋形剂混合,将生成的混合物湿法制粒,直接形成与赋形剂混合的C模式物质。
25.一种制备A形晶体形式的阿扎那韦硫酸氢盐 的方法,包括制备下式结构的三胺盐 无需离析三胺盐,使三胺盐与下式结构的酸 的活性酯和碱在有机溶剂的存在下反应,形成下式结构的阿扎那韦游离碱溶液 并将游离碱转化为对应的硫酸氢盐。
26.权利要求25所述的方法,其中三胺盐是下式的盐酸盐
27.权利要求25所述的方法,其中酸的活性酯具有下式结构
28.权利要求25所述的方法,其中碱是碱金属氢氧化物、碱土金属氢氧化物、碱金属碳酸盐、碱土金属碳酸盐、碱金属磷酸盐、碱土金属磷酸盐或有机碱。
29.权利要求27所述的方法,其中碱是NaOH、KOH、Mg(OH)2、K2HPO4、MgCO3、Na2CO3、K2CO3、三乙胺、二异丙基乙胺或N-甲基吗啉,有机溶剂是二氯甲烷、乙酸乙酯、二氯乙烷、四氢呋喃、乙腈或N,N-二甲基甲酰胺。
30.权利要求25所述的方法,其中三胺盐与活性酯在约30至约40℃范围内的温度反应。
31.权利要求30所述的方法,其中三胺盐与活性酯在存在K2HPO4作为碱和二氯甲烷作为溶剂的情况下反应。
32.权利要求25所述的方法,其中游离碱如下转化为对应的硫酸氢盐用N-甲基吡咯烷酮和丙酮处理游离碱在二氯甲烷中的溶液,加热上述混合物以除去二氯甲烷,用硫酸处理上述混合物以形成游离碱的硫酸氢盐。
33.权利要求32所述的方法,包括将阿扎那韦硫酸氢盐晶体接种至游离碱、丙酮和N-甲基吡咯烷酮的混合物中的步骤。
34.权利要求25所述的方法,其中根据以下方程以增加的速率加入硫酸Vtime=Vtotal×(timetimetotal)3]]>其中Vtime=实耗时间内加入的硫酸的体积Vtotal=代表90%原料的酸的总体积time=结晶的实耗时间timetotal=总结晶时间或酸的总添加时间。
35.一种制备阿扎那韦硫酸氢盐 的方法,包括制备下式结构的三胺盐酸盐 使三胺盐酸盐与下式结构的活性酯 和K2HPO4在二氯甲烷的存在下反应,形成下式结构的游离碱 在二氯甲烷中的溶液,通过三次结晶技术将游离碱转化为对应的硫酸氢盐。
36.一种药用制剂,包含权利要求9所述的阿扎那韦硫酸氢盐C模式物质及其药学上可接受的载体。
37.权利要求36所述的制剂,包含阿扎那韦硫酸氢盐C模式物质、一种或多种填料、一种或多种崩解剂、任选的一种或多种粘合剂以及任选的一种或多种助流剂或润滑剂。
38.权利要求36所述的制剂,包含阿扎那韦硫酸氢盐C模式物质、乳糖、交聚维酮和硬脂酸镁。
39.一种药用制剂,包含权利要求16所述的阿扎那韦硫酸氢盐的E3形或阿扎那韦硫酸氢盐A形及其药学上可接受的载体。
40.一种治疗逆转录病毒引起的疾病的方法,包括将治疗有效量权利要求9所述的阿扎那韦硫酸氢盐C模式物质或A形或E3形给药于需要治疗的患者。
全文摘要
提供制备HIV蛋白酶抑制剂阿扎那韦硫酸氢盐的方法,其中使阿扎那韦游离碱溶液与浓硫酸反应,所加入量的浓硫酸可与少于约15%重量的游离碱反应,将阿扎那韦硫酸氢盐A形晶种加入反应混合物中,当硫酸氢盐晶体形成时,根据三次方程分多阶段以增加的速率加入另外的浓硫酸,有效形成阿扎那韦硫酸氢盐的A形晶体。还提供制备阿扎那韦硫酸氢盐C模式物质的方法。还提供阿扎那韦硫酸氢盐的新形即E3形,该形是硫酸氢盐从乙醇结晶的高度结晶三乙醇溶剂合物。
文档编号C07D213/56GK1980666SQ200580022550
公开日2007年6月13日 申请日期2005年5月3日 优先权日2004年5月4日
发明者S·金, B·T·罗茨, M·F·马利, J·Z·古古塔斯, M·达维多维奇, S·K·斯里瓦斯塔瓦 申请人:布里斯托尔-迈尔斯斯奎布公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1