聚(碳酸酯-醚)二元醇的制备方法及其催化剂的制备方法

文档序号:3657306阅读:212来源:国知局
专利名称:聚(碳酸酯-醚)二元醇的制备方法及其催化剂的制备方法
技术领域
本发明涉及聚合物技术领域,更具体地说,涉及一种聚(碳酸酯-醚)二元醇的制备方法及其催化剂的制备方法。
背景技术
二氧化碳是一种廉价、易得、无毒的化工原料,储量丰富,如何高效利用二氧化碳资源成为当今研究的热点。研究人员发现,将二氧化碳与环氧化合物共聚制备聚碳酸酯是一种利用二氧化碳的有效途径。自二氧化碳与环氧化合物共聚物问世以来,用于催化二氧化碳与环氧化合物共聚制备高分子量、高碳酸酯单元含量的聚碳酸酯的催化体系已经取得了较大的进展,并且已经实现了工业化。双金属氰化物催化剂(简称DMC)是一种对空气和水分都不太敏感的非均相催化剂,可以催化二氧化碳与环氧化合物共聚,目前得到了广泛的应用,其制备方法简单且多样化,但是,不同方法制备的DMC在催化二氧化碳与环氧化合物共聚中所表现出的催化特性有很大的差异。目前,以双金属氰化物为催化剂、以二氧化碳和环氧化物为原料制备聚碳酸酯多元醇的方法已经得到广泛的报道。例如,Kuyper J在专利文献EP0222453 (1986)、 US 4826887(1989), US 4826953(1989)和 US 4826952(1989)中报道了一种以聚丙二醇-400(PPG-400)为链转移剂,以基于&i3[C0(CN)6]2的DMC为催化剂,以二氧化碳和环氧丙烷(PO)为初始原料制备聚(碳酸酯-醚)二元醇的方法,该催化剂的催化活性为1770g/g DMC,聚合物中碳酸酯单元含量大约为15% (fco2 = 0. 132),环状碳酸酯(PC)副产物的含量为22. 5wt%,分子量和分子量分布均未提及(example 10)。另外,Hinz W在专利文献US 6173599 Bl (2004)中报道了聚(碳酸酯-醚)多元醇的制备方法,该方法以基于Zn3[Co (CN)J2的DMC为催化剂,以甘油与环氧化合物的加成物为链转移剂,在催化二氧化碳与环氧丙烷共聚的同时加入少量的单醇,所制备聚合物多元醇中碳酸酯单元含量不超过15%,重均分子量在2000 3000g/mol,聚(碳酸酯-醚)多元醇的分子量分布介于1. 31 1. M之间。专利文献US 6762278B2(2004)中采用先用离子交换树脂处理K3 [Co (CN] 6],使K+与H+交换,生成H3 [Co (CN] 6],然后利用H3 [Co (CN] 6]与 Zn (CH3COO) 2 · 2H20制备得到DMC,该DMC在链转移剂的存在下,催化二氧化碳与环氧丙烷共聚制备的聚(碳酸酯-醚)多元醇中的碳酸酯单元含量不超过20%,重均分子量在3000g/ mol 5000g/mol,分子量分布在1. 16 1. 73之间,但是,上述两篇专利中均未提及环状碳酸酯含量。Mijolovic D在专利文献US 2010/0048935A1 (2010)中用两种连转移剂对聚合反应进行调节,Se为起始加入的链转移剂,而&则为其后连续加入的链转移剂,它们可以是同种类链转移剂,也可以是不同种类链转移剂,用基于Si3 [Co (CN) 6] 2的DMC催化二氧化碳与环氧丙烷共聚,所制备的聚(碳酸酯-醚)多元醇中碳酸酯单元含量不超过15%, 环状碳酸酯含量小于5wt%,数均分子量在2000g/mol左右,分子量分布在1. 17 1. 51之间,活性在6600g/g DMC左右。
海德KW在公开号为CN 101511909A的中国专利文献中采用基本非晶的基于 ai3[Co(CN)6]2&DMC制备了聚(碳酸酯-醚)多元醇,反应后的体系中聚合物含量不超过 20wt%,环状碳酸酯含量在9wt% 52wt%之间,聚合物中碳酸酯单元含量在 35% 之间,数均分子量在3000g/mol左右,该方法中单体转化率很低,活性也很低。陈立班于 1991年在CN1032010C中采用聚合物负载Si-Fe双金属氰化物PaM1Ib[ML。Xd]e(H2O)f (M1X)9 为催化剂,在链转移剂存在的条件下,催化二氧化碳与环氧丙烷共聚合制备了数均分子量在2000 20000g/mol,碳酸酯单元含量在30% 50%的聚(碳酸酯-醚)多元醇,该反应过程中催化剂用量大(DMC/P0> 2wt% ),制得的聚合物颜色较深,必须进一步清除残余催化剂。戚国荣于2004年采用基于ai3[Co (CN)J2的DMC催化二氧化碳与环氧丙烷在链转移剂存在下进行共聚合反应,制备得到数均分子量在2500 4000g/mol,碳酸酯单元含量为 17% 45%的聚(碳酸酯-醚)二元醇(fco2<0. 32),产物中环状碳酸酯含量在IOwt% 30wt%之间,活性为 2000g/g DMC (Polymer, 2004,45 :6519-6524)。从上述报道可以看出,将二氧化碳高效地固定为低分子量、高碳酸酯单元含量的聚碳酸酯多元醇至今还存在很多问题,因此,人们仍期待低分子量、高碳酸酯单元含量的聚 (碳酸酯-醚)二元醇的制备方法的研究与开发。本发明人考虑,提供一种低分子量聚(碳酸酯-醚)二元醇的制备方法及稀土掺杂的双金属氰化物的制备方法。

发明内容
有鉴于此,本发明要解决的技术问题在于提供一种低分子量聚(碳酸酯-醚)二元醇的制备方法及稀土掺杂的双金属氰化物的制备方法。为了解决以上技术问题,本发明提供一种聚(碳酸酯-醚)二元醇的制备方法,包括以下步骤以稀土掺杂的基于Zn3 [Co (CN) 6] 2的双金属氰化物为催化剂,将二氧化碳和环氧化合物在链转移剂存在下进行聚合反应,得到聚(碳酸酯-醚)二元醇,所述稀土掺杂的基于 Zn3 [Co (CN) 6] 2的双金属氰化物由稀土盐化合物、锌盐化合物、K3 [Co (CN) 6]和叔丁醇制备。优选的,所述环氧化合物为环氧乙烷、环氧丙烷、环氧丁烷、环氧环己烷和环氧氯丙烷中的一种或几种。优选的,所述链转移剂为乙二醇、丙二醇、丁二醇、戊二醇、环戊二醇、己二醇、环己
二醇、庚二醇、一缩乙二醇、二缩乙二醇、三缩乙二醇、四缩乙二醇、一缩丙二醇、二缩丙二醇、三缩丙二醇、四缩丙二醇、分子量低于2000的聚乙二醇、分子量低于2000的聚丙二醇和分子量低于2000的聚四氢呋喃二元醇中的一种或几种。优选的,所述稀土盐化合物为 YC13、LaCl3、NdCl3、PrCl3> Y(NO3)3, La(NO3)3、 Nd (NO3) 3、Pr (NO3) 3、Y (ClCH2COO) 3、La (ClCH2COO) 3、Nd (ClCH2COO) 3、Pr (ClCH2COO) 3、 Y (Cl2CHCOO) 3、La (Cl2CHCOO) 3、Nd (Cl2CHCOO) 3、Pr (Cl2CHCOO) 3、Y (Cl3CCOO) 3、La (Cl3CCOO) 3、 Nd (Cl3CCOO) 3 和 Pr (Cl3CCOO) 3 中的一种或几种。优选的,所述锌盐化合物为ZnCl2, ZnBr2, Zn(CH3COO)2、Zn(ClCH2COO)2, Zn (Cl2CHCOO) Zn (Cl3CCOO) ZnSO4 和 Si(NO3)2 中的一种或几种。优选的,所述稀土掺杂的基于&13
2的双金属氰化物与环氧化合物的质量比为(8· 4Χ1(Γ5 6· 02Χ1(Γ3) 1。
优选的,所述环氧化合物与所述链转移剂的质量比为O. 8 10) 1。优选的,所述聚合反应的温度的30 120°C。优选的,所述二氧化碳压力为2. OMPa 10. OMPa0优选的,得到聚(碳酸酯-醚)二元醇后还包括将所述聚(碳酸酯-醚)二元醇与环氧丙烷混合,得到稀释液;
过滤所述稀释液去除稀土掺杂的双金属氰化物催化剂,蒸馏、干燥。优选的,所述稀土掺杂的基于Zn3[Co(CN)6]2的双金属氰化物按照如下方法制备步骤a)将叔丁醇、水、锌盐化合物和稀土盐化合物混合,得到混合盐溶液;步骤b)向所述混合盐溶液中加入K3 [Co (CN)6]溶液,搅拌后分离,干燥,得到稀土掺杂的基于Zn3 [Co (CN) J2的双金属氰化物。优选的,所述步骤b)具体为步骤bl)将所述混合盐溶液升温至20 80°C并保温;步骤1^2)向步骤bl)得到的混合盐溶液中滴加KJCo(CN)6]溶液,滴加速度为 0. 2 0. 5ml/min,然后搅拌、分离,得到稀土掺杂的基于Zn3[Co (CN) 6]2的双金属氰化物。优选的,所述步骤W)后还包括将步骤b2)得到的稀土掺杂的基于&13
2的双金属氰化物用叔丁醇的水溶液洗涤3 10次;将所述洗涤后的稀土掺杂的基于Zn3 [Co (CN) 6] 2的双金属氰化物用叔丁醇洗涤,离心分离、干燥。优选的,所述K3 [Co (CN)6]溶液的浓度为0. 0001 0. 001mol/mL。本发明还提供一种稀土掺杂的双金属氰化物的制备方法,包括以下步骤步骤a)将叔丁醇、水、锌盐化合物和稀土盐化合物混合,得到混合盐溶液;步骤b)向所述混合盐溶液中加入K3 [Co (CN)6]溶液,搅拌后分离,干燥,得到稀土掺杂的基于Zn3 [Co (CN) J2的双金属氰化物。本发明提供一种聚(碳酸酯-醚)二元醇的制备方法,包括以下步骤稀土掺杂的基于Zn3 [Co (CN) 6] 2的双金属氰化物为催化剂,将二氧化碳和环氧化合物在链转移剂存在下进行聚合反应,得到聚(碳酸酯-醚)二元醇,所述稀土掺杂的基于Si3 [Co (CN)J2的双金属氰化物由稀土盐化合物、锌盐化合物、K3[Co(CN)6]和叔丁醇制备。与现有技术相比,本发明采用的稀土掺杂的基于&i3[C0(CN)6]2的双金属氰化物在链转移剂的作用下高效催化二氧化碳与环氧化合物共聚,制备得到了低分子量聚(碳酸酯-醚)二元醇。与未掺杂的双金属氰化物相比,本发明采用的稀土掺杂的基于&i3[C0(CN)6]2的双金属氰化物具有更高的催化活性和更好的产物选择性。实验结果表明,本发明制备的聚(碳酸酯-醚)二元醇的分子量为2000g/mol 7000g/mol,碳酸酯单元含量为30% 70%,催化活性达(230g 12000g)/gLn-DMC,环状碳酸酯含量为 2. Iwt % 6. 6wt%0另外,本发明还提供一种稀土掺杂的双金属氰化物催化剂的制备方法,包括以下步骤向叔丁醇的水溶液中依次加入锌盐和稀土盐,得到混合盐溶液;向所述混合盐溶液中加入K3 [Co (CN)6]溶液,搅拌后分离,洗涤、干燥,得到稀土掺杂的基于&13
2的双金属氰化物。与现有技术相比,该方法制备的稀土掺杂的基于&i3[C0(CN)6]2的双金属氰化物的催化活性高,产物选择性好。


为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。图1为本发明实施例15和实施例17制备的聚(碳酸酯-醚)二元醇的红外谱图;图2为本发明实施例15,17制备的聚(碳酸酯-醚)二元醇的1HNMR谱图。
具体实施例方式本发明公开了一种聚(碳酸酯-醚)二元醇的制备方法,包括以下步骤 以稀土掺杂的基于Zn3 [Co (CN) 6] 2的双金属氰化物(简称Ln-DMC)为催化剂,将二氧化碳和环氧化合物在链转移剂存在下进行聚合反应,得到聚(碳酸酯-醚)二元醇,所述稀土掺杂的基于Zn3[Co (CN) J2的双金属氰化物由稀土盐化合物、锌盐化合物、K3 [Co (CN)6] 和叔丁醇制备。本发明中,所述环氧化合物优选为环氧乙烷、环氧丙烷、环氧丁烷、环氧环己烷和环氧氯丙烷中的一种或几种。所述链转移剂优选为乙二醇、丙二醇、丁二醇、戊二醇、环戊二醇、己二醇、环己二醇、庚二醇、一缩乙二醇、二缩乙二醇、三缩乙二醇、四缩乙二醇、 一缩丙二醇、二缩丙二醇、三缩丙二醇、四缩丙二醇、分子量低于2000的聚乙二醇、分子量低于2000的聚丙二醇和分子量低于2000的聚四氢呋喃二元醇中的一种或几种。所述稀土盐化合物优选为 YC13、LaCl3、NdCl3、PrCl3> Y(NO3)3, La (NO3) 3、Nd (NO3) 3、Pr (NO3) 3、 Y (ClCH2COO) 3、La (ClCH2COO) 3、Nd (ClCH2COO) 3、Pr (ClCH2COO) 3、Y (Cl2CHCOO) 3、La (Cl2CHCOO) 3、 Nd (Cl2CHCOO) 3、Pr (Cl2CHCOO) 3、Y (Cl3CCOO) 3、La (Cl3CCOO) 3、Nd (Cl3CCOO)3 和 Pr (Cl3CCOO)3 中的一种或几种。所述锌盐化合物为ZnCl2, ZnBr2, Zn (CH3COO)2、Zn (ClCH2COO)2、 Zn(Cl2CHCOO)2, Zn(Cl3CCOO)2, ZnSO4和Si(NO3)2中的一种或几种。本发明提供的制备方法可以在有溶剂或无溶剂的条件下进行。在有溶剂的情况下,采用的溶剂优选为二氯甲烷,1, 3-二氧五环,二氧六环,四氢呋喃,甲苯和二甲苯中的一种或几种。按照本发明,所述稀土掺杂的双金属氰化物催化剂与环氧化合物的质量比优选为 (8. 4 X 10_5 6.02X10—3) 1,更优选为(1. 2X 10_4 2. 4X 10_3) 1。所述环氧化合物与所述链转移剂的质量比优选为O. 8 10) 1,更优选为(3. 5 6) 1。所述聚合反应的温度优选为30 120°C,更优选为50 90°C。所述二氧化碳压力优选为2. OMPa 10. OMPa,更优选为3. OMPa 7. OMPa0在有溶剂的情况下,所述环氧化合物与所述溶剂的质量比优选为(50 90) (10 50),更优选为(60 75) (25 40)。上述聚合反应优选在称量瓶和反应釜等装置中完成,具体过程优选为将称量瓶在80°C下抽空充(X)2气处理2h (充气6次),并冷却至室温;在CO2 (99. 99% )的保护下向称量瓶内加入一定量的Ln-DMC和链转移剂充分混合,得到混合物;将500mL反应釜在80°C 下,经抽空充(X)2处理2h (充气6次),并冷却至室温,向所述反应釜中加入所述混合物和环氧化合物单体,以500rpm的转速搅拌,通过二氧化碳压力调节器向釜内通入二氧化碳,将反应釜置入恒温浴中,聚合反应。此外,上述过程还优选包括向所述反应釜中加入溶剂。 对于在聚合反应过程中是否加入溶剂,本发明并无特别限制。在制备得到聚(碳酸酯-醚)二元醇后还优选包括将所述聚(碳酸酯-醚)二元醇与环氧丙烷混合,得到稀释液;过滤所述稀释液去除稀土掺杂的双金属氰化物催化剂, 蒸馏、干燥,该过程具体为向用于聚合反应的反应釜用温度为12 15°C的冷水浴冷却至室温,缓慢排出未反应的残余二氧化碳,并向反应釜内加入环氧丙烷直至聚(碳酸酯-醚) 二元醇被稀释至利于通过玻璃沙芯漏斗,得到稀释液;用玻璃沙芯漏斗过滤稀释液除去催化剂,滤液蒸除环氧丙烷,剩余物在40°C真空干燥箱内干燥至恒重,从而得到低分子量聚 (碳酸酯-醚)共聚物二元醇。本发明中,所述稀土掺杂的基于Zn3 [Co (CN) 6] 2的双金属氰化物为催化剂优选按照如下方法制备步骤a)将叔丁醇、水、锌盐化合物和稀土盐化合物混合,得到混合盐溶液;步骤b)向所述混合盐溶液中加入K3 [Co (CN)6]溶液,搅拌后分离,干燥,得到稀土掺杂的基于ZnJCo(CN) J2的双金属氰化物为催化剂。在上述制备稀土掺杂的双金属氰化物催化剂的过程中,所述步骤a)优选为向去离子水、TBA和锌盐化合物形成的溶液中加入稀土盐化合物,得到混合盐溶液;更优选的, 向60mL去离子水、30mL TBA和0. 084mol锌盐化合物形成的溶液中加入稀土盐化合物,稀土盐化合物的加入量优选为0. 001 0. 017mol,更优选为0. 002 0. 0084molo或者,所述步骤a)还可以为向去离子水和TBA形成的溶液中加入锌盐化合物和稀土盐化合物的混合物,得到混合盐溶液;更优选的,向60mL去离子水和30mL TBA形成的溶液中加入0. 084mol 锌盐化合物和稀土盐化合物的混合物,锌盐化合物加入量优选为0. 06 0. 08mol,更优选为0. 065 0. 075mol,稀土盐化合物的加入量优选为0. 004 0. 024mol,更优选为0. 009 0. 019mol。在步骤b)中,所述K3 [Co (CN)6]溶液的浓度优选为0. 0001 0. OOlmol/mL,更优选为0. 0002 0. 0005mol/mL。所述步骤b)具体为步骤bl)、将所述混合盐溶液升温至 20 80°C并保温,优选的,所述升温温度为40 50°C,保温时间优选为20min ;步骤1^2)、向步骤bl)得到的混合盐溶液中滴加K3[Co(CN)6]溶液,滴加速度为0. 2 0. 5ml/min,然后搅拌、分离,得到稀土掺杂的双金属氰化物催化剂。在该步骤中,所述滴加速度优选为0. 4 0. 45ml/min,所述搅拌时间优选为40 lOOmin,更优选为60min ;所述分离优选采用离心机进行离心分离,所述离心分离时间优选为8 15min,更优选为lOmin,离心速度优选为 4000 6000rpm,更优选为 5000rpm。所述步骤W)后还包括将步骤W)得到的稀土掺杂的双金属氰化物催化剂用叔丁醇的水溶液洗涤3 10次;将所述洗涤后的稀土掺杂的双金属氰化物催化剂用叔丁醇洗涤,离心分离、干燥。具体的,将步骤W)得到的稀土掺杂的双金属氰化物催化剂用60ml叔丁醇的水溶液洗涤5次,最后再用叔丁醇洗涤1次,叔丁醇的水溶液中叔丁醇与水的体积比优选依次为30/30,36/24,42/18,48/12,54/6,所述洗涤过程中的搅拌速度优选为300rpm, 洗涤时间优选为lOmin,然后用离心机离心分离,离心速度优选为5000rpm,离心分离时间优选为lOmin,然后将得到的沉积物在50°C下真空干燥10h,经研磨过筛后,再在50°C下真空干燥至恒重,将得到的Ln-DMC在CO2 (99. 99% )保护下储存。
与现有技术相比,本发明采用的稀土掺杂的基于&i3[C0(CN)6]2的双金属氰化物在链转移剂的作用下高效催化二氧化碳与环氧化合物共聚,制备得到了低分子量聚(碳酸酯-醚)二元醇。与未掺杂的基于&13[(0(0幻6]2的双金属氰化物(简称DMC)相比,由于稀土元素的原子半径远大于锌原子的原子半径,稀土的掺杂对DMC的结晶度产生一定的影响,从而改变了 DMC的固有活性,因此,本发明采用的稀土掺杂的基于&i3[CO(CN) J2的双金属氰化物具有更高的催化活性和更好的产物选择性。本发明制备的聚(碳酸酯-醚) 二元醇的分子量为2000g/mol 7000g/mol,碳酸酯单元含量为30% 70%。另外,本发明制备的稀土掺杂的双金属氰化物的催化活性高,产物选择性好,其催化活性大于230g/g Ln-DMC,最高可达12000g/g,环状碳酸酯含量低于6.6%,最低可至2. Iwt %。为了进一步说明本发明的技术方案,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。本发明实施例和比较例采用的化学试剂均为市购。实施例1稀土掺杂的Y-DMCl的制备将0. 39g(0. 002mol)YCl3 和 11. 42g(0. 084mol) ZnCl2 溶于 60mL 去离子水和 30mL叔丁醇形成的混合溶液中,将所形成的溶液加热至50°C并恒温20min,然后在搅拌下 (300rpm)用滴液漏斗向该溶液中滴加1. 32g(0. 004mol)分析纯的K3[Co (CN)6]和20mL去离子水形成的溶液,滴加用时45min,保持反应恒定于50°C,滴加完后继续在50°C搅拌 lh,得到悬浮液;将所得悬浮液用离心机(5000rpm)离心分离lOmin,倾出分离出的清液, 沉积物依次分别用60mL50°C的TBA与H2O的混合溶液化浆洗涤5次,最后用TBA化浆洗涤1次,TBA与H2O的混合溶液中TBA与H2O的体积比分别为30/30,36/24,42/18,48/12, 讨/6,化浆洗涤搅拌速度为300rpm,每次化浆洗涤时间为lOmin,每次化浆后的悬浮液用离心机离心分离,离心速度为5000rpm,离心分离时间为IOmin ;将化浆洗涤后的沉积物在 50°C下真空干燥10h,经研磨过筛后,再在50°C下真空干燥至恒重,得到稀土掺杂的基于 Zn3[Co (CN) J2的双金属氰化物即Y-DMC1,将其在CO2气保护下储存。本实施例制备的稀土掺杂的基于Zn3[Co(CN)6]2的双金属氰化物的原子吸收光谱分析结果如下Zn :29. 432%, Co :13. 275%, Y :0. 013%。实施例2稀土掺杂的Y-DMC2的制备将0. 78g(0. 004mol) YCljP 11. 42g(0. 084mol) ZnCl2 溶于 60mL 去离子水和 30mL 叔丁醇形成的混合溶液中,所形成的溶液加热至50°C并恒温20min,然后在搅拌下(300rpm) 用滴液漏斗向该溶液中滴加1. 32g(0. 004mol)分析纯的K3 [Co (CN) 6]和20mL去离子水形成的溶液,滴加用时45min,保持反应恒定于50°C,滴加完后继续在50°C搅拌lh,得到悬浮液; 将所得悬浮液用离心机(5000rpm)离心分离lOmin,倾出分离出的清液,沉积物依次分别用 60mL50°C的TBA与H2O的混合溶液化浆洗涤5次,最后用TBA化浆洗涤1次,TBA与H2O的混合溶液中TBA与H2O的体积比分别为30/30,36/^24,42/18,48/12^4/6,化浆洗涤搅拌速度为300rpm,每次化浆洗涤时间为lOmin,每次化浆后的悬浮液用离心机离心分离,离心速度为5000rpm,离心分离时间为IOmin ;化浆洗涤后的沉积物在50°C下真空干燥10h,经研磨过筛后,再在50°C下真空干燥至恒重,得到稀土掺杂的基于Zn3[Co(CN)6]2的双金属氰化物即Y-DMC2,将其在(X)2气保护下储存。本实施例制备的稀土掺杂的基于ZnJCo(CN)6]2的双金属氰化物的原子吸收光谱分析结果如下Zn :29. 814%, Co :13. 513%, Y :0. 022%。实施例3稀土掺杂的Y-DMC3的制备将1. 56g(0. 008mol) YCljP 10. 34g(0. 076mol) ZnCl2 溶于 60mL 去离子水和 30mL 叔丁醇形成的混合溶液中,所形成的溶液加热至50°C并恒温20min,然后在搅拌下(300rpm) 用滴液漏斗向该溶液中滴加1. 32g(0. 004mol)分析纯的K3 [Co (CN) 6]和20mL去离子水形成的溶液,滴加用时45min,保持反应温度恒定于50°C,滴加完后继续在50°C搅拌Ih得到悬浮液;将所得悬浮液用离心机(5000rpm)离心分离lOmin,倾出分离出的清液,沉积物依次分别用60mL50°C的TBA与H2O的混合溶液化浆洗涤5次,最后用TBA化浆洗涤1次,TBA与 H2O的混合溶液中TBA与H2O的体积比分别为30/30,36/24,42/18,48/12,M/6,化浆洗涤搅拌速度为300rpm,每次化浆洗涤时间为lOmin,每次化浆后的悬浮液用离心机离心分离,离心速度为5000rpm,离心分离时间为IOmin ;化浆洗涤后的沉积物在50°C下真空干燥10h,经研磨过筛后,再在50°C下真空干燥至恒重,得到稀土掺杂的基于ai3[Co(CN)6]2的双金属氰化物即Y-DMC3,将其在(X)2气保护下储存。本实施例制备的稀土掺杂的基于ZnJCo(CN) J2 的双金属氰化物的原子吸收光谱分析结果如下=Zn 27. 623%, Co :12. 581%, Y :0. 035%。
实施例4稀土掺杂的Nd-DMC的制备将1. Og (0. 004mol) NdCljP 11. 42g(0. 084mol) ZnCl2 溶于 60mL 去离子水和 30mL 叔丁醇形成的混合溶液中,所形成的溶液加热至50°C并恒温20min,然后在搅拌下(300rpm) 用滴液漏斗向该溶液中滴加1. 32g(0. 004mol)分析纯的KjCo(CN)6]和20mL去离子水形成的溶液,滴加用时45min,保持反应温度恒定于50°C,滴加完后继续在50°C搅拌Ih ;所得悬浮液用离心机(5000rpm)离心分离lOmin,倾出分离出的清液,沉积物依次分别用60mL 50°C的TBA与H2O的混合溶液化浆洗涤5次,最后用TBA化浆洗涤1次,TBA与H2O的混合溶液中TBA与H2O的体积比分别为30/30,36/ ,42/18,48/12,54/6,化浆洗涤搅拌速度为 300rpm,每次化浆洗涤时间为lOmin,每次化浆后的悬浮液用离心机离心分离,离心速度为 5000rpm,离心分离时间为IOmin ;化浆洗涤后的沉积物在50°C下真空干燥10h,经研磨过筛后,再在50°C下真空干燥至恒重,得到稀土掺杂的基于ai3[Co(CN)6]2的双金属氰化物即 Nd-DMC,将其在(X)2气保护下储存。本实施例制备的稀土掺杂的基于Zn3[Co(CN)6]2的双金属氰化物的原子吸收光谱分析结果如下=Zn 29. 212%, Co :13. 815%, Nd :0. 024% 0实施例5稀土掺杂的La-DMC的制备将0. 98g(0. O(Mmol)LaCl3 和 11. 42g(0. 084mol) ZnCl2 溶于 60mL 去离子水和 30mL叔丁醇形成的混合溶液中,所形成的溶液加热至50°C并恒温20min,然后在搅拌下 (300rpm)用滴液漏斗向该溶液中滴加1. 32g(0. 004mol)分析纯的K3[Co (CN)6]和20mL去离子水形成的溶液,滴加用时45min,保持反应温度恒定于50°C,滴加完后继续在50°C搅拌Ih得到悬浮液;将所得悬浮液用离心机(5000rpm)离心分离lOmin,倾出分离出的清液, 沉积物依次分别用60mL50°C的TBA与H2O的混合溶液化浆洗涤5次,最后用TBA化浆洗涤1次,TBA与H2O的混合溶液中TBA与H2O的体积比分别为30/30,36/24,42/18,48/12, 讨/6,化浆洗涤搅拌速度为300rpm,每次化浆洗涤时间为lOmin,每次化浆后的悬浮液用离心机离心分离,离心速度为5000rpm,离心分离时间为IOmin ;化浆洗涤后的沉积物在 50°C下真空干燥10h,经研磨过筛后,再在50°C下真空干燥至恒重,,得到稀土掺杂的基于 Zn3[Co (CN)J2的双金属氰化物即La-DMC,将其在(X)2气保护下储存。本实施例制备的稀土掺杂的基于&i3[C0(CN)6]2的双金属氰化物的原子吸收光谱分析结果如下ZnJ9.412%, Co :13. 313%, La :0. 023%。实施例6稀土掺杂的Y-DMC4的制备将2. 16g(0. O(Mmol)Y(Cl3COO)3 禾口 11. 42g(0. 084mol) ZnCl2 溶于 60mL 去离子水和30mL叔丁醇形成的混合溶液中,所形成的溶液加热至50°C并恒温20min,然后在搅拌下 (300rpm)用滴液漏斗向该溶液中滴加1.32g(0. 004mol)分析纯的K3[Co (CN)6]和2OmL去离子水形成的溶液,滴加用时45min,保持反应恒定于50°C,滴加完后继续在50°C搅拌Ih ; 所得悬浮液用离心机(5000rpm)离心分离lOmin,倾出分离出的清液,沉积物依次分别用 60mL50°C的TBA与H2O的混合溶液化浆洗涤5次,最后用TBA化浆洗涤1次,TBA与H2O的混合溶液中TBA与H2O的体积比分别为30/30,36/^24,42/18,48/12^4/6,化浆洗涤搅拌速度为300rpm,每次化浆洗涤时间为lOmin,每次化浆后的悬浮液用离心机离心分离,离心速度为5000rpm,离心分离时间为IOmin ;化浆洗涤后的沉积物在50°C下真空干燥10h,经研磨过筛后,再在50°C下真空干燥至恒重,得到稀土掺杂的基于ai3[Co(CN)6]2的双金属氰化物即Y-DMC4,将其在0)2气保护下储存。本实施例制备的稀土掺杂的基于Zn3[Co (CN) J2的双金属氰化物的原子吸收光谱分析结果如下=Zn 27. 452%, Co :12. 265%, Y :0. 018%。实施例7稀土掺杂的Y-DMC5的制备将0. 8g (0. 004mol) YCl3 和 30. 74g (0. 084mol) Zn (Cl3COO) 2 溶于 60mL 去离子水和30mL叔丁醇形成的混合溶液中,所形成的溶液加热至50°C并恒温20min,然后在搅拌下 (300rpm)用滴液漏斗向该溶液中滴加1.32g(0. 004mol)分析纯的K3[Co (CN)6]和2OmL去离子水形成的溶液,滴加用时45min,保持反应恒定于50°C,滴加完后继续在50°C搅拌Ih ; 所得悬浮液用离心机(5000rpm)离心分离lOmin,倾出分离出的清液,沉积物依次分别用 60mL50°C的TBA与H2O的混合溶液化浆洗涤5次,最后用TBA化浆洗涤1次,TBA与H2O的混合溶液中TBA与H2O的体积比分别为30/30,36/^24,42/18,48/12^4/6,化浆洗涤搅拌速度为300rpm,每次化浆洗涤时间为lOmin,每次化浆后的悬浮液用离心机离心分离,离心速度为5000rpm,离心分离时间为IOmin ;化浆洗涤后的沉积物在50°C下真空干燥10h,经研磨过筛后,再在50°C下真空干燥至恒重,得到稀土掺杂的基于Zn3[Co(CN)6]2的双金属氰化物即Y-DMC5,将其在(X)2气保护下储存。本实施例制备的稀土掺杂的基于ZnJCo(CN)6]2的双金属氰化物的原子吸收光谱分析结果如下=Zn 29. 132%, Co :12. 761%, Y :0. 022%.实施例8将称量瓶在80°C下,经抽空充(X)2气处理2h (充气6次),并冷却至室温,然后用该称量瓶称取10. Omg实施例1制备的Y-DMC1,并在(X)2气保护下向称量瓶内加入10. Og PPG-300链转移剂;将所述Y-DMCl和PPG-300充分混合的混合物注入预先在80°C下,经抽空充(X)2气处理2h (充气6次)并冷却至室温的500mL高压反应釜内,随后借助催化剂称量瓶的连通向釜内加入IOOmL环氧丙烷,以500rpm的速度搅拌,迅速通过二氧化碳压力调节器向釜内通入二氧化碳,将高压釜置入恒温浴中进行聚合反应,聚合的二氧化碳压力 4. OMPa,聚合反应温度90°C,聚合反应时间10h,聚合反应结束后,高压釜用12 15°C的冷水浴冷却至室温,缓慢排出未反应的单体和二氧化碳,并向釜内加入环氧丙烷使聚合物稀释至易于用G2玻璃沙芯漏斗过滤的程度,用G2玻璃沙芯漏斗过滤除去催化剂,滤液蒸除环氧丙烷,剩余物在40°C真空干燥箱内干燥至恒重,得到聚(碳酸酯-醚)二元醇106g。利用GPC对本实施例制备的聚(碳酸酯-醚)二元醇进行检测,该聚(碳酸酯-醚)二元醇的数均分子量为6000g/mol,分子量分布为1. 78。核磁氢谱分析结果表明,本实施例制备的聚合物中含有;34.3%的碳酸酯单元(CU),活性为10600g/gY-DMCl,产物中环状碳酸酯(Wpc) 含量为3. 8wt%。实施例9将称量瓶在80°C下,经抽空充(X)2气处理2h (充气6次),并冷却至室温,然后用该称量瓶称取10. Omg实施例2制备的Y-DMC2,并在(X)2气保护下向称量瓶内加入10. Og PPG-300链转移剂;将所述Y-DMC2和PPG-300充分混合的混合物注入预先在80°C下,经抽空充(X)2气处理2h (充气6次),并冷却至室温的500mL高压反应釜内,随后借助催化剂称量瓶的连通向釜内加入IOOmL环氧丙烷,以500rpm的速度搅拌,迅速通过二氧化碳压力调节器向釜内通入二氧化碳,高压釜置入恒温浴中进行聚合反应,聚合的二氧化碳压力4. OMPa, 聚合反应温度90°C,聚合反应时间10h,后处理同实施例8,得到聚(碳酸酯-醚)二元醇 120g。利用GPC对本实施例制备的聚(碳酸酯-醚)二元醇进行检测,该聚(碳酸酯-醚) 二元醇的数均分子量为6400g/mol,分子量分布为1.83。核磁氢谱分析结果表明,本实施例制备的聚合物中含有36. 8%的碳酸酯单元,活性为12000g/gY-DMC2,产物中环状碳酸酯含量为 3. 9wt%。实施例10将称量瓶在80°C下,经抽空充(X)2气处理2h (充气6次),并冷却至室温,然后用该称量瓶称取10. Omg实施例3制备的Y-DMC3,并在(X)2气保护下向称量瓶内加入10. Og PPG-300链转移剂;将所述Y-DMC3和PPG-300充分混合的混合物被注入预先在80°C下, 经抽空充(X)2气处理2h (充气6次),并冷却至室温的500mL高压反应釜内,随后借助催化剂称量瓶的连通向釜内加入IOOmL环氧丙烷,以500rpm的速度搅拌,迅速通过二氧化碳压力调节器向釜内通入二氧化碳,高压釜置入恒温浴中进行聚合反应。聚合的二氧化碳压力 4.010^,聚合反应温度901,聚合反应时间10h,后处理同实施例8,得到聚(碳酸酯-醚) 二元醇105g。利用GPC对本实施例制备的聚(碳酸酯-醚)二元醇进行检测,该聚(碳酸酯-醚)二元醇的数均分子量为6100g/mol,分子量分布为1.80。核磁氢谱分析结果表明, 本实施例制备的聚合物中含有35. 8%的碳酸酯单元,活性为10500g/gY-DMC3,产物中环状碳酸酯含量为4. Iwt %。实施例11将称量瓶在80°C下,经抽空充(X)2气处理2h (充气6次),并冷却至室温,然后用该称量瓶称取10. Omg实施例4制备的Nd-DMC,并在(X)2气保护下向称量瓶内加入10. Og PPG-300链转移剂;将所述Nd-DMC和PPG-300充分混合的混合物被注入预先在80°C下, 经抽空充(X)2气处理2h (充气6次),并冷却至室温的500mL高压反应釜内,随后借助催化剂称量瓶的连通向釜内加入IOOmL环氧丙烷,以500rpm的速度搅拌,迅速通过二氧化碳压力调节器向釜内通入二氧化碳,高压釜置入恒温浴中进行聚合反应,聚合的二氧化碳压力 4.010^,聚合反应温度901,聚合反应时间10h,后处理同实施例8,得到聚(碳酸酯-醚) 二元醇100g。利用GPC对本实施例制备的聚(碳酸酯-醚)二元醇进行检测,该聚(碳酸酯-醚)二元醇的数均分子量为6100g/mol,分子量分布为1.82。核磁氢谱分析结果表明, 本实施例制备的聚合物中含有35. 6%的碳酸酯单元,活性为10000g/gNd-DMC,产物中环状碳酸酯含量为4. 5wt%。实施例12将称量瓶在80°C下,经抽空充(X)2气处理2h (充气6次),并冷却至室温,然后用该称量瓶称取10. Omg实施例5制备的La-DMC,并在(X)2气保护下向称量瓶内加入10. Og PPG-300链转移剂;将所述La-DMC和PPG-300充分混合的混合物被注入预先在80°C下, 经抽空充(X)2气处理2h (充气6次),并冷却至室温的500mL高压反应釜内,随后借助催化剂称量瓶的连通向釜内加入IOOmL环氧丙烷,以500rpm的速度搅拌,迅速通过二氧化碳压力调节器向釜内通入二氧化碳,高压釜置入恒温浴中进行聚合反应,聚合的二氧化碳压力 4. OMPa,聚合反应温度90°C,聚合反应时间为10h,后处理同实施例8,得到聚(碳酸酯-醚) 二元醇98g。利用GPC对本实施例制备的聚(碳酸酯-醚)二元醇进行检测,该聚(碳酸酯-醚)二元醇的数均分子量为5800g/mol,分子量分布为1.65。核磁氢谱分析结果表明, 本实施例制备的聚合物中含有35. 2%的碳酸酯单元,活性为9800g/gLa-DMC,产物中环状碳酸酯含量为5. Swt %。实施例13将称量瓶在80°C下,经抽空充(X)2气处理2h (充气6次),并冷却至室温,然后用该称量瓶称取10. Omg实施例6制备的Y-DMC4,并在(X)2气保护下向称量瓶内加入10. Og PPG-300链转移剂;将所述Y-DMC4和PPG-300充分混合的混合物被注入预先在80°C下, 经抽空充(X)2气处理2h (充气6次),并冷却至室温的500mL高压反应釜内,随后借助催化剂称量瓶的连通向釜内加入IOOmL环氧丙烷,以500rpm的速度搅拌,迅速通过二氧化碳压力调节器向釜内通入二氧化碳,高压釜置入恒温浴中进行聚合反应。聚合的二氧化碳压力 4.010^,聚合反应温度901,聚合反应时间10h,后处理同实施例8,得到聚(碳酸酯-醚) 二元醇115g。利用GPC对本实施例制备的聚(碳酸酯-醚)二元醇进行检测,该聚(碳酸酯-醚)二元醇的数均分子量为6400g/mol,分子量分布为1.73。核磁氢谱分析结果表明, 实施例制备的聚合物中含有34. 8%的碳酸酯单元,活性为11500g/gY-DMC4,产物中环状碳酸酯含量为4. Owt %。实施例14将称量瓶在80°C下,经抽空充(X)2气处理2h (充气6次),并冷却至室温,然后用该称量瓶称取10. Omg实施例7制备的Y-DMC5,并在(X)2气保护下向称量瓶内加入10. Og PPG-300链转移剂;将所述Y-DMC5和PPG-300充分混合的混合物被注入预先在80°C下, 经抽空充(X)2气处理2h (充气6次),并冷却至室温的500mL高压反应釜内,随后借助催化剂称量瓶的连通向釜内加入IOOmL环氧丙烷,以500rpm的速度搅拌,迅速通过二氧化碳压力调节器向釜内通入二氧化碳,高压釜置入恒温浴中进行聚合反应。聚合的二氧化碳压力 4. OMPa,聚合反应温度90°C,聚合反应时间10h,后处理同实施例8,得到聚(碳酸酯-醚) 二元醇95g。利用GPC对本实施例制备的聚(碳酸酯-醚)二元醇进行检测,该聚(碳酸酯-醚)二元醇的数均分子量为6000g/mol,分子量分布为1.65,核磁氢谱分析结果表明, 本实施例制备的聚合物中含有32. 8%的碳酸酯单元,活性为9500g/gY-DMC5,产物中环状碳酸酯含量为5. Owt %。实施例15将称量瓶在80°C下,经抽空充(X)2气处理2h (充气6次),并冷却至室温,然后用该称量瓶称取10. Omg实施例2制备的Y-DMC2,并在(X)2气保护下向称量瓶内加入20. Og PPG-300链转移剂;将所述Y-DMC2和PPG-300充分混合的混合物被注入预先在80°C下, 经抽空充(X)2气处理2h (充气6次),并冷却至室温的500mL高压反应釜内,随后借助催化剂称量瓶的连通向釜内加入IOOmL环氧丙烷,以500rpm的速度搅拌,迅速通过二氧化碳压力调节器向釜内通入二氧化碳,高压釜置入恒温浴中进行聚合反应,聚合的二氧化碳压力 4.010^,聚合反应温度901,聚合反应时间10h,后处理同实施例8,得到聚(碳酸酯-醚) 二元醇106g。利用GPC对本实施例制备的聚(碳酸酯-醚)二元醇进行检测,该聚(碳酸酯-醚)二元醇的数均分子量为3300g/mol,分子量分布为1.44,核磁氢谱分析结果表明, 本实施例制备的聚合物中含有30. 6%的碳酸酯单元,活性为10600g/gY-DMC2,产物中环状碳酸酯含量为6. 6wt%。实施例16将称量瓶在80°C下,经抽空充(X)2气处理2h (充气6次),并冷却至室温,然后用该称量瓶称取35. Omg实施例2制备的Y-DMC2,并在(X)2气保护下向称量瓶内加入20. Og PPG-300链转移剂;将所述Y-DMC2和PPG-300充分混合的混合物被注入预先在80°C下, 经抽空充(X)2气处理2h (充气6次),并冷却至室温的500mL高压反应釜内,随后借助催化剂称量瓶的连通向釜内加入IOOmL环氧丙烷,以500rpm的速度搅拌,迅速通过二氧化碳压力调节器向釜内通入二氧化碳,高压釜置入恒温浴中进行聚合反应。聚合的二氧化碳压力 4. OMPa,聚合反应温度70°C,聚合反应时间10h,后处理同实施例8,得到聚(碳酸酯-醚) 二元醇101g。利用GPC对本实施例制备的聚(碳酸酯-醚)二元醇进行检测,该聚(碳酸酯-醚)二元醇的数均分子量为3300g/mol,分子量分布为1.32。核磁氢谱分析结果表明, 本实施例制备的聚合物中含有39. 3%的碳酸酯单元,活性为^00g/gY-DMC2,产物中环状碳酸酯含量为6. 2wt%。实施例17将称量瓶在80°C下,经抽空充(X)2气处理2h (充气6次),并冷却至室温,然后用该称量瓶称取200. Omg实施例2制备的Y-DMC2,并在(X)2气保护下向称量瓶内加入20. Og PPG-300链转移剂;将所述Y-DMC2和PPG-300充分混合的混合物被注入预先在80°C下,经抽空充(X)2气处理2h (充气6次),并冷却至室温的500mL高压反应釜内,随后借助催化剂称量瓶的连通向釜内加入IOOmL环氧丙烷,开动搅拌(500rpm),迅速通过二氧化碳压力调节器向釜内通入二氧化碳,高压釜置入恒温浴中进行聚合反应,聚合的二氧化碳压力4. OMPa, 聚合反应温度50°C,聚合反应时间30h,后处理同实施例8,得到聚(碳酸酯-醚)二元醇 118g。利用GPC对本实施例制备的聚(碳酸酯-醚)二元醇进行检测,该聚(碳酸酯-醚) 二元醇的数均分子量为3500g/mol,分子量分布为1. 63。核磁氢谱分析结果表明,本实施例制备的聚合物中含有8%的碳酸酯单元,活性为590g/gY-DMC2,产物中环状碳酸酯含量为2.6wt%。如图1所示,为本发明实施例15和实施例17制备的聚(碳酸酯-醚)二元醇的红外谱图谱,其中a为实施例15制备的聚(碳酸酯-醚)二元醇的红外谱图,b为实施例17制备的聚(碳酸酯-醚)二元醇的红外谱谱图,图2为本发明实施例15和实施例17 制备的聚(碳酸酯-醚)二元醇的1HNMR谱图,其中a为实施例15制备的聚合物的1HNMR 谱图,b为实施例17制备的聚(碳酸酯-醚)二元醇的1HNMR谱图。实施例18
将称量瓶在80°C下,经抽空充(X)2气处理2h (充气6次),并冷却至室温,然后用该称量瓶称取500. Omg实施例2制备的Y-DMC2,并在(X)2气保护下向称量瓶内加入20. Og PPG-300链转移剂;将所述Y-DMC2和PPG-300充分混合的混合物被注入预先在80°C下,经抽空充(X)2气处理2h (充气6次),并冷却至室温的500mL高压反应釜内,随后借助催化剂称量瓶的连通向釜内加入IOOmL环氧丙烷和50mL四氢呋喃的混合物,开动搅拌(500rpm), 迅速通过二氧化碳压力调节器向釜内通入二氧化碳,高压釜置入恒温浴中进行聚合反应, 聚合的二氧化碳压力7. OMPa,聚合反应温度50°C,聚合反应时间50h,后处理同实施例8,得到聚(碳酸酯-醚)二元醇115g。利用GPC对本实施例制备的聚(碳酸酯-醚)二元醇进行检测,该聚(碳酸酯-醚)二元醇的数均分子量为3600g/mol,分子量分布为1.62。核磁氢谱分析结果表明,本实施例制备的聚合物中含有67. 8%的碳酸酯单元,活性为230g/ gY-DMC2,产物中环状碳酸酯含量为2. Iwt %。
比较例1双金属氰化物DMC催化剂的制备将11. 42g(0. 084mol)ZnCl2溶于60mL去离子水中和30mL叔丁醇形成的混合溶液中,所形成的溶液加热至50°C并恒温20min,然后在搅拌下(300rpm)用滴液漏斗向该溶液中滴加1. 32g(0. 004mol)分析纯的KjCo(CN)6]和20mL去离子水形成的溶液,滴加时间为45min,保持反应温度恒定于50°C,滴加完后继续在50°C搅拌Ih ;所得悬浮液用离心机 (5000rpm)离心分离lOmin,倾出分离出的清液,沉积物依次分别用60mL 50°C的TBA与H2O 的混合溶液化浆洗涤5次,最后用TBA化浆洗涤1次,TBA与H2O的混合溶液中TBA与H2O 的体积比分别为30/30,36/24,42/18,48/12,54/6,化浆洗涤搅拌速度为300rpm,每次化浆洗涤时间为lOmin,每次化浆后的悬浮液用离心机离心分离,离心速度为5000rpm,离心分离时间为IOmin ;化浆洗涤后的沉积物在50°C下真空干燥10h,经研磨过筛后,再在50°C下真空干燥至恒重,得到双金属氰化物DMC,将所得DMC在(X)2气保护下储存。本比较例制备的DMC的原子吸收光谱分析结果如下Zn :35. 331%, Co :8. 162%。比较例2将称量瓶在80°C下,经抽空充(X)2气处理2h (充气6次),并冷却至室温,然后用该称量瓶称取10. Omg比较例1制备的DMC,并在(X)2气保护下向称量瓶内加入10. Og PPG-300 链转移剂;将所述DMC和PPG-300充分混合的混合物被注入预先在80°C下,经抽空充(X)2气处理2h (充气6次),并冷却至室温的500mL高压反应釜内,随后借助催化剂称量瓶的连通向釜内加入IOOmL环氧丙烷,以500rpm的速度搅拌,迅速通过二氧化碳压力调节器向釜内通入二氧化碳,高压釜置入恒温浴中进行聚合反应。聚合的二氧化碳压力4. OMPa,聚合反应温度90°C,聚合反应时间10h,后处理同实施例8,得到聚(碳酸酯-醚)二元醇90g。利用 GPC对本比较例制备的聚(碳酸酯-醚)二元醇进行检测,该聚(碳酸酯-醚)二元醇的数均分子量为6000g/mol,分子量分布为1. 78,核磁氢谱分析结果表明,聚合物中含有32. 3% 的碳酸酯单元,活性为9000g/gDMC,产物中环状碳酸酯含量为8. 2wt%。比较例3将称量瓶在80°C下,经抽空充(X)2气处理2h (充气6次),并冷却至室温,然后用该称量瓶称取10. Omg比较例1制备的DMC,并在(X)2气保护下向称量瓶内加入20. Og PPG-300 链转移剂;将所述DMC和PPG-300充分混合的混合物被注入预先在80°C下,经抽空充(X)2气处理2h (充气6次),并冷却至室温的500mL高压反应釜内,随后借助催化剂称量瓶的连通向釜内加入IOOmL环氧丙烷,以500rpm的速度搅拌,迅速通过二氧化碳压力调节器向釜内通入二氧化碳,高压釜置入恒温浴中进行聚合反应,聚合的二氧化碳压力4. OMPa,聚合反应温度90°C,聚合反应时间10h,后处理同实施例8,得到聚(碳酸酯-醚)二元醇82g。利用 GPC对本比较例制备的聚(碳酸酯-醚)二元醇进行检测,该聚(碳酸酯-醚)二元醇的数均分子量为3000g/mol,分子量分布为1. 38。核磁氢谱分析结果表明,聚合物中含有26. 3% 的碳酸酯单元,活性为8200g/gDMC,产物中环状碳酸酯含量为12. Iwt %。比较例4将称量瓶在80°C下,经抽空充(X)2气处理2h (充气6次),并冷却至室温,然后用该称量瓶称取35. 0. Omg比较例1制备的DMC,并在(X)2气保护下向称量瓶内加入20. Og PPG-300链转移剂;将所述DMC和PPG-300充分混合的混合物被注入预先在80°C下,经抽空充(X)2气处理2h (充气6次),并冷却至室温的500mL高压反应釜内,随后借助催化剂称量瓶的连通向釜内加入IOOmL环氧丙烷,以500rpm的速度搅拌,迅速通过二氧化碳压力调节器向釜内通入二氧化碳,高压釜置入恒温浴中进行聚合反应。聚合的二氧化碳压力4. OMPa, 聚合反应温度70°C,聚合反应时间10h,后处理同实施例8,得到聚(碳酸酯-醚)二元醇 78g。利用GPC对本比较例制备的聚(碳酸酯-醚)二元醇进行检测,该聚(碳酸酯-醚) 二元醇的数均分子量为^OOg/mol,分子量分布为1. 24,核磁氢谱分析结果表明,聚合物中含有30. 7%的碳酸酯单元,活性为22^g/gDMC,产物中环状碳酸酯含量为8. 6wt%。比较例5将称量瓶在80°C下,经抽空充(X)2气处理2h (充气6次),并冷却至室温,然后用该称量瓶称取200. Omg比较例1制备的DMC,并在CO2气保护下向称量瓶内加入20. Og PPG-300 链转移剂;将所述DMC和PPG-300充分混合的混合物被注入预先在80°C下,经抽空充(X)2气处理池(充气6次),并冷却至室温的500mL高压反应釜内,随后借助催化剂称量瓶的连通向釜内加入IOOmL环氧丙烷,以500rpm的速度搅拌,迅速通过二氧化碳压力调节器向釜内通入二氧化碳,高压釜置入恒温浴中进行聚合反应,聚合的二氧化碳压力4. OMPa,聚合反应温度50°C,聚合反应时间50h,后处理同实施例8,得到聚(碳酸酯-醚)二元醇72g。利用 GPC对本比较例制备的聚(碳酸酯-醚)二元醇进行检测,该聚(碳酸酯-醚)二元醇的数均分子量为^OOg/mol,分子量分布为1. 56。核磁氢谱分析结果表明,聚合物中含有41. 3% 的碳酸酯单元,活性为360g/g DMC,产物中环状碳酸酯含量为4. 3wt%。表1为本发明实施例和比较例的实验结果统计表。表1为本发明实施例和比较例的实验结果统计表
权利要求
1.一种聚(碳酸酯-醚)二元醇的制备方法,包括以下步骤以稀土掺杂的基于ZnJCo(CN)6]2的双金属氰化物为催化剂,将二氧化碳和环氧化合物在链转移剂存在下进行聚合反应,得到聚(碳酸酯-醚)二元醇,所述稀土掺杂的基于 Zn3 [Co (CN) 6] 2的双金属氰化物由稀土盐化合物、锌盐化合物、K3 [Co (CN) 6]和叔丁醇制备。
2.根据权利要求1所述的制备方法,其特征在于,所述环氧化合物为环氧乙烷、环氧丙烷、环氧丁烷、环氧环己烷和环氧氯丙烷中的一种或几种。
3.根据权利要求1所述的制备方法,其特征在于,所述链转移剂为乙二醇、丙二醇、丁二醇、戊二醇、环戊二醇、己二醇、环己二醇、庚二醇、一缩乙二醇、二缩乙二醇、三缩乙二醇、 四缩乙二醇、一缩丙二醇、二缩丙二醇、三缩丙二醇、四缩丙二醇、分子量低于2000的聚乙二醇、分子量低于2000的聚丙二醇和分子量低于2000的聚四氢呋喃二元醇中的一种或几种。
4.根据权利要求1所述的制备方法,其特征在于,所述稀土盐化合物为YC13、LaCl3、 NdCl3、PrCl3、Y(NO3)3, La (NO3) 3、Nd (NO3) 3、Pr (NO3) 3、Y (ClCH2COO) 3、La (ClCH2COO) 3、 Nd(ClCH2COO) 3、Pr (ClCH2COO) 3、Y (Cl2CHCOO) 3、La (Cl2CHCOO) 3、Nd (Cl2CHCOO) 3、 Pr (Cl2CHCOO) 3、Y (Cl3CCOO) 3、La (Cl3CCOO) 3、Nd (Cl3CCOO) 3 和 Pr (Cl3CCOO) 3 中的一种或几种。
5.根据权利要求1所述的制备方法,其特征在于,所述锌盐化合物为&iCl2、ZnBr2, Zn (CH3COO) 2、Zn (ClCH2COO) 2、Si (Cl2CHCOO) 2、Si (Cl3CCOO) 2、ZnSO4 和 Si (NO3) 2 中的一种或几种。
6.根据权利要求1所述的制备方法,其特征在于,所述稀土掺杂的基于ZnJCo(CN)J2 的双金属氰化物与环氧化合物的质量比为(8. 4X 10_5 6. 02ΧΙΟ"3) 1。
7.根据权利要求1所述的制备方法,其特征在于,所述环氧化合物与所述链转移剂的质量比为(2.8 10) 1。
8.根据权利要求1所述的制备方法,其特征在于,所述聚合反应的温度的30 120°C。
9.根据权利要求1所述的制备方法,其特征在于,所述二氧化碳压力为2.OMPa 10.OMPa0
10.根据权利要求1所述的制备方法,其特征在于,得到聚(碳酸酯-醚)二元醇后还包括将所述聚(碳酸酯-醚)二元醇与环氧丙烷混合,得到稀释液;过滤所述稀释液去除稀土掺杂的双金属氰化物催化剂,蒸馏、干燥。
11.根据权利要求1所述的制备方法,其特征在于,所述稀土掺杂的基于ai3[Co(CN)J2 的双金属氰化物按照如下方法制备步骤a)将叔丁醇、水、锌盐化合物和稀土盐化合物混合,得到混合盐溶液;步骤b)向所述混合盐溶液中加入K3 [Co (CN)6]溶液,搅拌后分离,干燥,得到稀土掺杂的基于Zn3 [Co (CN) 6] 2的双金属氰化物。
12.根据权利要求11所述的制备方法,其特征在于,所述步骤b)具体为步骤bl)将所述混合盐溶液升温至20 80°C并保温;步骤1^2)向步骤bl)得到的混合盐溶液中滴加KJCo(CN)6]溶液,滴加速度为0.2 0. 5ml/min,然后搅拌、分离,得到稀土掺杂的基于&i3[C0(CN)6]2的双金属氰化物。
13.根据权利要求12所述的制备方法,其特征在于,所述步骤后还包括将步骤W)得到的稀土掺杂的基于ZnJCo(CN)6]2的双金属氰化物用叔丁醇的水溶液洗涤3 10次;将所述洗涤后的稀土掺杂的基于Si3 [Co (CN) 6] 2的双金属氰化物用叔丁醇洗涤,离心分 1 、zFfe ο
14.根据权利要求11所述的制备方法,其特征在于,所述1(3[&)(0幻6]溶液的浓度为 0.0001 0.001mol/mL。
15.一种稀土掺杂的双金属氰化物的制备方法,包括以下步骤步骤a)将叔丁醇、水、锌盐化合物和稀土盐化合物混合,得到混合盐溶液; 步骤b)向所述混合盐溶液中加入K3 [Co (CN)6]溶液,搅拌后分离,干燥,得到稀土掺杂的基于Zn3 [Co (CN) 6] 2的双金属氰化物。
全文摘要
本发明公开了一种稀土掺杂的双金属氰化物催化剂的制备方法及其催化二氧化碳和环氧化合物共聚制备低分子量聚(碳酸酯-醚)二元醇的方法,该聚(碳酸酯-醚)二元醇的制备方法,包括以下步骤稀土掺杂的基于Zn3[Co(CN)6]2的双金属氰化物为催化剂,将二氧化碳和环氧化合物在链转移剂存在下进行聚合反应,得到聚(碳酸酯-醚)二元醇。与现有技术相比,本发明采用的稀土掺杂的基于Zn3[Co(CN)6]2的双金属氰化物在链转移剂的作用下高效催化二氧化碳与环氧化合物共聚,与未掺杂的双金属氰化物相比,本发明采用的稀土掺杂的基于Zn3[Co(CN)6]2的双金属氰化物具有更高的催化活性和更好的产物选择性。
文档编号C08G64/34GK102432857SQ20111023149
公开日2012年5月2日 申请日期2011年8月12日 优先权日2011年8月12日
发明者王佛松, 王献红, 赵晓江, 高永刚 申请人:中国科学院长春应用化学研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1