一种高耐磨高强度的超疏水材料及其加工方法与流程

文档序号:11829005阅读:1139来源:国知局

本发明涉及一种高耐磨高强度的超疏水材料及其加工方法。



背景技术:

超疏水涂层是一种基于荷叶表面效应的仿生涂层技术。这种涂层具有防污、自洁、防腐蚀、防水、防结冰等功能。可以用于石油化工、机械制造、汽车和火车等制造技术,也可以用微电子、生物制药、新能源(风电和太阳能光伏板)及其仪器仪表等广泛的应用领域。

决定表面超疏水性能的主要因素主要有两个:一是表面微结构或者粗糙度,只有表面微结构由纳米或者微米-纳米复合结构组成才有可能制造出超疏水表面;第二是表面自由能,只有低的表面能组成的化学材料才有可能构造出超疏水表面;总体来说,只有同时满足以上两个条件的表面材料才能构成超疏水表面。

目前超疏水涂层的制备主要是通过以下方式实现的:1)构造或者加工粗糙的微米-纳米复合结构:用酸或者碱金属表面腐蚀出微米-纳米结构;2)通过两种不同的不相容的聚合物材料在结晶时由于相分离导致不同的形貌结构;3)光刻技术指标微米-纳米结构表面;4)激光表面融化,直接获得表面微米-纳米结构;5)电化学沉积金属涂层,具有微米-纳米结构;6)溶胶-凝胶涂层。利用微米-纳米胶体喷涂或者刷涂等技术,在其涂层自然形成粗糙的微米-纳米结构。以上 表面结构通过低表面能化学材料,如长链全氟硅烷,长链硅烷,有机硅,或者硬脂酸等修饰后,成为超疏水表面。目前商业化的超疏水涂料,如超级干涂层、Neverwet的涂层则是先喷涂具有微米的弹性树脂(微米结构是分散的微米颗粒,大小在5-30微米之间),再喷涂一层低表面能物质修饰的纳米氧化硅粒子,构成低表面能的微米-纳米复合结构。另外如下超疏水涂层发明专利,CN201210466649.3,CN201310078920.0,CN201310460822.3,等采用树脂作为粘接剂,微米-纳米复合颗粒作为填料等超疏水涂层,而专利CN 201210286775.0则提出树脂为粘接剂,纳米颗粒为表面粗糙度填充物的超疏水涂层,专利CN 201110278149.2是以碳纳米管为填充物,聚合物或者橡胶树脂为粘接剂构造超疏水涂料。虽然这些涂层通过粘接剂提高了涂层的力学性能(如硬度由超级干的B提高到了2H,或者更高),但其力学性能,特别是耐磨损性能仍然不能满足实际需求。

如上所述,这些超疏水涂层的表面粗糙结构和化学组成决定了其超疏水性能,特别是表面纳米结构对于超疏水性能具有决定性作用。然而,正是因为表面具有纳米结构的致命的机械脆弱性,才导致表面不能很好的耐磨,也就是目前超疏水表面不能经受环境耐磨和大规模的较强压力的水的冲击。这种耐磨性差的原因是纳米结构脆弱所决定的。也是这个原因导致超疏水涂层不能在众多领域获得广泛的应用。虽然超级干涂层采用弹性树脂,改进了涂层的耐磨性,专利CN201410315176.6提出微米-纳米复合孔技术,取代填料技术,也能部分的提高其耐磨性,但会降低涂层的硬度,故其改进量也是有限的。



技术实现要素:

本发明要解决的技术问题是克服现有技术的缺陷,提供一种高耐磨高强度的超疏水材料,能够提高超疏水材料硬度和耐磨性。

为了解决上述技术问题,本发明提供了如下的技术方案:

本发明一种高耐磨高强度的超疏水材料,其包括粘接层,所述粘接层上粘接有多孔网,所述多孔网上喷涂有超疏水涂料层。

进一步地,所述多孔网部分嵌入所述粘接层、部分露出所述粘接层。

进一步地,所述粘接层为双面胶带、UV固化树脂或者粘接剂;或者为氟碳树脂、有机硅树脂、环氧树脂或者橡胶树脂中的一种或几种。优选为树脂,树脂与多孔网有良好的粘接度。

进一步地,所述粘接层的厚度为20-100微米。

进一步地,所述多孔网的网孔为10-50微米;所述多孔网的直径为1-30微米;所述多孔网的材料为低表面能的聚合物材料。多孔网可以为方形或者不规则或者多边形网。

进一步地,所述多孔网的材料为PP、PA、PET、PE、PC或者PTFE中的一种或几种。

本发明的另一个方面公开了一种高耐磨高强度超疏水材料的加工方法,其包括以下步骤:

S1、在工件表面涂敷粘接层,所述粘接层的厚度为20-100微米;

S2、将多孔网直接粘接在粘接层表面;所述多孔网的网孔为10-50微米;所述多孔网的直径为1-30微米;所述多孔网的材料为低表面 能的聚合物材料;

S3、待多孔网与所述粘接层固化后,喷涂超疏水涂料层,待超疏水涂料层干燥和固化后,即形成超疏水材料。

使用时,首先将工件表面通过传统的方式砂纸打磨或者必要的清洁处理后,涂敷粘接层,然后将多孔网直接粘接在粘接层表面,待多孔网与所述粘接层固化后,喷涂超疏水涂料层,待超疏水涂料层干燥和固化后,即形成超疏水材料。

本发明所达到的有益效果是:

本发明通过增加多孔网层,来实现提高超疏水材料硬度和耐磨性的目的。网状结构通过整体的相互连接增加了局部和整体的机械性能,高柔性和强度的多孔网为超疏水材料提供类似脊椎的作用,提高了材料整体的硬度、柔韧性和附着力。网状结构直接为材料表面磨损提供了钉子或者柱子的作用,由于网状材料本身是微米结构,具有非常强的耐磨性和一定的韧性,具有良好的耐磨损性能,同时在表面磨损过程中保护了其中心区纳米结构表面,使得表面的超疏水性能能够保持更长的时间或者寿命。

具体实施方式

以下对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。

实施例1

准备马口铁,表面600目砂纸打磨,先喷涂环氧树脂,厚度为 60微米。将一层PA网直接粘接到环氧树脂表面,PA网网孔为100目,直径25微米,孔间距40微米,干燥和固化后,再喷涂30微米厚度的超级干底漆(美国超级干公司的4000型号的底漆),然后再喷涂超级干面漆(美国超级干公司的4001型号的面漆),厚度为30微米。

实施例2

准备马口铁,表面600目砂纸打磨,先喷涂有机硅树脂,厚度为20微米。将一层PP网直接粘接到有机硅树脂表面,PP网网孔为600目、直径1微米,孔间距10微米,干燥和固化后,再喷涂30微米厚度的超级干底漆,然后再喷涂超级干面漆,厚度为30微米。

实施例3

准备马口铁,表面600目砂纸打磨,先喷涂氟碳树脂,厚度为100微米。将一层PTFE网直接粘接到环氧树脂表面,PTFE网为100目、直径30微米,孔间距50微米,干燥和固化后,再喷涂30微米厚度的超级干底漆,然后再喷涂超级干面漆,厚度为30微米。

实施例4

准备马口铁,表面600目砂纸打磨,粘接层为3M公司的双面胶带,厚度为60微米;将一层PC网直接粘接到双面胶带表面,PC为400目,直径25微米,孔间距40微米;超疏水涂料层为超级干涂层,超级干涂层厚度为50-60微米。

对比例1:与实施例1相同,但未粘接PA网;

对比例2:与实施例1相同,但未粘接PP网;

对比例3:与实施例1相同,但未粘接PTFE网;

对比例4:与实施例1相同,但未粘接PC网。

24小时(室温)后测试上述实施例1~4和对比例1~4的铅笔硬度、附着力、柔韧性、磨损结果、耐高压水冲击性能,结果如下表:

注:表中测试方法:接触角测量根据国标:GB/T 26490-2011;

从上表可以看出,增设多孔网后,超疏水材料的各项性能均有显 著提高,尤其是材料硬度(原涂层为:铅笔硬度1B)和耐磨性(原涂层保持超疏水性能的磨损距离小于2米)有非常明显的提高。

最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1