一种无卤阻燃环氧体系及其制备方法与流程

文档序号:12641348阅读:295来源:国知局

本发明涉及无卤阻燃环氧树脂制备领域,具体涉及一种无卤阻燃环氧体系及其制备方法。



背景技术:

环氧树脂因其具有较好的绝缘性、粘结性、良好的力学性能、成型工艺性能和相对低的成本等优势,广泛应用于电子元器件的粘结、封装以及电气设备的主体绝缘材料。但是易燃的环氧树脂应用在电气设备的主绝缘、电子元器件的封装和印刷线路板的基材,存在巨大的火灾隐患。为此,科学界对环氧树脂的阻燃性能做了非常多的基础研究工作[1-3],并有一部分技术应用在生产实践中。环氧树脂的阻燃研究和实践的正在从含溴阻燃环氧树脂转向无卤阻燃和无卤无磷无铅领域。含溴阻燃环氧树脂主要应用在印刷线路板等领域,研究表明[4],含溴环氧树脂在燃烧时会释放出有毒物质,如强酸性气体,在火灾时致人中毒而无法逃离;在废弃处理时又可能产生如多溴二苯并呋喃等强致癌物。所以欧盟等发达国家提出Rosh以及Reach认证程序,要求电子电气等领域禁止使用含溴的卤系阻燃剂制备阻燃环氧树脂,人们将目光投向了“无卤”阻燃型环氧树脂体系。在电气绝缘用环氧树脂体系中,大致可以通过使用三种策略来实现无卤阻燃:第一,使用或者混用各种含磷结构的环氧树脂以及固化剂[5-6]。这个策略的确可以兼顾阻燃效果和制备的物理性能。但是含磷结构的环氧树脂和固化剂的制备过程复杂,制备的电气绝缘用环氧树脂成本高。第二,添加含磷或者含氮的有机小分子在环氧树脂或者固化剂配方体系中实现产品的阻燃效果。此策略使用无卤阻燃剂制备的环氧树脂电气绝缘材料阻燃效果优异,但是由于大部分小分子无卤阻燃剂具有挥发性大,热稳定性差和吸水率高等缺点,使得制备的环氧树脂电气绝缘材料在机械性能、耐湿热性能和绝缘性能等方面存在缺陷[7]。第三,添加无机阻燃材料在环氧树脂配方体系中实现产品的阻燃效果。实现此策略需要添加大量的无机填料,使得配方体系的粘度升高影响加工性能,而且高填料的环氧树脂配方体系使得其机械性能急剧下降。

[1]张文超,吹熄阻燃环氧树脂机理及应用研究[D].北京:北京理工大学,2013

[2]任华,新型耐热、阻燃环氧树脂及固化剂的合成和性能研究[D].杭州:浙江大学,2008。

[3]李洪霞,无卤阻燃型环氧树脂电子封装材料的制备及性能研究[D].哈尔滨:哈尔滨理工大学,2015。

[4]Wang C.S.,Berman J.,Walker L.,Mendoza A.J.,Appl.Polym.Sci.,2003,43:1315.

[5]Liu Y.L.,J.Polym.Sci.Part A:Polym.Chem.,2002,40:359.

[6]Wang X.,Zhang Q.,Eur.Polym.J.,2004,40:385.

[7]Green J.J.,Fire.Sci.,1992,10:470.



技术实现要素:

本发明的目的在于提供一种兼顾低成本、物理性能和加工性能优异,适用于电子元器件粘结、封装以及电气设备主绝缘材料的传统浇注工艺和自动压力凝胶工艺(APG)工艺,UL 94-V0 1.5mm以上厚度阻燃的无卤阻燃环氧体系。

本发明的另一目的在于提供一种制备方法简单,成本低,适合工业化大规模应用的无卤阻燃环氧体系的制备方法。

本发明解决其技术问题所采用的技术方案是:

一种无卤阻燃环氧体系的制备方法,使用含羟基或氨基的无卤阻燃剂分别改性环氧树脂和酸酐固化剂;

其中,改性环氧树脂过程为:

在真空条件下,按照无卤阻燃剂中的羟基或氨基与异氰酸酯的异氰酸根的摩尔比不等于1将含氨基或羟基的无卤阻燃剂和异氰酸酯混合,在40-120℃的温度下反应I,制备得到含端羟基、端氨基或端异氰酸的预聚物,冷却至室温;然后加入环氧树脂和催化剂,控制预聚物占整个体系中7-25%,加热至40℃-170℃,反应II,冷却至室温,加入相对反应产物为2-25质量%的活性稀释剂进行粘度调节,使整个体系中无卤阻燃剂含量不低于5%,得到无卤阻燃剂改性环氧树脂;

无卤阻燃剂改性酸酐固化剂的过程中:

按质量份计,

含氨基或羟基无卤阻燃剂 5-15份

固体或者液体酸酐 5-30份

液体酸酐 55-75份

在真空条件下,将含氨基或羟基的无卤阻燃剂和固体或者液体酸酐混合,升温至120℃-220℃,反应III,冷却至60℃-100℃,加入液体酸酐进行粘度调节,然后加入相对反应产物0.05-5质量%的促进剂,搅拌,冷却,得到无卤阻燃酸酐固化剂;

将无卤阻燃粉体与200-800目石英粉按照质量比为5-85:15-95混合,搅拌,得到无卤阻燃填料;

将无卤阻燃剂改性环氧树脂、无卤阻燃剂改性酸酐固化剂和无卤阻燃填料按照质量比为1:1:3.0-4.5在温度为25℃-80℃的条件下混合均匀,在真空条件下进行真空脱泡后通过APG工艺或者浇注工艺制备得到无卤阻燃环氧体系。

改性环氧树脂过程中,使用氨基或羟基的无卤阻燃剂与异氰酸酯反应制备含端羟基、端氨基或端异氰酸的预聚物,并且将预聚物在催化剂的作用下与环氧树脂进行接枝反应制备不同磷、氮或者磷氮含量的环氧树脂;

酸酐固化剂的改性过程中,含氨基或羟基的无卤阻燃剂与固体或者液体酸酐反应制备不同磷、氮或者磷氮含量的线性酸酐低聚物,并采用液体酸酐进行黏度调节。

本发明进一步包括以下优选的技术方案:

优选的方案中,所述含羟基或氨基的无卤阻燃剂选自含羟基或氨基的含磷和/或氮的化合物。

优选的方案中,所述无卤阻燃剂改性环氧树脂为乳白色至浅黄色无溶剂液体环氧树脂;所述无卤阻燃剂改性酸酐固化剂为改良预加速乳白色至浅黄色无溶剂酸酐液体固化剂.;所述无卤阻燃填料为白色到微黄色粉体。

优选的方案中,所述反应I的反应时间为30min-2h;

优选的方案中,所述反应II的反应时间为1-3h;

优选的方案中,所述反应III的反应时间为2-4h;

优选的方案中,加入促进剂后搅拌30-120分钟。

所述无卤阻燃剂改性环氧树脂的产品数据为:

在25℃下的粘度: 4,000-15,000MPa.s;

环氧含量: 3.00-4.40eq/kg;

在25℃下的密度: 1.13-1.25g/cm3

所述无卤阻燃剂改性酸酐固化剂的产品数据为:

优选的方案中,所述羟基无卤阻燃剂包括但不限于N-六羟甲基氨基环磷腈、DOPO-HQ、含磷多元醇或含羟基的磷酸酯低聚物中的一种或几种;

优选的方案中,所述氨基无卤阻燃剂包括但不限于但不限于三聚氰胺及其盐类或丁醚化三聚氰胺甲醛树脂。

优选的方案中,所述固体酸酐包括但不限于苯酐,顺酐,四氢苯酐,六氢苯酐或偏苯三酸酐中的一种或几种;

优选的方案中,液体酸酐包括但不限于甲基四氢苯酐或甲基六氢苯酐中的一种或两种。

优选的方案中,所述活性稀释剂包括但不限于聚醚多元醇、聚酯多元醇或植物油或其衍生物、环氧基活性稀释剂或其他含环氧基的低粘度化合物中的一种或几种;

优选的方案中,所述催化剂包括但不限于甲醇钠甲醇溶液,2-苯基咪唑溶液或咪唑同系物溶液等。

优选的方案中,所述促进剂包括但不限于叔胺以及盐、乙酰丙酮金属盐、咪唑或其同系物、三苯基膦或其鏻盐或者有机羧酸盐中的一种或几种;

优选的方案中,所述无卤阻燃粉体包括但不限于聚磷酸铵、磷腈、红磷、白磷或其包覆物、氢氧化镁或氢氧化铝中的一种或几种。

本发明进一步包括上述制备方法制备得到的无卤阻燃环氧体系。

所述无卤阻燃环氧体系可以列举各种电气绝缘产品。如具体可以列举绝缘子等。

本发明的有益效果:

第一,利用无卤阻燃剂的反应基团与环氧树脂反应,解决了常规阻燃环氧树脂制品在使用过程中阻燃剂析出的现象。

第二,利用含特殊基团的无卤阻燃剂与特殊的促进剂的结合,使其在固化过程中能够与环氧树脂形成更加紧密的网络结构,提高体系的阻燃性能。

第三,无卤阻燃粉体的使用,能够减少有机无卤阻燃剂的用量,平衡环氧树脂的加工性能(体系粘度)和固化物的机械性能。

第四,可以根据阻燃和产品的物理性能要求灵活调整有机无卤阻燃剂和无卤阻燃粉体含量实现系列化生产无卤阻燃环氧树脂体系。

第五,使用含羟基或氨基的无卤阻燃剂分别改性环氧树脂和酸酐固化剂;并通过后续反应的结合,得到了兼具良好阻燃性能以及物理性能的电气绝缘产品。

本发明所得产品的玻璃化转变温度高,弯曲强度和冲击强度高,阻燃性能好。具有优异的综合性能。

第六,本发明的制备过程简单,兼顾了低成本,优异的阻燃性能,优异的物理性能和加工性能。适用于电子元器件粘结、封装以及电气设备主绝缘材料的传统浇注工艺和自动压力凝胶工艺(APG)工艺。普通添加阻燃配方,一般物理性能差。

第七,制备得到的产品表面无光亮油污状物质,无粘手现象。

具体实施方式

对比例1

在100℃下,将20质量份DOPO-HQ(10-(2,5-二羟基苯基)-10-氢-9-氧杂-10-磷杂菲-10-氧化物)溶解到80质量份环氧树脂DER331中。然后降温到60℃加入上述物质重量的12%聚醚多元醇,搅拌均匀,冷却到常温,制备成无卤阻燃环氧树脂。在120℃下,将7.5质量份DOPO-HQ加入92.5质量份甲基四氢苯酐中,在60℃下加入叔胺类促进体系,冷却常温,制备得无卤阻燃固化剂。常温下,将70质量份400目活性石英粉和30质量份氢氧化镁混合均匀,制备成无卤阻燃粉。然后按照100:100:370将环氧树脂和酸酐固化剂和无卤阻燃粉体在40℃下混合1小时,抽真空1.5小时,模具温度145℃,真空度4.5mbar,145℃保压15分钟,脱模得出一个绝缘子(型号:8JS-608),然后140℃后固化8小时。

DSC曲线测试玻璃化转变温度在85℃。-40℃-100℃冷热循环5次有一只产品开裂现象。弯曲强度为6500MPa,冲击强度为12kJ/m2,阻燃测试达到4mm UL 94V1阻燃。关键问题的问题是冷却后绝缘子的表面有一层亮光的油污状物质,在100℃左右有粘手现象。

实施例1:

将70质量份DOPO-HQ(10-(2,5-二羟基苯基)-10-氢-9-氧杂-10-磷杂菲-10-氧化物)与30质量份2,4-甲苯二异氰酸酯混合,在100℃的温度下反应1小时,制备得到端羟基聚氨酯预聚物,冷却到常温。将上述反应物的10质量份加入90质量份环氧树脂中,添加质量分数为0.01%的30质量份甲醇钠甲醇溶液作为催化剂,在160℃下反应2小时。冷却至室温,将上述反应物90质量份与10质量份聚醚多元醇(GE 204)混合均匀,得到无卤阻燃改性环氧树脂。

在真空条件下,将35质量份DOPO-HQ(10-(2,5-二羟基苯基)-10-氢-9-氧杂-10-磷杂菲-10-氧化物)和65质量份四氢苯酐在160℃反应2小时。反应结束冷却至80℃。将上述反应物50质量份和49.55质量份甲基四氢苯酐混合,然后加入相对反应产物0.45%的BDMA(二甲基苄胺)促进剂,搅拌均匀,冷却到常温,制备成无卤阻燃改性酸酐固化剂。

常温下,将70质量份400目活性石英粉和30质量份400目氢氧化镁混合均匀。然后按照100:100:370将上述无卤阻燃剂改性环氧树脂和改性酸酐固化剂和无卤阻燃粉体在40℃下混合1小时,抽真空1.5小时,模具温度145℃,真空度4.5mbar,145℃保压15分钟,脱模得出一个绝缘子(型号:8JS-608),然后140℃后固化8小时。

DSC曲线测试玻璃化转变温度为105℃。-40℃-100℃冷热循环5次没有任何开裂现象。弯曲强度为8500MPa,冲击强度为15kJ/m2,阻燃测试达到4mm UL 94V0阻燃。表面无光亮油污状物质。

实施例2:

将60质量份三聚氰胺与40质量份2,4-甲苯二异氰酸酯混合,在100℃的温度下反应1小时,制备得到端氨基聚氨酯预聚物,冷却到常温。将上述反应物的15质量份加入85质量份环氧树脂中,添加质量分数为0.01%的2-苯基咪唑作为催化剂,在160℃下反应2小时。加入上述反应物重量的12%十二至十四烷基缩水甘油醚(AGE),冷却到常温待用,制备无卤阻燃环氧树脂。

在100℃下,将15质量份三聚氰胺氰尿酸盐(MCA)溶解在85质量份甲基四氢苯酐中,在60℃下加入咪唑促进体系,冷却常温待用。制备无卤阻燃环氧固化剂。

常温下,将60质量份400目活性石英粉和40质量份600目氢氧化铝粉混合均匀。无卤阻燃粉。

然后按照100:100:350将上述无卤阻燃剂改性环氧树脂和改性酸酐固化剂和无卤阻燃粉体在40℃下混合1小时,抽真空1.5小时,模具温度145℃,真空度4.5mbar,155℃保压15分钟,脱模得出一个绝缘子(型号:8JS-608),然后150℃后固化10小时。

DSC曲线测试玻璃化转变温度在95℃。弯曲强度为8000MPa。冲击强度为13kJ/m2,阻燃测试达到4mm UL 94V0阻燃。

实施例3:

将65质量份膦酸酯低聚物(CAS 68664-06-2)与35质量份2,4-甲苯二异氰酸酯混合,在100℃的温度下反应1小时,制备得到端酚基聚氨酯预聚物,冷却到常温。将上述反应物10质量份加入到95质量份环氧树脂,添加质量分数为0.01%的2-苯基咪唑作为催化剂,在150℃下反应2小时。冷却至室温,将上述反应物90质量份与10质量份聚丙二醇二缩水甘油醚(PPGDGE)混合均匀,制备无卤阻燃改性环氧树脂。

在100℃下,将10质量份丁醚化三聚氰胺甲醛树脂溶解在90质量份甲基四氢苯酐中,在60℃下加入咪唑促进体系,冷却常温待用。

常温下,将90质量份400目活性石英粉和10质量份三聚氰胺氰尿酸盐(MCA)混合均匀。然后按照100:100:370将上述无卤阻燃剂改性环氧树脂和改性酸酐固化剂和无卤阻燃粉体在40℃下混合1小时,抽真空1.5小时,模具温度145℃,真空度4.5mbar,155℃保压15分钟,脱模得出一个绝缘子(型号:8JS-608),然后150℃后固化10小时。

DSC曲线测试玻璃化转变温度在100℃。弯曲强度为9500MPa。冲击强度为15kJ/m2,阻燃测试达到4mm UL 94V0阻燃。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1