一种复合多杂酸及其用于制备小分子量甘油聚醚的方法与流程

文档序号:11686311阅读:355来源:国知局

本发明涉及一种复合多杂酸及其用于制备小分子量甘油聚醚的方法,属于有机高分子化合物的制备或化学加工技术领域。



背景技术:

小分子量(分子量基本分布在200-1000之间)丙氧基化甘油聚醚作为聚醚多元醇的一种,用于聚氨酯粘合剂和聚氨酯泡沫塑料、聚氨酯弹性体等聚氨酯工业。目前大部分工厂使用koh、naoh、ca(oh)2等碱金属或碱土金属催化剂合成小分子量丙氧基化甘油聚醚,但使用碱金属或碱土金属催化剂会产生较多dpg(一缩二丙二醇)、tpg(二缩三丙二醇)杂质,影响产品使用性能,且合成丙氧基化甘油聚醚时反应温度较高,容易使丙氧基化甘油聚醚末端产生不饱和的碳碳双键,使其不饱和度增加。

cn100999547a公开了一种甘油聚醚的制备方法。该工艺使用多金属氰化物(mmc)作为催化剂。虽然工艺简单合理、具有反应活性高、制备出的甘油聚醚不饱和度低、反应周期短等特点,但多金属氰化物价格昂贵,并含有多种金属元素,在甘油聚醚后处理中极难除去,影响产品的稳定性和应用性能。

cn103781818a公开一种制备聚醚碳酸酯多元醇的方法。该工艺使用双金属氰化物(dmc)作为催化剂。能制备相对分子量高、不饱和度低的聚醚碳酸酯多元醇,但dmc催化剂不适用于小分子聚醚合成工艺。

基于此,做出本申请。



技术实现要素:

针对常规制备方法中甘油聚醚无法实现稳定性好、含杂率低、不饱和度低和分子量低的缺陷,本申请首先提供了一种可实现稳定加工、含杂率低甘油聚醚加工的催化剂。

为实现上述目的,本申请采取的技术方案如下:

一种复合多杂酸,由磷钨酸与硅钨酸复合而成,且磷钨酸与硅钨酸的质量比为1:0.1-1。

进一步的,作为优选:

所述的磷钨酸与硅钨酸的质量比为1:0.4-0.5。

同时,本申请还提供了一种具有上述特征催化剂用于制备小分子量丙氧基化甘油聚醚的方法,该方法能使合成的小分子量丙氧基化甘油聚醚不饱和度低,产生dpg、tpg杂质少的特点。

为实现上述目的,本申请采取的技术方案如下:

一种制备小分子量甘油聚醚的方法,以磷钨酸与硅钨酸形成的复合杂多酸作为催化剂,甘油为起始剂,环氧丙烷为增链剂,在50~100℃、常压下进行反应,熟化反应时间1~8h,反应制备丙氧基化甘油聚醚粗品。

进一步的,作为优选:

所述的反应温度为60~80℃。

所述的熟化反应时间为2~4h。

所述催化剂的加入量为丙氧基化甘油聚醚粗品重量的0.1%~0.2%。

所述的丙氧基化甘油聚醚粗品加入金属氧化物进行中和处理,过滤得丙氧基化甘油聚醚精品,其中,金属氧化物可为氧化钙、氧化镁的一种或两种,金属氧化物用量与复合杂多酸的重量比为0.8~1:1。

本申请所提供的制备方法采用磷钨酸与硅钨酸复合杂多酸作为催化剂,其工作原理和有益效果如下:

第一,实现了反应在中温常压条件下进行,杂质少,不饱和度低,成品性能稳定。由于高温聚合反应会使副反应增加,且会促进链转移反应,使聚合物中部分链聚合过早结束,致使产物的不饱和双键物增加,而本申请所提供的方案中,环氧丙烷在该复合杂多酸的作用下与多元醇进行阳离子的开环加聚反应,从而实现了反应能在中温常压下进行,该中温常压反应使丙氧基化甘油聚醚不饱和度降低,合成的小分子量丙氧基化甘油聚醚不饱和度低于0.05mmol/g;同时,由于反应温度较低,不易生成dpg、tpg杂质,dpg、tpg含量均小于0.05%,适用于高端聚氨酯工业。

第二,催化剂使用方便,去除方便。本申请采用的催化剂可以是将磷钨酸和硅钨酸按照所述的重量比简单混合后使用;还可以是将磷钨酸和硅钨酸按照所述的重量比分别投入反应体系使用,而且磷钨酸和硅钨酸投入顺序没有特别要求,对本发明方法的技术效果没有明显影响;反应完毕后,由于磷钨酸与硅钨酸所形成的复合杂多酸为不溶性的,采用不溶性酸代替可溶性碱作为催化剂,使用金属氧化物中和就能很容易的使催化剂从产品中分离,工艺简单,操作简单。

第三,通过使用本发明制备的小分子量丙氧基化甘油聚醚,分子量基本分布在200-1000之间,不饱和度低于0.05mmol/g,产生的dpg、tpg杂质含量小于0.05%;且反应在中温常压下进行,操作容易控制且较为安全。

具体实施方式

羟值测试方法按照国标gb12008.3进行。不饱和度为碘值/25.4,碘值测试方法按照国标gb/t13892进行。dpg、tpg测定方法:安捷伦气相色谱6890n,fid检测器。

实施例1

在2.5l反应釜中加入甘油500g,加入催化剂1.59g,置换n2三次后升温,升温至110℃脱水1小时,降温至68℃,保持反应温度70℃,开始加环氧丙烷946g,加毕熟化2.8小时,冷却脱气后出料制得丙氧基化甘油聚醚粗品,将粗品加入3l四口烧瓶,并加入1.55g氧化钙,搅拌升温到105℃进行脱水干燥,保温1.0小时后过滤,制得丙氧基化甘油聚醚精品。

实施例2

在2.5l反应釜中加入甘油400g,加入催化剂1.75g,置换n2三次后升温,升温至108℃脱水1小时,降温至68℃,保持反应温度70℃,开始加环氧丙烷1008g,加毕熟化3.0小时,冷却脱气后出料制得丙氧基化甘油聚醚粗品,将粗品加入3l四口烧瓶,并加入1.75g氧化钙,搅拌升温到105℃进行脱水干燥,保温1.0小时后过滤,制得丙氧基化甘油聚醚精品。

实施例3

在2.5l反应釜中加入甘油250g,加入催化剂2.00g,置换n2三次后升温,升温至112℃脱水1小时,降温至70℃,保持反应温度70℃,开始加环氧丙烷1261g,加毕熟化3.4小时,冷却脱气后出料制得丙氧基化甘油聚醚粗品,将粗品加入3l四口烧瓶,并加入2.00g氧化钙,搅拌升温到108℃进行脱水干燥,保温1.2小时后过滤,制得丙氧基化甘油聚醚精品。

实施例4

在2.5l反应釜中加入甘油160g,加入催化剂2.11g,置换n2三次后升温,升温至111℃脱水1小时,降温至72℃,保持反应温度72℃,开始加环氧丙烷1009g,加毕熟化3.4小时,冷却脱气后出料制得丙氧基化甘油聚醚粗品,将粗品加入3l四口烧瓶,并加入2.10g氧化钙,搅拌升温到108℃进行脱水干燥,保温1.2小时后过滤,制得丙氧基化甘油聚醚精品。

实施例5

在2.5l反应釜中加入甘油120g,加入催化剂2.20g,置换n2三次后升温,升温至111℃脱水1小时,降温至72℃,保持反应温度74℃,开始加环氧丙烷1135g,加毕熟化3.6小时,冷却脱气后出料制得丙氧基化甘油聚醚粗品,将粗品加入3l四口烧瓶,并加入2.10g氧化钙,搅拌升温到110℃进行脱水干燥,再保温1.4小时后过滤,制得丙氧基化甘油聚醚精品。

上述各实施例所制备的丙氧基化甘油聚醚经测试,指标如表1所示。

表1不同实施条件下的成品性能对照表

现选用不同催化剂制备po加成数3.0的丙氧基化甘油聚醚,除了催化剂种类有变化外,其它操作条件均与实施例1相同,指标如表2所示。

表2不同催化剂的成品效果对照表

从实施例与对比例比较可知,使用复合杂多酸催化剂制备的小分子量丙氧基化甘油聚醚产生的dpg、tpg远低于传统催化剂,且不饱和度也低于传统催化剂。

实施例6:复合杂多酸的构成

以磷钨酸与硅钨酸不同比例形成的复合杂多酸进行甘油聚醚的制备,具体结果参见表3所示。

表3不同组成复合杂多酸所形成成品的性能对照表

其中,表3中,磷钨酸:硅钨酸=1:0是指该催化剂仅由磷钨酸构成,磷钨酸:硅钨酸=0:1是指该催化剂仅由硅钨酸构成。

通过本实施例可以看出,仅采用磷钨酸或仅采用硅钨酸时,制备效果为成品的dpg、tpg含量大于0.05%,不饱和度高于0.05mmol/g;随着磷钨酸:硅钨酸比例的逐渐增大,制备效果为成品的dpg、tpg含量逐渐变小,不饱和度逐渐变低;当磷钨酸:硅钨酸超过1:0.1时,制备效果为成品的dpg、tpg含量略小于0.05%,不饱和度略低于0.05mmol/g;当磷钨酸:硅钨酸超过1:0.4时,制备效果为成品的不饱和度低于0.05mmol/g,dpg、tpg含量小于0.05%;继续增加磷钨酸:硅钨酸的比例,当磷钨酸:硅钨酸超过1:0.5时,制备效果为成品的不饱和度逐渐升高但低于0.05mmol/g,pg、tpg含量逐渐升高但小于0.05%;继续增加磷钨酸:硅钨酸比例至1:1时,制备效果为成品的不饱和度略小于0.05mmol/g,dpg、tpg含量接近0.05%;继续增加磷钨酸:硅钨酸比例超过1:1时,制备效果为成品的不饱和度高于0.05mmol/g,dpg、tpg含量大于0.05%。

以上内容是结合本发明创造的优选实施方式对所提供技术方案所作的进一步详细说明,不能认定本发明创造具体实施只局限于上述这些说明,对于本发明创造所属技术领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明创造的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1