一种薄壁微发泡材料及其制备方法与流程

文档序号:11271153阅读:328来源:国知局

本发明涉及改性高分子材料领域,特别涉及一种薄壁发泡材料及其制备方法。



背景技术:

在汽车轻量化趋势的推动下,微发泡材料通过发泡剂成核发泡制成空气填充的具有致密表层和发泡芯层结构的复合材料,具有密度较低的优点,制品减重效果显著。但化学发泡方式制备的微发泡聚丙烯在注射成型过程中普遍存在气痕、料花甚至起皮分层等的表观问题,现有技术中通常采用的解决方案为在模腔预充反压气体,同时为了提高减重比例而使用二次开模技术,然而这些都会极大的提高注塑设备,模具的投入成本,综合成本降低不够明显。同另外,高发泡倍率带来轻质的同时,也会造成材料力学性能的严重衰减,二次开模制件的厚度在3.0mm以上,制件的厚度相对较大,为保持制件的性能导致整体减重有限。

目前,主流的微发泡制品壁厚在2.5~3.0mm左右,受微发泡材料结构上存在的不起减重作用的致密表层的影响,在致密表层处,因发泡成核的速度低于熔体冷却的速度,致密表层不发泡,降低壁厚会造成发泡芯层厚度的降低,最终导致材料的重量降低比重降低。同时,降低制件厚度会造成填充熔体困难,熔体压力降低严重,造成制件缺胶、流痕、料花等表观缺陷。



技术实现要素:

本发明的目的在于提供一种可薄壁发泡的微发泡材料,其减重效果显著且所得的制件具有良好的表观效果,同时提供了该微发泡材料的制备方法。

本发明所采取的技术方案是:一种薄壁微发泡材料,其按原料重量百分比计包括如下组分:

作为上述方案的进一步改进,所述功能性混合助剂由吸湿剂和催化剂混合而成。再进一步地,所述催化剂为氧化锌,所述吸湿剂为氧化钙。具体地,加入的吸湿剂可吸收发泡剂分解产生的水分,避免出现水花,使得成品具有良好的表观效果,而加入的催化剂可促进发泡剂分解从而有利于提高材料的发泡速度。

作为上述方案的进一步改进,所述高熔指母粒由共聚聚丙烯与过氧化物共混挤出,其熔融指数>1000g/10min。具体地,利用过氧化物可降解共聚聚丙烯基体的作用从而制成高熔指母粒,有效地提高了聚丙烯基体的熔融指数,本发明中的过氧化物优选为双二五硫化剂或dcp硫化剂,其能使材料在薄壁注塑成型过程中表现出优异的充模能力。

作为上述方案的进一步改进,所述乙烯基弹性体选自乙烯-丁烯共聚物、乙烯-丁烯共聚物和乙烯-辛烯共聚物中的至少两种。具体地,乙烯基弹性体的不结晶特性降低了熔体的冷却速度,增加了气泡成核和泡孔增大时间。本发明中乙烯基弹性体各组分的熔融指数<5g/10min。

作为上述方案的进一步改进,所述聚丙烯为熔融指数<5g/10min的高熔体强度共聚聚丙烯。

作为上述方案的进一步改进,所述填料的目数为3000~5000目。具体地,本发明的填料进一步优选为目数为3000~5000目的滑石粉。

作为上述方案的进一步改进,所述抗氧剂选自受阻酚类抗氧剂和/或亚磷酸酯类抗氧剂。

作为上述方案的进一步改进,所述发泡剂选自偶氮二甲酰胺、偶氮二异丁氰和碳酸氢钠中的至少一种。

本发明所采取的另一个技术方案是:一种如上所述的薄壁微发泡材料的制备方法为:按原料百分比计将除发泡剂外的各组分共混后挤出造粒,再与发泡剂共混后加入到注塑机中,在模具厚度<2.5mm、工艺温度为240℃、注射速度为60mm/s、注射压力为50bar、注射时间为3s、无保压、冷却时间为10s的条件下注塑成型,得成品。

作为上述方案的进一步改进,注塑过程中模具厚度优选≤2mm,其可使微发泡材料的薄壁化效果更显著。

本发明的有益效果是:本发明通过原料组分及其配比的优化,添加高熔指母粒提高了材料的充模能力,添加功能性混合助剂,提高发泡剂的分解速度,同时添加的乙烯基弹性体具备的不结晶特性降低了熔体的冷却速度,增加了气泡成核和泡孔增大时间,使得其发泡形成的致密表层变薄及发泡芯层变厚,即实现了微发泡材料的薄壁发泡,其减重效果显著同时避免了因材料充模能力差而导致注塑成型后的表观缺陷。

具体实施方式

一种薄壁微发泡材料,其按原料重量百分比计包括如下组分:

进一步作为优选的实施方式,所述功能性混合助剂由吸湿剂和催化剂混合而成。再进一步地,所述催化剂为氧化锌,所述吸湿剂为氧化钙。

进一步作为优选的实施方式,所述高熔指母粒由共聚聚丙烯与过氧化物共混挤出,其熔融指数>1000g/10min。本发明中的过氧化物优选为双二五硫化剂或dcp硫化剂。

进一步作为优选的实施方式,所述乙烯基弹性体选自乙烯-丁烯共聚物、乙烯-丁烯共聚物和乙烯-辛烯共聚物中的至少两种。本发明中乙烯基弹性体各组分的熔融指数<5g/10min。

进一步作为优选的实施方式,所述聚丙烯为熔融指数<5g/10min的高熔体强度共聚聚丙烯。

进一步作为优选的实施方式,所述填料的目数为3000~5000目。具体地,本发明的填料进一步优选为目数为3000~5000目的滑石粉。

进一步作为优选的实施方式,所述抗氧剂选自受阻酚类抗氧剂和/或亚磷酸酯类抗氧剂。

作为上述方案的进一步改进,所述发泡剂选自偶氮二甲酰胺、偶氮二异丁氰和碳酸氢钠中的至少一种。

本发明的薄壁微发泡材料的制备方法为:按原料百分比计将除发泡剂外的各组分共混后挤出造粒,再与发泡剂共混后加入到注塑机中,在模具厚度<2.5mm、工艺温度为240℃、注射速度为60mm/s、注射压力为50bar、注射时间为3s、无保压、冷却时间为10s的条件下注塑成型,得成品。

进一步作为优选的实施方式,注塑过程中模具厚度优选≤2mm,其可使微发泡材料的薄壁化效果更显著。

下面结合实施例对本发明进行具体描述,以便于所属技术领域的人员对本发明的理解。有必要在此特别指出的是,实施例只是用于对本发明做进一步说明,不能理解为对本发明保护范围的限制,所属领域技术熟练人员,根据上述发明内容对本发明作出的非本质性的改进和调整,应仍属于本发明的保护范围。同时下述所提及的原料未详细说明的,均为市售产品;未详细提及的工艺步骤或制备方法为均为本领域技术人员所知晓的工艺步骤或制备方法。

实施例1

一种薄壁微发泡材料,按原料重量百分比计将50%的聚丙烯、5%的乙烯基弹性体、37%的高熔指母粒、5%的填料、3%的功能性混合助剂和0.4%的抗氧剂共混后挤出造粒,再与1%的发泡剂共混加入到注塑机中,在模具厚度为2mm、工艺温度为240℃、注射速度为60mm/s、注射压力为50bar、注射时间为3s、无保压、冷却时间为10s的条件下注塑成型,得实施例1成品。

实施例2

一种薄壁微发泡材料,按原料重量百分比计将40%的聚丙烯、15%的乙烯基弹性体、37%的高熔指母粒、5%的填料、3%的功能性混合助剂和0.4%的抗氧剂共混后挤出造粒,再与1%的发泡剂共混加入到注塑机中,在模具厚度为2mm、工艺温度为240℃、注射速度为60mm/s、注射压力为50bar、注射时间为3s、无保压、冷却时间为10s的条件下注塑成型,得实施例2成品。

实施例3

一种薄壁微发泡材料,按原料重量百分比计将40%的聚丙烯、15%的乙烯基弹性体、39%的高熔指母粒、5%的填料、1%的功能性混合助剂和0.4%的抗氧剂共混后挤出造粒,再与1%的发泡剂共混加入到注塑机中,在模具厚度为2mm、工艺温度为240℃、注射速度为60mm/s、注射压力为50bar、注射时间为3s、无保压、冷却时间为10s的条件下注塑成型,得实施例3成品。

实施例4

一种薄壁微发泡材料,按原料重量百分比计将31%的聚丙烯、10%的乙烯基弹性体、50%的高熔指母粒、5%的填料、3%的功能性混合助剂和0.4%的抗氧剂共混后挤出造粒,再与1%的发泡剂共混加入到注塑机中,在模具厚度为2mm、工艺温度为240℃、注射速度为60mm/s、注射压力为50bar、注射时间为3s、无保压、冷却时间为10s的条件下注塑成型,得实施例4成品。

对比例1

一种微发泡材料,按原料重量百分比计将76%的聚丙烯、15%的乙烯基弹性体、5%的填料、3%的功能性混合助剂和0.4%的抗氧剂共混后挤出造粒,再与1%的发泡剂共混加入到注塑机中,在模具厚度为2mm、工艺温度为240℃、注射速度为60mm/s、注射压力为90bar、注射时间为3s、无保压、冷却时间为10s的条件下注塑成型,得对比例1对照样。

对比例2

一种微发泡材料,按原料重量百分比计将50%的聚丙烯、42%的高熔指母粒、5%的填料、3%的功能性混合助剂和0.4%的抗氧剂共混后挤出造粒,再与1%的发泡剂共混加入到注塑机中,在模具厚度为2mm、工艺温度为240℃、注射速度为60mm/s、注射压力为50bar、注射时间为3s、无保压、冷却时间为10s的条件下注塑成型,得对比例2对照样。

对比例3

一种微发泡材料,按原料重量百分比计将50%的聚丙烯、42%的高熔指母粒、5%的乙烯基弹性体、3%的功能性混合助剂和0.4%的抗氧剂共混后挤出造粒,再与1%的发泡剂共混加入到注塑机中,在模具厚度为2mm、工艺温度为240℃、注射速度为60mm/s、注射压力为50bar、注射时间为3s、无保压、冷却时间为10s的条件下注塑成型,得对比例3对照样。

对比例4

一种微发泡材料,按原料重量百分比计将50%的聚丙烯、40%的高熔指母粒、5%的乙烯基弹性体、5%的填料和0.4%的抗氧剂共混后挤出造粒,再与1%的发泡剂共混加入到注塑机中,在模具厚度为2mm、工艺温度为240℃、注射速度为60mm/s、注射压力为50bar、注射时间为3s、无保压、冷却时间为10s的条件下注塑成型,得对比例4对照样。

对比例5

一种微发泡材料,按原料重量百分比计将50%的聚丙烯、37%的高熔指母粒、5%的乙烯基弹性体、5%的填料、2%的催化剂和0.4%的抗氧剂共混后挤出造粒,再与1%的发泡剂共混加入到注塑机中,在模具厚度为2mm、工艺温度为240℃、注射速度为60mm/s、注射压力为50bar、注射时间为3s、无保压、冷却时间为10s的条件下注塑成型,得对比例5对照样。

对比例6

一种微发泡材料,按原料重量百分比计将50%的聚丙烯、37%的高熔指母粒、5%的乙烯基弹性体、5%的填料、3%的吸湿剂和0.4%的抗氧剂共混后挤出造粒,再与1%的发泡剂共混加入到注塑机中,在模具厚度为2mm、工艺温度为240℃、注射速度为60mm/s、注射压力为50bar、注射时间为3s、无保压、冷却时间为10s的条件下注塑成型,得对比例6对照样。

对比例7

一种微发泡材料,按原料重量百分比计将31%的聚丙烯、50%的高熔指母粒、10%的乙烯基弹性体、5%的填料、3%的功能性混合助剂和0.4%的抗氧剂共混后挤出造粒,再与1%的发泡剂共混加入到注塑机中,在模具厚度为3mm、工艺温度为240℃、注射速度为60mm/s、注射压力为50bar、注射时间为3s、无保压、冷却时间为10s的条件下注塑成型,得对比例7对照样。

实施例5:性能测试

将实施例1~4和对比例1~7所制备得的样品分别进行各项性能测试,其测试结果如下表1所示。

表1实施例1~4和对比例1~7样品的各项性能测试

根据表1测试结果:

通过对比例1、对比例4、对比例5、对比例6和实施例1、实施例3比较可得:高熔指母粒可明显降低射胶压力,制件无缺胶等外观缺陷;功能性混合助剂中的吸湿成分对材料外观的水花缺陷有改善作用,催化剂可提高材料的减重效果。

通过对比例2和实施例1、实施例2比较可得:乙烯基弹性体通过降低熔体的冷却速度,增大发泡芯层厚度,提高减重效果。通过对比例3和实施例1比较可得:添加高目数滑石粉作用发泡成核剂,极大的提高了材料的发泡效果。

通过对比例7和实施例4、比较可得:壁厚的材料的发泡芯层更厚,密度更低,但综合减重上,2mm薄壁制件比3mm壁厚材料重量减轻31%,薄壁化微发泡的轻量化效果非常明显,同时物性保持高。

上述实施例为本发明的优选实施例,凡与本发明类似的工艺及所作的等效变化,均应属于本发明的保护范畴。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1