一种PP开孔材料及其制备方法与流程

文档序号:13884875阅读:907来源:国知局

本发明涉及高分子材料技术领域,具体是一种聚丙烯(pp)与羟甲基纤维素钠(cmc)、水溶性致孔剂经熔融共混形成混合物,压制成型、冷却定型后通过溶析法制备pp开孔材料,原料没有发泡剂。



背景技术:

开孔材料是指塑料基体中的泡孔与泡孔之间是相互连通的,闭孔材料则与之相反。这种特殊的泡孔结构可以使小分子的气体或者流体能够在泡孔壁间通过,通过的难易程度与聚合物微孔材料的孔隙率及聚合物材料性质有关,基于这种原理,可以通过调控聚合物微孔材料的泡孔连通性和泡孔的平均孔径实现过滤的目的。所以,开孔性聚合物微孔材料可作为缓释材料、吸附材料、分离过滤材料与各种物质载体材料等。

聚丙烯(pp)树脂具有良好的力学性能及耐热性(使用温度120℃~130℃),原料来源丰富,价格便宜。使用nacl作为致孔剂,水溶性聚合物cmc作为连通剂,以pp原料为基体制备的聚丙烯开孔材料,一方面所用的原料属于绿色环保材料,没有环境污染;另一方面析出的工业盐可以循环利用,符合国家绿色环保资源循环利用政策,此外,发泡材料除保持pp原有的优异性质外,由于具备无需采用有机溶剂和无需经历高温条件的特点,特别适合制备具有生物吸附功能的医用组织材料,也可广泛用于汽车的内饰件、隔音、隔热件以及食品、化妆品、电子产品的包装材料。



技术实现要素:

本发明为了扩展开孔塑料的产品类型,提供了一种pp开孔材料及其制备方法。

本发明是通过以下技术方案实现的:cmc作为水溶性连通剂在以pp为基体的开孔材料中的应用。

作为本发明所述应用的技术方案的进一步改进,在制备以pp为基体的开孔材料时,还添加了水溶性致孔剂。

作为本发明所述应用的技术方案的进一步改进,在制备以pp为基体的开孔材料时,还添加了抗氧剂-1010。

作为本发明所述应用的技术方案的进一步改进,所述水溶性致孔剂为氯化钠、蔗糖或者氯化钾。

进一步的,本发明提供了一种pp开孔材料,其是由下列重量份的原料制成的,pp40份,cmc60~65份,水溶性致孔剂150~170份和抗氧剂-10100.1~0.3份。

作为本发明所述开孔材料的技术方案的进一步改进,所述水溶性致孔剂为氯化钠、蔗糖或者氯化钾。

进一步的,本发明提供了一种pp开孔材料的制备方法,该制备方法采用了上述任一一种pp开孔材料的原料,该制备方法包括如下步骤:

(1)将pp、cmc、水溶性致孔剂、抗氧剂-1010在80℃环境下干燥处理6~8h;

(2)将原料放入开炼机中开炼15~18min,前辊温度175℃,后辊温度165℃;

(3)开炼完成后取出物料,热压成型,室温冷却定型得到样品;所述热压成型的热压温度为170~180℃、压力为10mpa;所述室温冷却定型的压力为10mpa;

(4)样品在外力作用下浸泡于80℃的恒温水浴并搅拌,每隔2h换一次水;

(5)取出样品,将其置于80℃环境下干燥至恒重,得到pp开孔材料开孔材料。

作为本发明所述制备方法技术方案的进一步改进,水溶性致孔剂的粒径为60~80μm。

本发明所述pp开孔材料,原料当中没有发泡剂,形成的开孔材料的泡孔连通结构好,开孔材料内部的微孔呈现蜂窝状,孔隙率至少为75%以上,同时能够高达84.10%,且具有平均直径小于或等于100um的孔。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为对比例1(a)及实施例4(b)的sem图。由图可以看出:cmc的加入可以提高泡孔与泡孔之间连通性,而且随着cmc含量的增加,泡孔与泡孔之间的连通性增强,连通结构越发明显,孔隙率也随之增加,且当cmc含量为65%时,孔隙率达到了84.10%。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。

孔隙率测试:对于溶解后得到的多孔材料,进行低温干燥后测其体积记为v,测其重量记为m,然后将其浸泡在水中一定时间,确保其完全吸水后取出,用滤纸轻微擦干表面的水后再称重,重量记为m1,两次重量之差(m1-m)即为吸附的水的重量,再比上水的密度ρ,即可知吸附水的体积v1,最后将v1除以未浸泡水时的体积v,即得到孔隙率:

式中,

v1:吸附水的体积(ml);

v:为未浸泡水的多孔试样的体积(ml);

m1:多孔试样烘干后的质量(g);

m:为多孔试样吸水后的质量(g);

ρ:水的密度(g/cm3)。

微孔形貌结构:将溶解并干燥后的微孔材料样品在液氮中浸泡30min后脆断,对断面进行喷金处理,取垂直于溶体流动方向的截面为观察面。

下面结合附图对本发明的技术方案进行详细的说明。

cmc作为水溶性连通剂在以pp为基体的开孔材料中的应用。

进一步的,在制备以pp为基体的开孔材料时,还添加了水溶性致孔剂。

进一步的,在制备以pp为基体的开孔材料时,还添加了抗氧剂-1010。

具体的,所述水溶性致孔剂为氯化钠、蔗糖或者氯化钾。优选的,所述水溶性致孔剂为氯化钠。

本发明还提供了一种pp开孔材料,其是由下列重量份的原料制成的,pp40份,cmc60~65份,水溶性致孔剂150~170份和抗氧剂-10100.1~0.3份。

优选的,所述水溶性致孔剂为氯化钠、蔗糖或者氯化钾。

本发明还提供了一种pp开孔材料的制备方法,其特征在于,该制备方法采用了如权利要求5或6所述的一种pp开孔材料的原料,该制备方法包括如下步骤:

(1)将pp、cmc、水溶性致孔剂、抗氧剂-1010在80℃环境下干燥处理6~8h;

(2)将原料放入开炼机中开炼15~18min,前辊温度175℃,后辊温度165℃;

(3)开炼完成后取出物料,热压成型,室温冷却定型得到样品;所述热压成型的热压温度为170~180℃、压力为10mpa;所述室温冷却定型的压力为10mpa;

(4)样品在外力作用下浸泡于80℃的恒温水浴并搅拌,每隔2h换一次水;

(5)取出样品,将其置于80℃环境下干燥至恒重,得到pp开孔材料开孔材料。

在本发明步骤(1)中,所述干燥处理的时间可以为6h、7h或8h;在本发明步骤(2)中,所述开炼可以为15min、16min或18min;在本发明步骤(3)中,所述热压温度可以为170、175或180℃;在本发明步骤(4)中,由于样品的密度小于水的密度,为了使样品充分浸泡于恒温水浴中,本发明利用铜网包覆样品,这样既能满足样品充分浸泡于恒温水浴中的需求,也能保证样品中的水溶性致孔剂和部分水溶性连通剂溶解于恒温水浴中,提高孔隙率。

优选的,水溶性致孔剂的粒径为60~80μm。

下面结合附图对本发明的技术方案进行详细的说明。

对比例1~2和实施例1~5的pp开孔材料原料配方见表1。

表1pp开孔材料原料配方

各对比例及实施例具体制备方法,包括如下步骤:

(1)将工业盐置于球磨机中球磨,过筛,得到粒径在60~80μm的nacl颗粒;将pp、cmc和处理后的nacl置于80℃的鼓风干燥箱中干燥8h;

(2)将pp、cmc、nacl和抗氧剂-1010按比例称量并混合均匀,放入开炼机中开炼15min,前辊温度175℃,后辊温度165℃;

(3)将开炼好的物料放入模具中,采用平板硫化机热压5min成型,温度为170℃,压力为10mpa;

(4)然后将样品室温冷压8min,压力10mpa,得到厚度为2mm的薄片。

(5)将压制好的样品裁制成30×30×2mm正方体,再将其放入的80℃恒温水浴中水煮48小时,为了防止样品漂浮,采用铜网包覆样品,每隔2h换一次水使其充分溶解。

(6)最后取出样品,将其置于80℃的干燥箱内进行低温干燥12小时,后取出试样,用作后续。

对比例1~4以及实施例1~7的hdpe/cmc/peo开孔材料的孔隙率测试结果见表2。

表2开孔材料的孔隙率测试结果

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1