轴向配位自组装金属卟啉染料敏化剂及其制备方法与流程

文档序号:12062270阅读:409来源:国知局
轴向配位自组装金属卟啉染料敏化剂及其制备方法与流程
本发明属于化学应用领域,涉及一种金属卟啉染料敏化剂,尤其涉及一种轴向配位自组装金属卟啉染料敏化剂的制备方法,主要用于染料敏化太阳能电池的制备。

背景技术:
染料敏化太阳能电池由于其成本低,污染少,简单易得等优势,成为了近些年研究的热点。染料敏化太阳能电池主要由纳米多孔半导体薄膜、染料敏化剂、氧化还原电解质、对电极和透明的导电玻璃等五部分组成。为了不断提高染料敏化太阳能电池的光电转化效率,就必须不断的改善染料敏化剂。近些年研究的热点敏化剂主要有:多吡啶钌配合物、卟啉敏化剂、纯有机敏化剂。多吡啶钌配合物为主导的染料敏化太阳能电池最高光电转化效率已超过11%,但是钌配合物消耗大量的能源,对环境带来很大污染,所以大规模用于生产实际受到很大的限制。纯有机光敏剂由于其具有较低的光电流和光电压,其光电转化效率与多吡啶钌配合物还无法媲美。因此,价格低廉且容易制备的卟啉(Porphyrin)染料成为了光敏染料的首选之一。卟啉类化合物由于其具有良好的光、热和化学稳定性,受到了人们广泛的研究。近些年人们不断的修饰和设计新型的卟啉分子,在其光电转化效率方面取得了进一步的突破,2014年Grätzel课题组合成了一种供体-π-受体(D-π-A)卟啉,其转化效率高达13%(NatureChemistry2014,6,242-247),近些年,许多课题组在卟啉结构部分主要是以D-π-A为主,在其供电子基团(D),受电子部分(A)方面进行不断的修饰与研究,取得了一定的成果。但是卟啉分子又具有非常强的配位能力,它们可以利用自身中心的氮原子与元素周期表上几乎所有金属原子发生配位,从而形成金属卟啉配合物。利用金属卟啉的中心金属与配体实现轴向配位,这样可以进一步控制染料单元的方向、实现长的电荷分离,从而一系列卟啉组装体成功有序的组装在电极表面,以提供较多的光电通道和实现有效的电子转移,从而实现比较好的光电转化效率。

技术实现要素:
本发明的目的是提供一种轴向配位自组装金属卟啉染料敏化剂及其制备方法。一、轴向配位自组装金属卟啉染料敏化剂本发明轴向配位自组装金属卟啉染料敏化剂,是以羧酸卟啉金属配合物为锚钉分子,以X1或X2为天线分子,以倒插轴向配位的方式吸附在TiO2电极上。羧酸卟啉金属配合物为Zn(OAc)2•2H2O、Cd(OAc)2•2H2O或Co(OAc)2•2H2O;其结构式如下:天线分子为X1(用系统命名法:N-(4-(二甲基氨基)亚苄基)吡啶-4-胺)或X2(用系统命名法:N-(4-(二苯基氨基)亚苄基)吡啶-4-胺),其结构如下:轴向配位自组装金属卟啉染料敏化剂的制备:将TiO2纳米结构双层膜电极先在锚钉分子的甲醇溶液中浸泡2~24小时,洗涤,晾干;再于的天线分子的三氯甲烷溶液中浸泡1~2小时,洗涤,晾干,保证90%以上的覆盖率;锚钉分子和天线分子就以倒插轴向配位的方式吸附在TiO2电极上即得。锚钉分子为Zn(OAc)2•2H2O、Cd(OAc)2•2H2O或Co(OAc)2•2H2O,锚钉分子的甲醇溶液的浓度为0.3~2mmol。所述天线分子为X1或X2;天线分子的三氯甲烷溶液的浓度为2~3mmol。图1为本发明构筑的倒插式轴向配位自组装金属卟啉染料敏化剂示意图。从图1中可以看出,羧酸锚钉卟啉金属配合物和天线分子通过配位键作用形成了一种倒插式的轴向配位方式。为了确定这些组装体有效的敏化在TiO2电极表面,我们利用透射电镜(TEM)对这些组装体在电极表面的组装结构进行表征。除此之外,我们使用理论计算手段,对这些组装体染料分子的几何结构进行优化,得到具体的优化组装体染料的结构。如图2所示,优化后的组装体结构的长度与TEM得到的组装体在TiO2电极表面的厚度基本相等,这些结果说明本发明在TiO2电极表面成功的构建了一种与图1吻合的倒插式轴向配位自组装结构。二、轴向配位自组装金属卟啉染料敏化剂的性能1、染料敏化太阳能电池的制备:将上述通过轴向配位自组装吸附有锚钉分子和天线分子的TiO2电极与将纳米铂的玻璃电极通过一个35μm厚的热融环加热热熔密封,然后将电解质材料注入到两个电极的缝隙中,即构成了染料敏化太阳能电池。2、染料敏化太阳能电池的光电性能分析图3、4分别为羧酸锚钉卟啉金属配合物制备的染料敏化太阳能电池与本发明羧酸锚钉锌卟啉和天线分子通过倒插轴向配位自组装制备的染料敏化太阳能电池的电流密度与电压关系曲线示意图。由图3可以看出,锌染料具有同样电压条件下较大的电流密度,这是由于Zn的d10轨道有利于电子传递,因此其锌染料的电流密度比镉、钴染料都好。比较图3、4可以看出,通过轴向配位自组装之后,与原锚钉染料相比,大大的提高了染料分子的光电流;当轴向配位上天线分子后,使得电子具有较多的光电通道,从而提高染料敏化太阳能电池的光电转化效率。而且就两种结构的天线分子而言,羧酸锚钉锌卟啉和天线分子X2通过倒插轴向配位自组装制备的染料敏化太阳能电池的性能优于和天线分子X1的配合。图5、6分别为酸锚钉卟啉染料敏化太阳能电池与本发明羧酸锚钉锌卟啉和天线分子通过倒插轴向配位自组装制备的染料敏化太阳能电池的IPCE图。从图5中可以看出,锌染料具有同样光照条件下较高的IPCE值,这是由于加入不同金属后改变了分子轨道能级,锌染料与半导体能级匹配度较高,所以其具有较好的IPCE。比较图5、6可以看出,通过轴向配位自组装之后,与原锚钉染料相比,IPCE有了明显的提高,尤其是X2天线分子构筑的轴向配位自组装敏化剂的IPCE接近于75%。综上所述,本发明通过倒插轴向配位方式构建的卟啉金属光敏染料,有效的提供了较多的光电通道,从而实现了多通道电子转移;天线分子进一步改善了发光性能从而大大的提高了光电转化效率。与传统的D-π-A结构相比,对配体周围的空间大小和相互作用方向的可控性增强。光电性能测试结果表明,本发明制备的染料敏化太阳能电池,在标准光照射下,具有较强的输出电流的能力和较高程度的光电转化效率。附图说明图1为本发明构筑的倒插式轴向配位自组装示意图。图2为本发明透射电镜(TEM)与理论计算对照示意图。图3为本发明羧酸锚钉卟啉金属配合物制备的染料敏化太阳能电池的电流密度与电压关系曲线示意图。图4为本发明羧酸锚钉锌卟啉和天线分子通过倒插轴向配位自组装制备的染料敏化太阳能电池的电流密度与电压关系曲线示意图。图5为本发明羧酸锚钉卟啉金属配合物制备的染料敏化太阳能电池的IPCE图。图6为本发明羧酸锚钉锌卟啉和天线分子通过倒插轴向配位自组装制备的染料敏化太阳能电池的IPCE图。具体实施方式下面通过具体实施例对本发明金属卟啉轴向配位自组装及其作为光敏剂在染料敏化太阳能电池的应用做进一步说明。实施例1(1)TiO2纳米结构双层膜电极的制备:在FTO导电玻璃(NipponSheetGlass,4mmolthick)丝网印刷上7.0μm透明层(20-nm-sized)和5.0μm散射层(Dyesol,400-nm-sized)制成双层介孔二氧化钛薄膜作为电池负极,具体制备采用下述的参考文献(J.Phys.Chem.B.,2003,107,14336)。(2)金属卟啉染料敏化剂的构建:先将制备好的TiO2纳米结构双层膜电极在2mmol的羧酸锚钉锌卟啉的甲醇溶液中浸泡24小时;洗涤,晾干;再于3mmol浸泡天线分子X1的三氯甲烷溶液中浸泡2小时;洗涤,晾干,保证90%以上的覆盖率;这时,锚钉分子和天线分子就以倒插轴向配位的方式吸附在TiO2电极上。(3)染料敏化太阳能电池的制备:然后将纳米铂的玻璃电极通过一个35μm厚的热融环同吸附了染料的TiO2纳米结构双层膜电极加热热熔密封,最后将电解质材料注入到两个电极的缝隙中,即构成了染料敏化太阳能电池(JACS2004,126,7164)。染料敏化太阳能电池的J为3.23mA/cm2,V为345mV,IPCE最大值为64%。天线分子X1的合成参见文献(JInclPhenomMacrocyclChem2013,75:211-221)。实施例二天线分子采用X2。其它均与实施例一相同。制备的染料敏化太阳能电池的J为4.08mA/cm2,V为359mV,IPCE最大值为72%。天线分子X2的合成:4-氨基吡啶与4-(二苯基氨基)苯甲醛以1:1~1:1.5的摩尔比混合在50mL甲苯溶液中,加入搅拌到80~100℃下反应4~6h,冷却室温,即有晶体棒状物质析出,抽滤洗涤干燥,既得产物X2。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1