一种基于杂化胶束的生物纳米涂层制备方法

文档序号:10679029阅读:896来源:国知局
一种基于杂化胶束的生物纳米涂层制备方法
【专利摘要】本文发明了一种基于杂化胶束的生物纳米涂层制备方法,该制备方法包括:利用天然大分子及改性天然大分子自组装得到包覆无机纳米粒子的杂化胶束;以杂化胶束为功能模板,通过恒电位电沉积技术将杂化胶束固定在医用金属表面,得到基于自组装杂化胶束的生物纳米涂层材料。该方法过程简单,条件温和,易于大批量生产。
【专利说明】
一种基于杂化胶束的生物纳米涂层制备方法
技术领域
[0001]本发明涉及高分子科学和生物涂层相结合领域,尤其涉及一种基于杂化胶束的生物纳米涂层制备方法。
技术背景
[0002]医用金属材料以其高强韧性、耐疲劳、易加工成形性等优良的综合性能,一直是临床上用量最大和应用广泛的一类生物医用材料。医用金属材料是需要承受较高栽荷的骨、齿等硬组织以及介入治疗支架的首选植入材料,已大量应用于骨科、齿科、介入治疗等重要医疗领域中的各类植入医疗器械(Journal of B1materials and Tissue Engineering,2012,2,259-268)。目前医用金属材料中用量最大、应用范围最广的是不锈钢、钛及钛合金、钴基合金3大类材料,在医用金属材料的生产和临床应用中占有举足轻重的地位。然而,目前临床应用的医用金属材料在生物体中一般表现为生物惰性,不具备生物活性,因此往往需要通过对其进行表面改性,来达到其具备一定生物活性,进而提高其临床使用性能的目的(B1materials,2004,25,1003-1010)。
[0003]天然大分子包括核酸、蛋白质、聚多肽、聚多糖等,由分子量小于500的单体通过聚合作用形成的大分子,具有优异的生物相容性、生物可降解性、细胞相容性、成膜性、及无毒性(Journal of Controlled Release,2000,64,63-79)。在化妆品、食品、生物医学等领域具有良好的应用前景。此外,对于多数天然大分子而言,其分子链上均含有大量可改性的化学基团,可通过化学改性制备具有功能特性的天然大分子,进而拓宽其应用领域(ChemicalSociety Reviews,2013,42,4623-4639)。基于此,如使用天然大分子对医用金属材料进行表面改性,制备功能涂层材料,可赋予生物惰性的医用金属以表面活性,但由于天然大分子机械性能欠佳,因而其在使用过程中常需引入其他无机复合物。
[0004]无机纳米粒子如纳米轻基磷灰石、纳米氧化锌等等。在生物涂层领域有着重要的应用前景,其不但具有优异的生物学性能,还具有良好的机械稳定性(Journal ofMaterials Research, 1998,13,94-117)。但由于无机粒子是刚性粒子,应用于涂层领域时成膜性能较差。如将其与天然大分子复合,则可形成优势互补的效应,制备性能优异的涂层材料(European Polymer Journal, 2006,42,3171-3179)。但目前常用的方法是将无机纳米粒子与天然大分子链进行复合,然后制备涂层材料,涂层中两种组分的分配不均易导致涂层产生微相分离。

【发明内容】

[0005]针对现有技术存在的上述问题,本
【申请人】发明了一种基于杂化胶束的生物纳米涂层制备方法。将天然大分子(改性天然大分子)与无机纳米粒子通过自组装技术制备均一稳定的杂化胶束,进一步结合恒电位电沉积技术将杂化胶束固定在医用金属表面,制备性能优异的生物纳米涂层。本制备方法将大分子自组装技术与恒电位电沉积技术的优点结合在一起,操作简单,实用性强,使用范围广。
[0006]本发明的技术方案如下:
[0007]一种基于杂化胶束的生物纳米涂层制备方法,具体制备步骤如下:
[0008](I)在O?100°C,常压下,将天然大分子溶于良溶剂中,溶解完成后向天然大分子溶液中加入适量浓度的无机纳米粒子,待形成均一稳定的混合溶液,通过调节上述混合溶液的PH值诱导体系发生自组装,制备杂化胶束;也可通过选择合适的功能小分子和引发剂,对天然大分子进行化学改性,得到改性天然大分子,进一步将改性天然大分子溶于良溶剂制备均一溶液,向上述溶液中加入无机纳米粒子,待形成均一稳定的混合溶液,通过向混合溶液中加入适量沉淀剂促使混合溶液发生自组装,制备杂化胶束;
[0009]所述的天然大分子选自壳聚糖、壳聚糖季铵盐、透明质酸、纤维素、海藻酸钠、聚谷氨酸、葡聚糖、淀粉、蛋白质、甲壳素、肝素、明胶中的一种或几种;混合溶液的PH值通过乳酸、盐酸、硫酸、氢氧化钠、三乙胺、乙酸中的一种进行调节;
[0010]所述的功能小分子选自7-氨基-4-甲基香豆素、7-羟基香豆素、肉桂酸、咖啡酸、阿魏酸、肉桂酸乙酯、阿魏酸乙酯、姜黄素、肉桂酸甲酯、肉桂酰氯、盐酸多巴胺、甲基多巴、左旋多巴、卡比多巴、苯硼酸、柠檬酸中的一种或几种;所述的引发剂为N-羟基琥珀酰亚胺、1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐、1-羟基苯并三氮唑、N,N_ 二环己基碳二亚胺、4-二甲氨基吡啶中的一种或几种;
[0011]所述的无机纳米粒子选自:纳米氧化锌、纳米二氧化钛、纳米轻基磷灰石、纳米四氧化三铁中的一种;所述的良溶剂选自:N,N-二甲基甲酰胺、二甲亚砜、甲烷磺酸、四氢呋喃、I,4_二氧六环、石油醚中、氯仿的一种;所述的沉淀剂选自:水、乙醇、正丁醇、正丙醇、异丙醇、异丁醇、丙酮中的一种或几种;
[0012](2)以步骤(I)中所制备的杂化胶束为功能模板,采用恒电位电沉积技术将杂化胶束固定在医用金属表面,得到基于自组装杂化胶束的生物纳米涂层;
[0013]所述的丨旦电位电沉积电压为-600V?600V,沉积时间为0.18?60!11;[11;所用的医用金属选自钛及钛合金、钴基合金、镁及镁合金、316L不锈钢中的一种或几种。
[OOM] 步骤(I)中天然大分子的浓度为0.01?20mg/mL,所加入的无机纳米粒子浓度范围为0.0I?20mg/mL,pH诱导自组装过程中溶液的pH值范围在I?12;功能小分子、引发剂、及天然大分子单元的反应摩尔比为2:1:1?20: 2:1,所制备的改性天然大分子溶液浓度为
0.0I?30mg/mL,所加入的无机纳米粒子浓度为0.0I?30mg/mL,自组装过程中沉淀剂的加入量为良溶剂的0.5?20倍;天然大分子或改性天然大分子与无机纳米粒子所形成的均一混合溶液通过磁力搅拌、超声分散、机械搅拌中的一种或几种来实现,所采用的无机纳米粒子的粒径范围为I?600nm,所制备的杂化胶束的粒径范围在20?I OOOnm。
[0015]步骤(2)中所制备的生物纳米涂层材料的厚度在5nm?ΙΟΟΟμπι,涂层具有优异的生物相容性及细胞相容性;通过控制原料配比、杂化胶束浓度,或恒电位电沉积的条件,可以调控医用金属表面涂层材料的微结构,从而实现涂层材料的实用性能。
[0016]本发明的有益效果在于:
[0017]本发明利用天然大分子或改性天然大分子与无机纳米粒子通过自组装制备稳定的杂化胶束,该胶束粒子相比于单纯的无机粒子而言就有优异的成膜性,相比于单纯大分子胶束而言具有更好的机械稳定性;进一步通过恒电位电沉积制备生物纳米涂层材料,涂层兼具生物相容性、生物可降解性、细胞相容性、及功能特性(如促进组织生长、抗菌等)。
【附图说明】
[0018]附图1为实施例2中的生物纳米涂层的SEM形貌图。
【具体实施方式】
[0019]以下结合实施例对本发明作进一步说明,但本发明并不局限于此。
[0020]实施例1
[0021]—种基于杂化胶束的生物纳米涂层制备方法,具体制备步骤如下:
[0022](I)在室温常压下,将壳聚糖季铵盐溶于水形成10mg/mL溶液,向上述溶液中加入1mg/mL浓度的纳米二氧化钛(粒径10nm),磁力搅拌得到均一稳定的混合溶液,使用氢氧化钠溶液调节混合溶液的PH=S诱导体系发生自组装,制备杂化胶束;
[0023](2)以步骤(I)中所制备的杂化胶束为功能模板,采用恒电位电沉积技术在-30V电压下沉积lOmin,将杂化胶束固定在医用钛合金表面,得到基于自组装杂化胶束的生物纳米涂层。
[0024]实施例2
[0025]—种基于杂化胶束的生物纳米涂层制备方法,具体制备步骤如下:
[0026](I)将聚谷氨酸(Imol)溶解在二甲亚砜溶液中形成溶液,依次加入催化剂1_乙基_(3-二甲基氨基丙基)碳二亚胺盐酸盐(Imol)、1-羟基苯并三唑(Imol)、及光敏小分子7-氨基-4-甲基香豆素(2mol),70°C下反应24小时,得到改性聚谷氨酸,进一步将改性聚谷氨酸溶于良溶剂二甲亚砜形成5mg/mL溶液,向上述溶液中加入0.lmg/mL纳米轻基磷灰石(粒径10nm),超声分散得到均一稳定的混合溶液,向混合溶液中加入2倍体积的沉淀剂乙醇促使混合溶液发生自组装,制备杂化胶束;
[0027](2)以步骤(I)中所制备的杂化胶束为功能模板,采用恒电位电沉积技术在150V电压下沉积30min,将杂化胶束固定在医用镁合金表面,得到基于自组装杂化胶束的生物纳米涂层,涂层的SHM形貌图如附图1所示。
[0028]实施例3
[0029]—种基于杂化胶束的生物纳米涂层制备方法,具体制备步骤如下:
[0030](I)在室温常压下,将海藻酸钠溶于水中形成3mg/mL溶液,溶解完成后向海藻酸钠溶液中加入lmg/mL浓度的纳米氧化锌(粒径1nm),通过机械搅拌获得均一稳定的混合溶液,用盐酸调节上述混合溶液的PH=3诱导体系发生自组装,制备杂化胶束;
[0031](2)以步骤(I)中所制备的杂化胶束为功能模板,采用恒电位电沉积技术在10V电压下沉积Is将杂化胶束固定在医用316L不锈钢表面,得到基于自组装杂化胶束的生物纳米涂层。
[0032]实施例4
[0033]—种基于杂化胶束的生物纳米涂层制备方法,具体制备步骤如下:
[0034](I)将壳聚糖(Imol)溶解在甲烷磺酸溶液中形成溶液,依次加入催化剂1-乙基_(3-二甲基氨基丙基)碳二亚胺盐酸盐(2mol)、4-二甲氨基吡啶(2mol)、及光敏小分子咖啡酸(1mol),0°C下反应24小时,得到改性壳聚糖,进一步将改性壳聚糖溶于甲烷磺酸形成20mg/mL溶液,向上述溶液中加入10mg/mL纳米四氧化三铁(500nm),磁力搅拌分散得到均一稳定的混合溶液,向混合溶液中加入10倍体积的沉淀剂水促使混合溶液发生自组装,制备杂化胶束;
[0035](2)以步骤(I)中所制备的杂化胶束为功能模板,采用恒电位电沉积技术在-100V电压下沉积lmin,将杂化胶束固定在医用钴合金表面,得到基于自组装杂化胶束的生物纳米涂层。
[0036]上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本明的保护范围。
【主权项】
1.一种基于杂化胶束的生物纳米涂层制备方法,其特征在于具体制备步骤如下: (1)在O?100°C,常压下,将天然大分子溶于良溶剂中,溶解完成后向天然大分子溶液中加入适量浓度的无机纳米粒子,待形成均一稳定的混合溶液,通过调节上述混合溶液的PH值诱导体系发生自组装,制备杂化胶束; 也可通过选择合适的功能小分子和引发剂,对天然大分子进行化学改性,得到改性天然大分子,进一步将改性天然大分子溶于良溶剂制备均一溶液,向上述溶液中加入无机纳米粒子,待形成均一稳定的混合溶液,通过向混合溶液中加入适量沉淀剂促使混合溶液发生自组装,制备杂化胶束; 所述的天然大分子选自壳聚糖、壳聚糖季铵盐、透明质酸、纤维素、海藻酸钠、聚谷氨酸、葡聚糖、淀粉、蛋白质、甲壳素、肝素、明胶中的一种或几种;混合溶液的PH值通过乳酸、盐酸、硫酸、氢氧化钠、三乙胺、乙酸中的一种进行调节; 所述的功能小分子选自7-氨基-4-甲基香豆素、7-羟基香豆素、肉桂酸、咖啡酸、阿魏酸、肉桂酸乙酯、阿魏酸乙酯、姜黄素、肉桂酸甲酯、肉桂酰氯、盐酸多巴胺、甲基多巴、左旋多巴、卡比多巴、苯硼酸、柠檬酸中的一种或几种;所述的引发剂为N-羟基琥珀酰亚胺、1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐、1-羟基苯并三氮唑、N,N-二环己基碳二亚胺、4-二甲氨基吡啶中的一种或几种; 所述的无机纳米粒子选自:纳米氧化锌、纳米二氧化钛、纳米轻基磷灰石、纳米四氧化三铁中的一种;所述的良溶剂选自:N,N-二甲基甲酰胺、二甲亚砜、甲烷磺酸、四氢呋喃、I,4-二氧六环、石油醚中、氯仿的一种;所述的沉淀剂选自:水、乙醇、正丁醇、正丙醇、异丙醇、异丁醇、丙酮中的一种或几种; (2)以步骤(I)中所制备的杂化胶束为功能模板,采用恒电位电沉积技术将杂化胶束固定在医用金属表面,得到基于自组装杂化胶束的生物纳米涂层; 所述的丨旦电位电沉积电压为-600V?600V,沉积时间为0.18?60!11;[11;所用的医用金属选自钛及钛合金、钴基合金、镁及镁合金、316L不锈钢中的一种或几种。2.根据权利要求1所述的一种基于杂化胶束的生物纳米涂层制备方法,其特征在于步骤(I)中天然大分子的浓度为0.0I?20mg/mL,所加入的无机纳米粒子浓度范围为0.0I?20mg/mL,pH诱导自组装过程中溶液的pH值范围在I?12。3.根据权利要求1所述的一种基于杂化胶束的生物纳米涂层制备方法,其特征在于步骤(I)中功能小分子、引发剂、及天然大分子单元的反应摩尔比为2:1:1?20:2:1,所制备的改性天然大分子溶液浓度为0.01?30mg/mL,所加入的无机纳米粒子浓度为0.01?30mg/mL,自组装过程中沉淀剂的加入量为良溶剂的0.5?20倍。4.根据权利要求1所述的一种基于杂化胶束的生物纳米涂层制备方法,其特征在于步骤(I)中天然大分子或改性天然大分子与无机纳米粒子所形成的均一混合溶液通过磁力搅拌、超声分散、机械搅拌中的一种或几种来实现,所采用的无机纳米粒子的粒径范围为I?600nm,所制备的杂化胶束的粒径范围在20?lOOOnm。5.根据权利要求1所述的一种基于杂化胶束的生物纳米涂层制备方法,其特征在于步骤(2)中所制备的生物纳米涂层材料的厚度在5nm?ΙΟΟΟμπι,涂层具有优异的生物相容性及细胞相容性。6.根据权利要求1所述的一种基于杂化胶束的生物纳米涂层制备方法,其特征在于通过控制原料配比、杂化胶束浓度,或恒电位电沉积的条件,可以调控医用金属表面涂层材料的微结构,从而实现涂层材料的实用性能。
【文档编号】C25D9/02GK106046950SQ201610497177
【公开日】2016年10月26日
【申请日】2016年6月29日
【发明人】刘晓亚, 孙家娣, 朱叶, 顾瑶, 石甜甜
【申请人】江南大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1