车辆及其控制方法与流程

文档序号:13462929阅读:165来源:国知局
车辆及其控制方法与流程

本发明涉及车辆及其控制方法,更具体地说,涉及包括发动机和发电装置的车辆,被配置成从发动机的曲轴接收转矩以产生辅机电压,以及所述车辆的控制方法。



背景技术:

日本专利申请公开号no.2013-95246(jp2013-95246a)公开了一种用于车辆的电源装置,包括连接到发动机的交流发电机。用于车辆的电源装置包括交流发电机、具有低压电池的第一电源系统、具有高压电池的第二电源系统,以及在第一电源系统和第二电源系统之间提供的dc/dc转换器。在该电源装置中,设定dc/dc转换器的输出电压和输出电流,且控制发动机和交流发电机,使得第一电源系统的电压不低于下限电压(见jp2013-95246a)。



技术实现要素:

在混合动力车辆、具有起停(stopandstart)功能的车辆等中,当在行驶或诸如等待交通信号的临时停车期间停止发动机时,为了在下次发动机运转时增加发动机的起动性,可以执行在预定位置的用于停止发动机的曲柄的曲柄位置(曲轴转角)停止控制。在曲柄位置停止控制中,在连接到发动机的曲轴以产生辅机电力的发电装置(交流发电机、集成起动发电机(isg)等)中,通过在发电装置中循环电流,强制地生成再生转矩(制动转矩),由此使曲柄(曲轴转角)停止在预定位置。

如果执行曲柄位置停止控制,通过制动转矩,快速地降低发电装置的转速,因此,快速地降低发电装置的输出电压。因此,辅机电压快速地降低,以及辅机的运转很可能变得不稳定。特别是在如上所述的jp2013-95246a中,还没有研究过这一问题。

本发明的目的是提供能够与曲柄位置停止控制一起的抑制辅机电压的快速变动的车辆及其控制方法。

根据本发明的第一方面的车辆包括发动机、第一和第二发电装置和电控单元。第一发电装置,所述第一发电装置包括旋转电机,所述旋转电机连接到所述发动机的曲轴,所述第一发电装置被配置成使用所述旋转电机从所述曲轴接收的转矩,来根据第一指示电压,生成辅机电压。所述第二发电装置被配置成使用不同于所述旋转电机的电压源,而不使用所述曲轴的转矩,根据第二指示电压,生成所述辅机电压。所述电控单元被配置成:通过控制所述第一发电装置使得在所述第一发电装置中循环电流并且所述旋转电机产生制动转矩,当停止所述发动机时,执行用于使所述发动机的所述曲轴停止在目标位置的曲柄位置停止控制。所述电控单元被配置成在所述第二指示电压等于或高于所述第一指示电压的状态下,执行所述曲柄位置停止控制。

如果执行曲柄位置停止控制,由于由旋转电机的制动转矩快速地降低旋转电机的转速,第一发电装置的输出电压快速地降低。由于辅机电压受具有第一和第二指示电压中的较高指示电压的发电装置的输出限制,如果在起动曲柄位置停止控制时,第一指示电压高于第二指示电压,辅机电压从第一指示电压的电平快速地降低到第二指示电压的电平。因此,在该车辆中,在第二指示电压等于或高于第一指示电压的状态下,执行曲柄位置停止控制。通过此操作,由于在起动曲柄位置停止控制时,辅机电压受第二发电装置的输出限制,即使第一发电装置的输出电压随着起动曲柄位置停止控制快速地降低,低辅机电压也不会降。因此,根据该车辆,可以抑制由曲柄位置停止控制带来的辅机电压的变动。

在本发明的第一方面中,所述电控单元可以被配置成:当在执行所述曲柄位置停止控制前所述第一指示电压高于所述第二指示电压时,在使所述第二指示电压增加到所述第一指示电压后,执行所述曲柄位置停止控制。

根据第一方面,当在执行曲柄位置停止控制前第一指示电压高于第二指示电压时,由于相对低的第二指示电压增加到第一指示电压,可以在执行曲柄位置停止控制前,抑制由于第二指示电压的变化带来的辅机电压的变动。

在本发明的第一方面中,所述电控单元可以被配置成:当在执行所述曲柄位置停止控制前所述第一指示电压高于所述第二指示电压时,在以预定速率使所述第一指示电压减小到等于或低于所述第二指示电压后,执行所述曲柄位置停止控制。

根据第一方面,当在执行曲柄位置停止控制前第一指示电压高于第二指示电压时,由于以预定速率相对高的第一指示电压减小到等于或低于第二指示电压,可以在执行曲柄位置停止控制前,抑制由第一指示电压的变化带来的辅机电压的快速变动。

在第一方面中,车辆可以进一步包括:电动机,被配置成生成所述车辆的驱动力;以及蓄电装置,被配置成储存供应给所述电动机的电力。所述第二发电装置可以包括转换器,所述转换器被配置成降低从所述蓄电装置供应的电力的电压以产生所述辅机电压。

根据本发明的第二方面的一种车辆的控制方法被应用于一种车辆,该车辆包括:发动机;第一发电装置,所述第一发电装置包括旋转电机,所述旋转电机连接到所述发动机的曲轴,所述第一发电装置被配置成使用所述旋转电机从所述曲轴接收的转矩,来根据第一指示电压,生成辅机电压;以及第二发电装置,所述第二发电装置被配置成使用不同于所述旋转电机的电压源,而不使用所述曲轴的转矩,根据第二指示电压,生成所述辅机电压。车辆的控制方法包括:当停止所述发动机时,确定所述第二指示电压是否等于或高于所述第一指示电压;以及当确定所述第二指示电压等于或高于所述第一指示电压时,通过控制所述第一发电装置使得在所述第一发电装置中循环电流并且所述旋转电机产生制动转矩,当停止所述发动机时,执行用于使所述发动机的所述曲轴停止在目标位置的曲柄位置停止控制。

在第一方面和第二方面中,在包括被配置成产生车辆的驱动力的电动机和发动机的混合动力车辆中,发动机根据车辆的驱动力、蓄电装置的充电状态等,重复停止和起动。这些方面被应用于这种混合动力车辆,并且在发动机重复停止和起动的混合动力车辆中,可以抑制当停止发动机时伴随着曲柄位置停止控制带来的辅机电压的变动。

根据第一方面和第二方面,可以提供能够抑制由曲柄位置停止控制带来的辅机电压的变动的车辆及其控制方法。

附图说明

在下文中,将参考附图,描述本发明的示例性实施例的特征、优点及技术和工业重要性,其中,相似的数字指示相似相同的元件,以及其中:

图1是根据本发明的实施例1的车辆的整体构成图;

图2是示出在图1中所示的交流发电机的构成的图;

图3是示出在执行下臂全相控制时,在交流发电机中流动的电流的路径的示例的图;

图4是示出辅机电压能随着执行曲柄位置停止控制而快速变动的参考图;

图5是示出在根据实施例1的车辆中,在执行曲柄位置停止控制的辅机电压的转变的图;

图6是示出由发动机ecu执行的处理的过程的流程图;

图7是示出在图6的步骤s50中执行的曲柄位置停止控制的处理过程的流程图。

图8是示出在根据修改示例1的车辆中,在执行曲柄位置停止控制之前和之后的辅机电压的转变的图;

图9是示出在修改示例1中,由发动机ecu执行的处理的过程的流程图;

图10是示出在修改示例2中的交流发电机的构成的图;

图11是示出在修改示例2中,在执行曲柄位置停止控制时,在交流发电机中流动的电流的路径的示例的图;

图12是示出在修改示例2中,曲柄位置停止控制的处理过程的流程图;

图13是根据修改示例3的车辆的整体构成图;以及

图14是根据实施例2的车辆的整体构成图。

具体实施方式

在下文中,将参考附图,详细地描述本发明的实施例。由相同的参考数字表示图中相同或类似的部件,将不重复其描述。

[实施例1]图1是根据本发明的实施例1的车辆的整体构成图。参考图1,车辆1包括发动机10、交流发电机12、起动器14、曲柄位置传感器16、离合器18、电动发电机(在下文中,称为“mg”)20、自动变速器(在下文中,称为“at”)30和驱动轮40。

根据实施例1的车辆1是使用发动机10或mg20的至少一个的动力行驶的混合动力车辆。作为发动机10的输出轴的曲轴17通过离合器18连接到at30的输入轴(在下文中,称为“at输入轴”)22。mg20的转子连接到at输入轴22。at30的输出轴(在下文中,称为“at输出轴”)35通过差动齿轮连接到驱动轮40。

发动机10是内燃机,例如,汽油发动机、柴油发动机等。发动机10将由空气和燃料的空气-燃料混合物的燃烧生成的能量转换成活塞的往复运动,使用曲柄机构将往复运动转换成旋转运动,并且将旋转运动输出到曲轴17。

mg20是ac电动发电机,并且例如是转子中嵌入永磁体的三相ac同步电动机。mg20由逆变器60(在下文描述)驱动,产生用于驱动车辆1的转矩,并且将转矩输出到at输入轴22。mg20能从at输入轴22接收转矩(发动机10的输出或通过at30从驱动轮40传送的转矩)以生成电力。

at30被配置成改变at输入轴22的转速与at输出轴35的转速的比(齿轮比)。at30可以是能够以逐步方式改变齿轮比的有级自动变速器,或无级自动变速器。

在车辆1中,释放离合器18(动力切断),由此仅使用mg20的驱动力执行行驶。啮合(动力传递)离合器18,由此能使用发动机10和mg20两者的驱动力执行行驶。在啮合离合器18的状态下,可以使mg20处于非驱动状态,并且可以仅使用发动机10的动力执行行驶,或当使用发动机10的动力执行行驶时mg20可以发电。

交流发电机12通过皮带被连接到发动机10的曲轴17,并且使用发动机10的动力生成辅机电力。具体地,交流发电机12从发动机10的曲轴17接收转矩以生成电力并且将经过从发动机ecu100(下文所述)接收的指示电压(例如12v至15v)的电压调整的电力输出到低压系统电力线75。

交流发电机12通过当停止发动机10时,在交流发电机12中循环电流,强制地生成再生转矩(制动转矩),由此将制动应用于曲轴17来使曲轴17停在所需目标位置(曲柄位置停止控制)。将在下文中,详细地描述交流发电机12的构成和曲柄位置停止控制。

起动器14通过齿轮机构,连接到发动机10的曲轴17,并且在起动发动机10时,从电力线75接收电力以生成转矩。将生成的转矩通过齿轮机构传送到曲轴17,并且曲柄操作发动机10。曲柄位置传感器16检测指示曲轴17的旋转位置(旋转角)的曲柄位置cp并且将检测值输出到发动机ecu100。

车辆1进一步包括蓄电装置50、系统主继电器(在下文中,称为“smr”)52、逆变器60、dc/dc转换器70、辅机电池80、辅机85、电压传感器72、发动机电控单元(ecu)100和hv-ecu110。

蓄电装置50是可充电dc电源,并且包括例如二次电池,诸如镍氢电池或锂离子电池。蓄电装置50能通过高压系统电力线55,将电力供应到逆变器60和dc/dc转换器70。在mg20生成电力时,使用通过逆变器60和电力线55接收的生成的电力,充电蓄电装置50。蓄电装置50的电压是例如约200v。作为蓄电装置50,还能采用大容量电容器。

在蓄电装置50和电力线55之间提供smr52。例如,如果用户在下压制动踏板的状态下操作电源开关(未示出),根据来自hv-ecu110的控制信号,使smr52进入通电状态,并且使车辆1进入“准备就绪”状态并且能够行驶。

在电力线55和mg20之间提供逆变器60,并且基于来自hv-ecu110的控制信号驱动mg20。逆变器60能通过电力线55,从蓄电装置50接收电力以在供电状态中驱动mg20。逆变器60能整流由mg20产生的电力并且将电力通过电力线55输出到蓄电装置50(再生充电)。逆变器60由例如包括用于三相的开关元件的桥电路构成。

dc/dc转换器70连接到高压系统电力线55和低压系统电力线75之间,并且从电力线55接收电力以生成辅机电力。具体地,dc/dc转换器70将通过高压系统电力线55从蓄电装置50接收的电力转换成经过来自hv-ecu110的指示电压(例如12v至15v)的电压调整的电力,并且将电力输出到低压系统电力线75。dc/dc转换器70是例如包括dc/ac转换电路、变压器、整流器电路和平滑电路的绝缘转换器。

辅机电池80是可再充电dc电源,包括例如铅蓄电池。辅机电池80能通过电力线75将电力供应到辅机85和起动器14。使用经由电力线75从dc/dc转换器70和/或交流发电机12接收的电力充电辅机电池80。辅机电池80的电压为例如约12v。

辅机85统称安装在车辆1中的各种辅机(除交流发电机12、起动器14和dc/dc转换器70外)。电压传感器72检测低压系统电力线75的电压并且将检测值输出到hv-ecu110。

发动机ecu100包括中央处理单元(cpu)、存储处理程序等的只读存储器(rom)、临时存储数据的随机存取存储器(ram)和被提供以输入和输出各种信号的输入/输出端口等(全未示出),并且执行发动机10的各种控制。

作为发动机ecu100的一个主要控制,发动机ecu100在发动机10运转期间,控制交流发电机12。发动机ecu100设定表示交流发电机12的目标输出电压的指示电压(在下文中,称为“第一指示电压”)并且将第一指示电压输出到交流发电机12。根据车辆1的行驶状态、辅机85的负载状态等,适当地设定第一指示电压,使得交流发电机12的发电效率变得令人满意。

当停止发动机10时,发动机ecu100执行用于通过交流发电机12将制动施加到发动机10的曲轴17以使曲轴17停在所需目标位置的曲柄位置停止控制。具体地,发动机ecu100控制交流发电机12,使得在交流发电机12中循环电流,由此在交流发电机12中强制地生成再生转矩(制动转矩),并且基于曲柄位置(曲轴转角)的检测值,使曲柄停止在预定位置。

执行曲柄位置停止控制,以增加下次发动机工作时的发动机起动性。即,当停止发动机10时,使曲轴17的曲柄停在预先设定的目标位置,由此可以增加在下次发动机工作时的发动机起动性。如根据实施例1的车辆1,在发动机10根据行驶状况重复停止和工作的混合动力车辆中,要求蓄电装置50的充电状态(充电的状态(soc))等,特别是令人满意的发动机起动性。

hv-ecu110还包括cpu、存储处理程序等的rom、临时存储数据的ram、提供以输入和输出各种信号的输入/输出端口等(全未示出),并且执行用于整体控制车辆1的各种控制。

作为hv-ecu110的一种主要控制,hv-ecu110控制dc/dc转换器70,使得将辅机电力通过dc/dc转换器70从高压系统电力线55供应到低压系统电力线75。hv-ecu110设定表示dc/dc转换器70的目标输出电压的指示电压(在下文中,称为“第二指示电压”)并且将第二指示电压输出到dc/dc转换器70。根据辅机85的负载状态等,适当地设定第二指示电压,使得dc/dc转换器70的转换效率变得令人满意。

通过控制器区域网(can)等,在发动机ecu100和hv-ecu110之间执行通信,并且适当地交换信息。

在车辆1中,如果由发动机ecu100执行曲柄位置停止控制,在交流发电机12中循环电流,由此交流发电机12生成强制制动转矩并且交流发电机12的转速快速地降低。为此,如果执行曲柄位置停止控制,交流发电机12的输出电压快速地降低(因为在交流发电机12中循环电流,交流发电机12的输出电压基本上立即变为0)。由于低压系统电力线75的电压(辅机电压)为根据第一指示电压的交流发电机12的输出电压和根据第二指示电压的dc/dc转换器70的输出电压中的较高电压,如果在曲柄位置停止控制开始时,第一指示电压高于第二指示电压,电力线75的电压从第一指示电压的电平快速地降低到第二指示电压的电平。如果快速地降低电力线75的电压,辅机85的工作很可能变得不稳定。

因此,在根据实施例1的车辆1中,在第二指示电压(dc/dc转换器70的目标输出电压)等于或高于第一指示电压(交流发电机12的目标输出电压)的情况下,发动机ecu100执行曲柄位置停止控制。通过该操作,由于在曲柄位置停止控制开始时,电力线75的电压受dc/dc转换器70的输出限制,即使随着起动曲柄位置停止控制,交流发电机12的输出电压快速地降低,也不会降低电力线75的电压(辅机电压)。因此,根据车辆1,可以抑制由曲柄位置停止控制带来的辅机电压的变动。

因此,在根据实施例1的车辆1中,当在执行曲柄位置停止控制前,第一指示电压高于第二指示电压时,hv-ecu110根据来自发动机ecu100的指示,使第二指示电压增加到第一指示电压。如果第二指示电压增加到第一指示电压,在发动机ecu100中执行曲柄位置停止控制。当在执行曲柄位置停止控制前第一指示电压高于第二指示电压时,由于相对低的第二指示电压增加到第一指示电压,可以抑制随着第二指示电压的变化带来的辅机电压的变动。

当停止发动机10时不执行曲柄位置停止控制时,如上所述的快速电压变动的问题不会发生。这是因为当不执行曲柄位置停止控制时,由于发动机10的转速随着流逝某一时间降低,交流发电机12的输出电压也随时间降低。

图2是示出图1中所示的交流发电机12的构成的图。参考图2,交流发电机12包括ac发电机200、逆变器210和调节器ic225。

ac发电机200的旋转轴通过滑轮和皮带(未示出)被连接到发动机10的曲轴17(图1),并且与发动机10的曲轴17互锁旋转。在ac发电机200的转子(未示出)中提供其中由调节器ic225控制励磁电流的励磁绕组202,并且如果具有励磁绕组202中流动的励磁电流的转子与ac发电机200的旋转轴一起旋转,在定子线圈中生成ac电压。

逆变器210包括开关元件211至216和二极管221至216。开关元件211至216的每一个由例如金属氧化物半导体场效应晶体管(mosfet)构成。二极管221至216分别与开关元件211至216反并联连接。

在使用发动机10的输出的正常发电时,通过断开上臂和下臂的所有开关元件211至216,逆变器210充当整流电路,整流由ac发电机200生成的ac电力,并且将ac电力输出到低压系统电力线75。当停止发动机10时执行曲柄位置停止控制时,断开上臂的所有开关元件211、213、215,以及基于来自发动机ecu100的控制信号,全相同时控制下臂的开关元件212、214、216的开/关。在下文中,该控制被称为“下臂全相控制”。通过下臂全相控制,在ac发电机200中强制地生成制动转矩,并且基于曲柄位置(曲轴转角)的检测值,适当地控制下臂的开/关,由此,可以调整制动转矩的大小以使曲柄停在所需位置。

图3是示出在执行下臂全相控制时,在交流发电机12中流动的电流的路径的示例的图。参考图3,当通过ac发电机200的旋转在ac发电机200中生成反电动势电压时,如果断开(切断)上臂的所有开关元件211、213、215并且接通(导通)下臂的所有开关元件212、214、216,例如,由粗箭头表示的循环电流在交流发电机12中流动,并且在ac发电机200中生成再生转矩(制动转矩)。当发动机10停止时,使用制动转矩,将制动施加到曲轴17。适当时,同时接通/断开下臂的开关元件212、214、216,由此可以调整ac发电机200的制动转矩并且使曲轴17停在所需曲柄位置(曲轴转角)(曲柄位置停止控制)。

再次参考图2,调节器ic225基于来自发动机ecu100的指示电压,调整从ac发电机200输出到电力线75的电压。更详细地说,调节器ic225从发动机ecu100接收表示交流发电机12的目标输出电压的第一指示电压,并且控制在ac发电机200的转子中提供的励磁绕组202的励磁电流,由此,将交流发电机12的输出电压调整到第一指示电压。对调节器ic225,能使用通常在已知交流发电机中提供的调节器ic的等价物。

在上述描述中,尽管在执行下臂全相控制时,通过适当时同时全相接通/断开开关元件212、214、216来调整ac发电机200的制动转矩,可以通过使下臂的所有开关元件212、214、216进入导通状态并且由调节器ic225控制ac发电机200的励磁电流,来调整ac发电机200的制动转矩。

以这种方式,当停止发动机10时,执行交流发电机12的下臂全相控制,由此,能在ac发电机200中强制地生成制动转矩。如果执行下臂全相控制,因为ac发电机200的转速由于制动转矩而快速地降低,交流发电机12的输出电压会快速地降低。如果交流发电机12的输出电压快速地降低,电力线75的电压(辅机电压)很可能快速地降低。即,如果执行曲柄位置停止控制,电力线75的电压(辅机电压)很可能快速地变动。

图4是示出通过执行曲柄位置停止控制,辅机电压快速地变动的参考图。参考图4,实线k1表示辅机电压,虚线k2表示dc/dc转换器的目标输出电压(第二指示电压)。

在时刻t1,假定基于发动机的停止指示,执行曲柄位置停止控制。在执行曲柄位置停止控制前,当第一指示电压(交流发电机的目标输出电压)为电压v1并且第二指示电压(dc/dc转换器的目标输出电压)为电压v2(v2<v1)时,根据对应于第一和第二指示电压中的较高电压的第一指示电压,辅机电压变为电压v1。

如果在这种情况下,在时刻t1执行曲柄位置停止控制,通过执行下臂全相控制,交流发电机的输出电压快速地降低,并且辅机电压从电压v1快速地降低到电压v2。即,如果在执行曲柄位置停止控制时,第一指示电压高于第二指示电压,发生辅机电压的快速变动(降低)。

图5是示出在根据实施例1的车辆1中,在执行曲柄位置停止控制前后的辅机电压的转变的图。参考图5,实线k11表示电力线75的电压(辅机电压),以及虚线k12表示dc/dc转换器70的目标输出电压(第二指示电压)。

在时刻t11前,假定第一指示电压(交流发电机12的目标输出电压)为电压v1,以及第二指示电压(dc/dc转换器70的目标输出电压)为电压v2(v2<v1)。根据对应于第一和第二指示电压中的较高电压的第一指示电压,电力线75的电压变为电压v1。

在时刻t11,假定生成发动机10的停止指示。此时,由于第二指示电压不等于或高于第一指示电压,在根据实施例1的车辆1中,第二指示电压增加到第一指示电压的电压v1。在该图中,尽管第二指示电压以一定速率增加,但可以不提供该速率。由于电力线75的电压(辅机电压)是根据对应于第一和第二指示电压中的较高电压的第一指示电压的电压v1,不会发生由于第二指示电压从电压v2增加到电压v1的电力线75的电压的变动。

在第二指示电压增加到第一指示电压的电压v1(在第二指示电压等于或高于第一指示电压的情况下),在时刻t12,执行曲柄位置停止控制。通过此操作,即使由于曲柄位置停止控制交流发电机12的输出电压从电压v1快速地降低,由dc/dc转换器70,将电力线75的电压控制到电压v1。即,即使由于曲柄位置停止控制交流发电机12的输出电压快速地降低,电力线75的电压不降低。因此,根据车辆1,抑制由曲柄位置停止控制带来的电力线75的电压(辅机电压)的变动。

当指示停止发动机10时,当第二指示电压等于或高于第一指示电压时,如上所述,执行曲柄位置停止控制,而不改变第二指示电压。

图6是示出由发动机ecu100执行的处理的过程的流程图。每隔预定时间或当满足预定条件时,从主例程调用并且执行流程图中所示的过程。

参考图6,发动机ecu100确定是否存在发动机10的停止指示(步骤s10)。例如,根据用户对加速器的操作、蓄电装置50的soc等,确定由hv-ecu110停止还是运转发动机10。如果从hv-ecu110接收到发动机停止命令,发动机ecu100确定存在发动机10的停止指示。

当确定不存在发动机10的停止指示时(步骤s10为否),发动机ecu100使过程进行到返回,无需执行一系列后续处理。

在步骤s10,如果确定存在发动机10的停止指示(步骤s10为是),发动机ecu100释放离合器18(图1),并且停止对发动机10的燃料供应以便停止发动机10(步骤s20)。

接着,发动机ecu100确定dc/dc转换器70(图1)的指示电压(第二指示电压)是否等于或高于交流发电机12的指示电压(第一指示电压)(步骤s30)。从hv-ecu110获得dc/dc转换器70的指示电压(第二指示电压)。

如果确定dc/dc转换器70的指示电压(第二指示电压)低于交流发电机12的指示电压(第一指示电压)(步骤s30为否),发动机ecu100将指示输出到hv-ecu110以增加dc/dc转换器70的指示电压(第二指示电压)(步骤s40)。这是因为如果在其中dc/dc转换器70的指示电压(第二指示电压)低于交流发电机12的指示电压(第一指示电压)的情况下执行曲柄位置停止控制,如参考图4所述,随着执行曲柄位置停止控制,电力线75的电压(辅机电压)快速地降低。

如果在步骤s40,将指示输出到hv-ecu110,发动机ecu100将过程返回到步骤s30,并且再次确定dc/dc转换器70的指示电压(第二指示电压)是否等于或高于交流发电机12的指示电压(第一指示电压)。

然后,在步骤s30,确定dc/dc转换器70的指示电压(第二指示电压)等于或高于交流发电机12的指示电压(第一指示电压)(步骤s30为是),发动机ecu100使用交流发电机12,执行曲柄位置停止控制(步骤s50)。

图7是示出在图6的步骤s50中执行的曲柄位置停止控制的处理过程的流程图。参考图7,发动机ecu100从曲柄位置传感器16获得表示曲轴17的旋转位置(旋转角)的曲柄位置cp。

接着,发动机ecu100断开逆变器210(图2)的上臂的所有开关元件211、213、215(步骤s120)。此外,发动机ecu100全相同时控制逆变器210的下臂的开关元件212、214、216的开/关(步骤s130)。因此,如图3所示,循环电流在交流发电机12中流动,并且在交流发电机12中生成制动转矩。适当时,全相同时控制下臂的开关元件212、214、216的开/关,由此可以调整制动转矩的大小以使曲柄位置停止在所需位置。

接着,发动机ecu100基于在步骤s110中获得的曲柄位置cp,确定发动机10的曲柄是否停在预定目标位置(步骤s140)。将目标位置预先设定为发动机10的起动性增加的曲柄位置。当曲柄未停止在目标位置时(步骤s140为否),过程返回到步骤s110,并且继续下臂全相控制。

然后,如果在步骤s140确定曲柄停止在目标位置(步骤s140为是),过程进行到结束,并且曲柄位置停止控制结束。

如上所述,根据实施例1,在其中第二指示电压(dc/dc转换器70的目标输出电压)等于或高于第一指示电压(交流发电机12的目标输出电压)的情况下,执行曲柄位置停止控制。因此,即使由曲柄位置停止控制的开始而快速地降低交流发电机12的输出电压,电力线75的电压(辅机电压)也不降低。因此,根据实施例1,可以抑制由于曲柄位置停止控制的辅机电压的变动。

在实施例1中,当在执行曲柄位置停止控制前,第一指示电压高于第二指示电压时,在相对低的第二指示电压增加到第一指示电压后,执行曲柄位置停止控制。因此,可以通过在执行曲柄位置停止控制前改变第二指示电压,抑制辅机电压的变动。

[修改示例1]在如上所述的实施例1中,尽管在指示停止发动机10的情况下,当交流发电机12的指示电压(第一指示电压)高于dc/dc转换器70的指示电压(第二指示电压)时,第二指示电压增加到第一指示电压,第一指示电压可以降低到第二指示电压。

图8是示出在根据修改示例1的车辆1中执行曲柄位置停止控制前后的辅机电压的转变的图。参考图8,实线k21表示电力线75的电压(辅机电压),以及虚线k22表示dc/dc转换器70的目标输出电压(第二指示电压)。

在时刻t21前,假定第一指示电压(交流发电机12的目标输出电压)为电压v1,并且第二指示电压(dc/dc转换器70的目标输出电压)为电压v2(v2<v1)。根据对应于第一和第二指示电压中的较高电压的第一指示电压,电力线75的电压变为电压v1。

在时刻t21,假定生成发动机10的停止指示。此时,第二指示电压不等于或高于第一指示电压,在修改示例1中,第一指示电压减小到等于或低于第二指示电压(在下文中,将描述假定第一指示电压减小到第二指示电压的电压v2)。如果第一指示电压快速地降低,由于随着第一指示电压降低,电力线75的电压快速地降低,第一指示电压以一定程度的速率减小使得电力线75的电压不会快速地降低。

然后,在第一指示电压减小到第二指示电压的电压v2后(在其中第二指示电压等于或高于第一指示电压的情况下),在时刻t22,执行曲柄位置停止控制。因此,即使由于曲柄位置停止控制,交流发电机12的输出电压从电压v2快速地降低,电力线75的电压由dc/dc转换器70控制到电压v2,且由此不会降低。因此,即使在修改示例1中,抑制由于曲柄位置停止控制的电力线75的电压(辅机电压)的变动。

图9是示出在修改示例1中,由发动机ecu100执行的处理的过程的流程图。每隔预定时间或当满足预定条件时从主例程调用和执行流程图中所示的过程。

参考图9,流程图中所示的步骤s210至s230和s250与图6中所示的实施例1的流程图中所示的步骤s10至s30和s50相同。

在根据修改示例1的车辆1中,如果确定dc/dc转换器70的指示电压(第二指示电压)低于交流发电机12的指示电压(第一指示电压)(步骤s230为否),发动机ecu100按预定量减小交流发电机12的指示电压(第一指示电压)(步骤s240)。当预定量被设定为相对小的值,在这种程度上使得电力线75的电压不会快速地降低时,交流发电机12的指示电压(第一指示电压)以一定速率按预定量减小。

在步骤s240,如果交流发电机12的指示电压(第一指示电压)按预定量减小,发动机ecu100使过程返回到步骤s230,再次确定dc/dc转换器70的指示电压(第二指示电压)是否等于或高于交流发电机12的指示电压(第一指示电压)。

然后,如果在步骤s230确定dc/dc转换器70的指示电压(第二指示电压)等于或高于交流发电机12的指示电压(第一指示电压)(步骤s230为是),发动机ecu100使过程进行到步骤s250,并且使用交流发电机12执行曲柄位置停止控制。

[修改示例2]在如上所述的实施例1和修改示例1中,尽管通过执行下臂全相控制(图3)实现曲柄位置停止控制,用于实现曲柄位置停止控制的控制不限于下臂全相控制。

图10是示出修改示例2中的交流发电机的构成的图。参考图10,交流发电机12a进一步包括在图2所示的交流发电机12的构成中的开关元件250。

开关元件250包括继电器252、254和电阻器256。在电力线75和连接到逆变器210或调节器ic225的电力线76之间提供继电器252。如果断开继电器252(电力切断),交流发电机12a从电力线75电气断开。继电器254连接在电力线76和接地节点之间。电阻器256与继电器254串联连接。继电器254与继电器252互补地操作。即,当接通(导通)继电器252时,断开继电器254,并且当断开继电器252时(电力切断),接通继电器254。

分别接通或断开继电器252、254,由此能将ac发电机200产生的电力通过逆变器210供应到低压系统电力线75。在执行曲柄位置停止控制时,分别接通或断开继电器252、254。因此,可以在交流发电机12a中生成循环电流,并且可以在ac发电机200中生成制动转矩。

图11是示出在修改示例2中,在执行曲柄位置停止控制时,在交流发电机12a中流动的电流的路径的示例的图。参考图11,当通过ac发电机200的旋转,在ac发电机200中生成反电动势电压时,如果分别接通或断开继电器252、254,例如,由粗箭头表示的循环电流在交流发电机12a中流动,并且在ac发电机200中生成再生转矩(制动转矩)。使用制动转矩,将制动施加到发动机10的曲轴17。然后,由调节器ic225控制ac发电机200的励磁电流,由此可以调整ac发电机200的制动转矩并且使曲轴17停在所需曲柄位置(曲轴转角)(曲柄位置停止控制)。

图12是示出在修改示例2中,曲柄位置停止控制的处理过程的流程图。该流程图对应于图7所示的流程图。参考图12,发动机ecu100从曲柄位置传感器16获得表示曲轴17的旋转位置(旋转角)的曲柄位置cp(步骤s310)。

接着,发动机ecu100分别接通或断开继电器252、254(图10)(步骤s320)。通过此操作,如图11所示,循环电流在交流发电机12a中流动,并且在交流发电机12a中生成用于强制停止发动机10的制动转矩。

发动机ecu100执行控制使得调节器ic225调整ac发电机200的励磁电流,由此调整制动转矩的大小(步骤s330)。通过此操作,可以调整制动转矩的大小以使曲柄停在所需位置。

接着,发动机ecu100基于在步骤s310获得的曲柄位置cp,确定发动机10的曲柄是否停在预定目标位置(步骤s340)。当曲柄未停止在目标位置时(步骤s340为否),过程返回到步骤s310。

然后,如果在步骤s340确定曲柄停止在目标位置(步骤s340为是),发动机ecu100分别接通或断开继电器252、254,并且结束处理序列。

[修改示例3]在如上所述的实施例1以及修改示例1和2中,尽管从发动机10的曲轴17获得转矩,并且使用交流发电机12(12a)产生辅机电力,并且如图3所示,当停止发动机10时执行曲柄位置停止控制,可以使用集成起动器发电机(isg)90,代替交流发电机12(12a)。

isg90通过皮带连接到发动机10的曲轴17(这种isg被称为“皮带型isg”)。isg90具有交流发电机的功能,并且具有在起动发动机10时作为起动器的功能以及行驶转矩的辅助功能。由于isg90具有作为起动器的功能,车辆1a不包括在图1所示的车辆1中提供的起动器14。

与图2和10所示的交流发电机12、12a类似,isg90包括具有发电功能的ac旋转电机(电动发电机),以及驱动ac旋转电机的逆变器(未示出)。因此,即使在包括isg90代替交流发电机12(12a)的车辆1a中,可以实现与根据如上所述的实施例1或修改示例1和2的车辆1中的功能相同的功能。

[实施例2]在如上所述的实施例1和各个修改示例中,尽管车辆1、1a是包括发动机10和mg20作为电源的混合动力车辆,本发明不限于混合动力车辆,并且能被应用于不包括mg20或蓄电装置50的车辆。

图14是根据本发明的实施例2的车辆的整体构成图。参考图14,车辆1b包括发动机10、交流发电机12、起动器14、曲柄位置传感器16、at30和驱动轮40。车辆1b进一步包括辅机电池80、辅机85、电压传感器72、太阳能电池板92、dc/dc转换器94、发动机ecu100和ecu120。

例如,在车辆1b的车顶上,提供太阳能电池板92,并且接收太阳光以生成电力。太阳能电池板92将生成的电力输出到dc/dc转换器94。dc/dc转换器94连接在太阳能电池板92和电力线75之间,并且从太阳能电池板92接收电力以生成辅机电力。特别地,dc/dc转换器94将从太阳能电池板92接收的电力转换成经过从ecu120接收的指示电压(例如12v至15v)的电压调整的电力并且将电力输出到电力线75。dc/dc转换器94是例如包括dc/ac转换电路、变压器、整流器电路和平滑电路的绝缘变换器。

ecu120包括cpu、存储处理程序等的rom、临时存储数据的ram、提供以输出和输出各种信号的输入/输出端口等(全未示出)。ecu120控制dc/dc转换器94,使得将辅机电力从太阳能电池板92通过dc/dc转换器94供应到电力线75。ecu120设定表示dc/dc转换器94的目标输出电压的指示电压(在下文中,称为“第三指示电压”),并且将第三指示电压输出到dc/dc转换器94。根据辅机85的负载状态等,适当地设定第三指示电压,使得dc/dc转换器94的转换效率变得令人满意。

即使在实施例2中,在第三指示电压(dc/dc转换器94的目标输出电压)等于或高于第一指示电压(交流发电机12的目标输出电压)的状态下,通过发动机ecu100执行曲柄位置停止控制。

即使在实施例2中,当执行曲柄位置停止控制前第一指示电压高于第三指示电压时,通过ecu120,第三指示电压增加到第一指示电压,或通过发动机ecu100,第一指示电压以一定速率减小到等于或低于第三指示电压。然后,在第三指示电压等于或高于第一指示电压的状态下,由发动机ecu100执行曲柄位置停止控制。

车辆1b不包括在图1所示的车辆1中提供的蓄电装置50、smr52、逆变器60、mg20等。车辆1b的其他构成与车辆1中的相同。

当太阳能电池板92的输出电压高于预定操作阈值时,执行通过ecu120的上述控制,并且当太阳能电池板92的输出电压等于或低于操作阈值时,诸如夜间,不执行通过ecu120的上述控制。

根据实施例2,当太阳能电池板92的输出电压高于操作阈值并且通过太阳能电池板92和dc/dc转换器94产生辅机电力时,可以获得与上述实施例1中的那些相同的效果。

在上述实施例2中,尽管提供太阳能电池板92和dc/dc转换器94代替dc/dc转换器70和蓄电装置50构成不同于实施例1中的交流发电机12的辅机电源,不同于交流发电机12的辅机电源可以是连接到at30的旋转轴(能通过离合器18从曲轴17断开)、而不连接到发动机10的曲轴17的交流发电机(未示出),并且使用驱动轮40的转矩产生辅机电力。

尽管未具体示出,即使在实施例2的构成中,如在上述修改示例3中,可以提供isg90代替交流发电机12(12a)。

在上述实施例1和各个修改示例中,尽管车辆1、1a包括单个mg20,但当本发明应用于混合动力车辆时,本发明不限于包括单个mg的混合动力车辆,并且还能应用于包括两个或以上mg的混合动力车辆。

在上述描述中,交流发电机12、12a对应于本发明的“第一发电装置”的示例,以及ac发电机200对应于本发明的“旋转电机”的示例。isg90还对应于本发明的“第一发电装置”的示例。此外,dc/dc转换器70和蓄电装置50对应于本发明中的“第二发电装置”的示例,以及太阳能电池板92和dc/dc转换器94还对应于本发明的“第二发电装置”的示例。当提供连接到at30的旋转轴的交流发电机时,交流发电机还对应于本发明的“第二发电装置”的示例。此外,发动机ecu100对应于本发明的“电控单元”的示例,以及mg20对应于本发明的“电动机”的示例。

适当时,旨在以组合实现本文公开的各个实施例,只要没有矛盾。在各个方面,本文公开的实施例仅视为示例性而不是限制。本发明的范围权利要求的术语而不是由实施例的上述描述限定,并且旨在包括在该范围内的任何修改以及与权利要求的术语等价的含义。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1