车辆的行驶辅助装置的制作方法

文档序号:4028525阅读:158来源:国知局
专利名称:车辆的行驶辅助装置的制作方法
技术领域
本发明涉及例如包括 EPS (Electronic controlled Power Steering,电子控制式动力转向装置)或者VGRS(Variable Gear Ratio Steering,可变齿轮比转向装置)等各种转向机构的车辆中的例如LKA(Lean Keep Assist,车道保持辅助装置)等行驶辅助装置的技术领域。
背景技术
作为这种装置,提出了使用电动式动力转向装置和转向角可变装置来进行车道保持行驶的装置(例如,参照专利文献1)。根据专利文献1公开的车辆的转向控制装置(以下称为“现有技术”),在车道保持行驶时,控制电动式动力转向装置以得到基于曲率半径的目标转角,并且通过转向角可变装置来控制车辆相对于行驶路线的横向位置和横摆角的偏差,从而能够使车辆沿目标行驶路径良好地行驶。
另一方面,当进行车道保持行驶时,有时驾驶员需要进行紧急转向操作,诸如为了避开目标行驶路线上的障碍物等。为了应对这样的状况,在车辆的车道保持行驶控制中, 进行基于有关车辆行驶状态的参数来判断是否要中断车道保持行驶的超控(override)判定。作为有关这种超控判定,例如专利文献2中公开了基于车道保持行驶时的目标转向角和驾驶员输入的转向操作的转向角的偏差来进行超控判定的技术。此外,专利文献3和4 公开了基于转向转矩和转向角来设定超控判定的判定基准的技术。
在先技术文献
专利文献
专利文献1 日本专利文献特开2007-160998号公报
专利文献2 日本专利文献特开2008-080866号公报
专利文献3 日本专利文献特开平11-078936号公报
专利文献4 日本专利文献特开2003-081115号公报。发明内容
发明要解决的问题
当通过向转向轮直接或间接地施加某些驱动力来改变转角、对目标路线进行追随以进行车道保持控制时,来自包括转向轮的转向系统的反作用力作用于转向盘,在极端的情况下转向盘有时会被反转向。另外,在能够通过将辅助驾驶员提供的转向转矩的辅助转矩施加给转向系统来改变转角的构成中,转向盘与驾驶员的意思无关地被操作,因此驾驶员会以高的概率感到不适感。即,一般来说难以通过单一的转向机构在抑制驾驶员的不适感的情况下实现对目标路线的追随。
在上述专利文献1中,虽然使用了电动式动力转向装置及转向角可变装置这样的多个转向机构,但是各机构仅仅独立地负责有关车道保持的控制的一部分,因此当想要通过例如电动式动力转向装置来实现基于曲率半径的目标转角时,无法避免产生上述不适感,并且当想要通过转向角可变装置来控制横向位置以及横摆角的偏离时,如果驾驶员不固定(即,不握紧)转向盘,转向盘就会通过路面反作用力而旋转,从而无法使车辆追随目标路线。
为了解决这样的问题,例如在使用电动式动力转向装置和转向角可变装置这样的多个转向机构的车辆中,可考虑协调电动式动力转向装置和转向角可变装置。
作为这样的协调控制的一种,例如可考虑在通过电动式动力转向装置产生转向转矩的同时,一方面通过转向角可变装置提供车道保持所需的转角变化,而另一方面在车道保持行驶中降低转角变化相对于经转向盘进行的转向输入的程度。在此情况下,在车道保持行驶当中转向盘不会与驾驶员的意思无关地被大幅度转向,能够抑制上述不适感的产生,并且由于转角相对于来自转向盘侧的转向输入的灵敏度下降,因此能够抑制车辆行为相对于转向输入过度改变。
但是,在车辆行驶当中,根据各种情况,适当地可产生基于驾驶员自身意思的转向操作(超控)。立足于不应违反驾驶员的意思来进行车道保持控制的观点,一旦产生了上述超控,就应当迅速结束车道保持控制。从而,在这种车辆中,必然需要迅速且正确地执行超控判定。
这里,在上述专利文献2中,公开了基于目标转向角与转向角的偏差来进行超控判定的技术思想,但该技术思想例如象上述的协调控制那样没有假定目标转向角自身可任意变化的构成,当目标转向角自身发生了变化时,超控判定的定时必然会变乱,从而难以正确地进行超控判定。
此外,在通过上述的协调控制实现了车辆行为相对于驾驶员转向操作的稳定的情况下,尤其在车道保持行驶时(即追随时,)驾驶员的转向操作对转向轮的转角变化的影响被抑制得相对较小,因此一方面当如专利文献3中公开的那样要根据转向转矩来执行超控判定时,获得相应的转向转矩所必要的转向操作量容易变得过大,难以迅速进行超控判定,并且也难以避免相应的不适感的产生。此外另一方面,当如专利文献4中公开的那样要依据转向角来执行超控判定时,驾驶员的转向操作对车辆行为的影响程度会根据状况而改变,因此难以设定用于进行超控判定的基准值。
如此,在包括上述各专利文献所公开的技术在内的现有技术中,当想要同时抑制给驾驶员带来的不适感和车辆行为的不稳定时,存在迅速且正确的超控判定容易变得困难的技术问题。
本发明就是鉴于例如上述的问题而做出的,其要解决的问题是提供一种当使车辆追随目标行驶路线时可迅速且正确地检测到驾驶员的超控的车辆的行驶辅助装置。
用于解决问题的手段
为了解决上述的问题,本发明涉及的车辆的行驶辅助装置用于辅助车辆的行驶, 其中所述车辆包括转角可变装置,所述转角可变装置能够改变转向角与转角的相对关系, 所述转向角是转向输入轴的旋转角,所述转角是转向轮的旋转角,所述车辆的行驶辅助装置的特征在于,包括追随控制装置,其控制所述转角可变装置,以使所述车辆追随目行驶路线;转向角确定装置,其确定所述转向角;以及判别装置,其基于所述确定的转向角和基准转向角来判别有没有发生驾驶员的超控,所述基准转向角是使所述车辆追随所述目标行驶路线时的所述转向角;其中,当判别为发生了所述超控时,所述追随控制装置停止使所述车辆追随所述目标行驶路线。
本发明涉及的车辆包括转角可变装置,能够分级地或连续地或离散地改变作为转向输入轴的旋转轴的转向角与作为转向轮的旋转轴的转角之间的相对关系。这种改变既可以经过物理的、机械的、电的或者磁的各种过程来实现,本发明中的转角可变装置是包括可实现这些改变的各种装置的概念。即,根据转角可变装置,转向角与转角的关系不被唯一地规定,例如可改变转向角与转角之比(所谓的传递比)。或者,也可以与转向角无关地改变转角。转角可变装置例如作为一优选方式,可构成为VGRS或者SBW(Steer By Wire 线控转向-电气性转角可变装置)等。
本发明涉及的第一车辆的行驶辅助装置是控制安装这种转角可变装置的车辆的装置,例如可采用一个或多个CPU (Central Processing Unit,中央处理器)、MPU (Micro Processing Unit,微处理器)、各种处理器或者各种控制器、或者还可以采用适当包含 ROM (Read Only Memory,只读存储器)、RAM (Random Access Memory,随机存取存储器)、 缓冲存储器或闪速存储器等各种存储装置等的单个或多个ECU (Electronic Controlled Unit,电子控制单元)等各种处理单元、各种控制器或微机装置等各种计算机系统等的形式。
根据本发明涉及的车辆的行驶辅助装置,在其动作时,通过追随控制装置经由转角可变装置的控制使车辆追随目标行驶路线。即,作为一优选方式,例如实现LKA等所谓的车道保持行驶。
此时,追随控制装置也可以例如经过公知的各种算法或各种控制过程,决定转角可变装置的控制目标值,并依据该控制目标值来控制转角可变装置。更具体地,例如也可以基于通过车载相机等拍摄的目标行驶路线的图像来计算或估计目标行驶路线的曲率、规定目标行驶路线的白线等与车辆的位置偏差以及横摆偏差等,并基于这些来计算或估计用于使车辆追随目标行驶路线的目标横向加速度,然后基于所述算出或估计的目标横向加速度来设定作为目标转角等的控制目标值,目标转角是例如应实现的转角变化量的目标值。
另一方面,在如此使车辆追随目标行驶路线的期间,驾驶员可能按明确的意思操作转向盘等转向输入装置,即会适当地发生所谓的超控。这种超控既可以例如随着为了避开目标行驶路线上的障碍物等而进行的紧急转向操作而发生,也可以为了改变车道或确认前方等而缓慢进行的转向操作而发生,但不管哪种都需要以某种形式对其进行判定。此外, 如果鉴于要反映驾驶员的明确的意思的这一点,则在发生了超控时,最好迅速且正确地检测到该超控。因此,在本发明涉及的车辆的行驶辅助装置中,如下进行有没有发生超控的判定(以下,适当地称为“超控判定”)。
S卩,在本发明涉及的第一车辆的行驶辅助装置中,当进行超控判定时,由确定装置确定转向角,并由判别装置基于该确定的转向角与提供转向角的基准的基准转向角来判定有没有发生超控。本发明涉及的“确定”是包括检测、计算、导出、估计、辨识、选择以及获取等的概念,其要旨是只要克确定为控制上的参考信息,则其实践形式不被限定,可以是任何形式。例如,转向角确定装置也可以从附装在转向输入轴上的转向角传感器等各种检测装置以电信号的形式获取与转向角对应的信息,并由此确定转向角。
这里,基准转向角是使车辆追随目标行驶路线时的转向角,并且是当使车辆追随目标行驶路线时没有产生驾驶员的转向输入的情况下的转向角。即,例如在诸如所谓自动转向这样转向盘与转向轮实质上被切断的控制中,基准转向角为0,或者,在预先基于实验、 经验、理论或者仿真等而相对于使车辆追随目标行驶路线时产生的车辆的行为变化决定了最能够减少给驾驶员带来的不适感(直接视觉上的不适感)的转向角变化量的情况下,基准转向角也可以是这种根据其时间点的车辆行为而适当改变的最能够减少给驾驶员带来的不适感的转向角。
无论转角的变化需要输入转向角的输入(此时,基准转向角可根据该相对关系唯一地规定),或者无论转角的变化不需要转向角的输入(此时,基准转向角为0)、或者复合了二者的情况下(即,通过将依赖于转向角的转角变化和不依赖于转向角的转角变化相加而给出最终的转角变化的情况),基准转向角都可基于追随控制装置的控制方式或者上述的相对关系来时常恰当地掌握。
基于所述确定的转向角与基准转向角的判别装置的判别过程涉及的実践性方式不唯一限定,可采用各种方式。其宗旨是例如,既可以在所确定的转向角大于该基准转向角的时间点判别为发生了超控,也可以基于所确定的转向角与基准转向角的偏差超过了固定或不固定的阈值来判别发生了超控,或者也可以单纯地在这些相互间关系的基础上适当考虑车辆的行驶条件等。
无论何种情况,根据本发明涉及的车辆的行驶辅助装置,当基于转向角来判定有没有发生驾驶员的超控时,总能够将该时间点的基准转向角用作判断基准。因此,还能够恰当地防止以下情况将为了使车辆追随目标行驶路线的而经由转角可变装置提供的转向角变化错误地判断为驾驶员的转向输入,从而做出发生了超控的误判定;当使车辆追随目标行驶路线时,尽管转向轮与转向输入轴切断(即,基准转向角为0),只要没有提供了相应的转向角变化,就不判断为发生了超控。即,当使车辆追随目标行驶路线时,可迅速且正确地检测驾驶员的超控。
需要补充的是,本发明涉及的第一车辆的控制装置在使车辆追随目标行驶路线时为了享受各种利益、诸如经由转角可变装置、并在此基础上适当结合EPS等转向转角辅助装置的驱动控制来抑制例如给驾驶员带来不适感以及车辆行为的不稳定等的情况下,构思转向角也能够以受限于这些控制的形式改变的这一点,根据使得转向角的基准总是与在该时间点进行的向目标行驶路线的追随控制符合的形式可变的技术思想,可达到基准固定时无法得到的超控的判定精度的均勻化。即,根据本发明,当使车辆追随目标行驶路线时,不管转角可变装置或者进而转向转角補助装置等如何被控制,总能够以固定的精度进行超控判定,在这一点上也有利于基准转向角无法有意义地改变的任意的技术思想。
当由判别装置判别出发生了超控时,追随控制装置使得车辆结束对目标行驶路线的追随。因此,根据本发明涉及的车辆的行驶辅助装置,车辆不会显示出违反驾驶员意思的行为,可使车辆行为尽可能稳定。
超控判定由于可在基于车道保持行驶时临时发生的事由而驾驶员试图通过经由转向盘进行转向来控制车辆时进行,因此也可以基于诸如在经过了预定时间之后等、客观且合理的各种判断基准来适当重启车道保持行驶。
在本发明涉及的车辆的行驶辅助装置的一个方式中,当所述转向角与所述基准转向角的偏差大于或等于预定的阈值时,所述判别装置判别为发生了所述超控。
根据该方式,通过与阈值进行比较,可进行比较简单的超控判定,因此有益于实践。
在该方式中,也可以包括阈值设定装置,所述阈值设定装置根据所述车辆的行驶条件来设定所述阈值。
这里,行驶条件是包括车辆的运转条件或环境条件等在内的概念,例如是指目标行驶路线的道路形状或车速等。如果行驶条件不同,应供超控判定的阈值的最优值也可以不同,因此在如此阈值可变的情况下,能够将超控的判定精度保持为固定,而不受车辆的行驶条件的影响。
用于解决上述的问题,本发明涉及的第二车辆的行驶辅助装置用于辅助车辆的行驶,其中,所述车辆包括转角可变装置,所述转角可变装置能够改变转向角与转角的相对关系,所述转向角是转向输入轴的旋转角,所述转角是转向轮的旋转角,所述车辆的行驶辅助装置的特征在于,包括追随控制装置,其控制所述转角可变装置,以使所述车辆追随目行驶路线;转向转矩确定装置,其确定施加至所述转向输入轴的转向转矩;判别装置,其基于所述确定的转向转矩和预定的阈值来判别有没有发生驾驶员启动的超控;以及阈值设定装置,其根据所述相对关系来设定所述阈值;其中,当判别为发生了所述超控时,所述追随控制装置停止使所述车辆追随所述目标行驶路线。
根据本发明涉及的第二车辆的行驶辅助装置,当进行超控判定时,通过转向转角确定装置来确定转向转角,通过判别装置基于该确定转向转角与阈值来判别有没有发生超控。即,与上述的第一车辆的行驶辅助装置不同,利用转向转角执行超控判定。
另一方面,驾驶员经由转向输入轴提供的转向转角具有根据转向轮的转角而改变的性质,从而在通过转角可变装置施加了相对于转向角的缓慢的转角变化特性时,转向转角的上升也变缓慢。因此,当假定阈值为固定值时,若通过使车辆追随目标行驶路线时的转角可变装置的控制方式,则存在实现与阈值相当的转角变化所必要的转向角变化量会过度变大、从而超控的判定定时滞后的问题。
这里,在本发明涉及的第二车辆的行驶辅助装置中,通过阈值設定装置,阈值可根据转向角与转角的相对关系而改变。因此,根据第二车辆的行驶辅助装置,诸如通过在相对于转向角的转角变化相对小时将阈值设定得相对小,此外在相对于转向角的转角变化相对大时将阈值设定得相对大,可将检测到超控时的驾驶员侧的转向感觉总是维持在固定的水平。即,当使车辆追随目标行驶路线时,可迅速且正确检测地驾驶员的超控。
需要补充的是,本发明涉及的第一车辆的控制装置在使车辆追随目标行驶路线时为了享受各种利益、诸如经由转角可变装置、并在此基础上适当结合EPS等转向转角辅助装置的驱动控制来抑制例如给驾驶员带来不适感以及车辆行为的不稳定等的情况下,构思驾驶员的转向转矩也能够以受限于这些控制的形式改变的这一点,根据使得转向转矩的阈值总是与在该时间点进行的向目标行驶路线的追随控制符合的形式可变的技术思想,可达到阈值固定时无法得到的超控的判定精度的均勻化。即,根据本发明,当使车辆追随目标行驶路线时,不管转角可变装置或者进而转向转角補助装置等如何被控制,总能够以固定的精度进行超控判定,在这一点上也有利于转向转矩的阈值无法有意义地改变的任意的技术ο
在本发明涉及的第一以及第二车辆的行驶辅助装置的其他方式中,所述转角可变装置通过相对于所述转向输入轴相对旋转与所述转向轮连结的转向输出軸来改变所述相对关系,所述追随控制装置控制所述转角可变装置,使得在对所述目标行驶路线进行追随时,相对于所述转向角规定所述转向输出轴的旋转轴的作为所述相对关系的转向传递比比不对所述目标行驶路线进行追随时减少。
根据该方式,与不追随时相比可减少驾驶员的转向行为给车辆行为带来的影响, 因此能够抑制车道保持行驶时的车辆行为的鲁棒性下降。更具体来说,通过转角可变装置, 一方面可如此降低驾驶员的转向输入给转角变化带来的影响,而另一方面在与转向输入无关地提供了追随目标行驶路线所需的转角变化时还可以适当抑制在对目标行驶路线进行追随时转向盘与驾驶员的意思无关且过度被操作的不适感的产生。根据本方式,在第一以及第二车辆的行驶辅助装置中,通过这种控制,即使在进行附带实践上极其有益的效果的对目标行驶路线的追随控制时,也可以可靠地进行超控判定,因此在实践上极其有益。
本发明的上述作用以及其他优点可通过以下说明的实施方式将变得更加清楚。


图1是示意性表示第一实施方式涉及的车辆的构成的简要构成图2是在第一实施方式涉及的车辆中进行的LKA控制的流程图3是表示第一实施方式涉及的车辆中的目标横向加速度GYTG和LKA基本目标角θ LKB的关系的模式图4是表示第一实施方式涉及的车辆中的曲率R和调节增益Κ2的关系的模式图5是在第一实施方式涉及的车辆中进行的EPS控制的流程图6是表示第一实施方式涉及的车辆中的EPS基本目标转矩TBASE和驾驶员转向转矩MT的关系的模式图7是在第一实施方式涉及的车辆中进行的VGRS控制的流程图8是表示第一实施方式涉及的车辆中的转向传递比Kl和车速V的关系的模式图9是在第一实施方式涉及的车辆中进行的超控控制的流程图10是表示第一实施方式涉及的车辆中的超控用角度阈值0MAref与曲率R的关系的模式图11是第二实施方式涉及的超控判定控制的流程图12是表示第二实施方式涉及的超控用转向转矩阈值|mref|与转向传递比Kl 的关系的模式图。
具体实施方式
以下,酌情参照附图来说明本发明的车辆的行驶辅助装置涉及的各种实施方式。
第一实施方式
实施方式的构成
首先,参照图1来说明本发明涉及的车辆10的构成。这里,图1是示意性地表示车辆10的基本构成的简要构成图。
在图1中,车辆10包括作为转向轮的左右一对前轮FL及FR,并被构成为能够通过上述前轮转向来向期望的方向行进。车辆10包括E⑶100、VGRS致动器200、VGRS驱动装置300、EPS致动器400以及EPS驱动装置500。
ECU 100是包括分别没有图示的CPU (Central Processing Unit,中央处理器)、 ROM (Read Only Memory,只读存储器)及 RAM (Random Access Memory,随机存取存储器)、 并被构成为可控制车辆10的整体动作的电子控制单元,是本发明涉及的“车辆的行驶辅助装置”的一个例子。ECU 100被构成为可按照ROM中存储的控制程序来分别执行后述的LKA 控制、EPS控制及VGRS控制。
E⑶100是被构成为作为本发明涉及的“追随控制装置”、“转向角确定装置”、“判别装置”及“阈值设定装置”各自的一个例子而发挥功能的一体的电子控制单元,上述各装置涉及的动作被构成为全部由E⑶100执行。但是,本发明涉及的上述各装置的物理、机械以及电气构成不限于此,例如上述各装置也可以被构成为多个ECU、各种处理单元、各种控制器或微机装置等各种计算机系统等。
在车辆10中,驾驶员经由转向盘11施加的转向输入被传递给作为轴体的上部转向轴12,该上部转向轴12以能够同轴旋转地与转向盘11连结,并能够与转向盘11向同一方向旋转。上部转向轴12是本发明涉及的“转向输入轴”的一个例子。上部转向轴12在其下游侧的端部与VGRS致动器200连结。
VGRS致动器200是包括壳体201、VGRS马达202以及减速机构203的本发明涉及的“转角可变装置”的一个例子。
壳体201是容纳VGRS马达202及减速机构203的VGRS致动器200的框架。上述的上部转向轴12的下游侧的端部被固定在壳体201上,壳体201能够与上部转向轴12 — 体地旋转。
VGRS马达202是包括作为旋转构件的转子20 、作为固定构件的定子202b以及作为驱动力的输出轴的旋转轴202c的DC无刷马达。定子202b被固定在壳体201内部,转子20 在壳体201内部以可旋转的状态被保持。旋转轴202c被固定为可与转子20 同轴旋转,其下游侧的端部与减速机构203连结。
减速机构203是具有可差动旋转的多个旋转构件(太阳齿轮、行星齿轮架以及内啮合齿轮)的行星齿轮机构。在该多个旋转构件中,作为第一旋转构件的太阳齿轮与VGRS 马达202的旋转轴202c连结,并且作为第二旋转构件的行星齿轮架与壳体201连结。并且, 作为第三旋转构件的内啮合齿轮与作为本发明涉及的“转向输出轴”的一个例子的下部转向轴13连结。
根据具有上述构成的减速机构203,通过与转向盘11的操作量相应的上部转向轴 12的旋转速度(即,与行星齿轮架连结的壳体201的旋转速度)、和VGRS马达202的旋转速度(即,与太阳齿轮连结的旋转轴202c的旋转速度)来唯一地确定与作为剩下的一个旋转构件的内啮合齿轮连结的下部转向轴13的旋转速度。此时,通过旋转构件彼此间的差动作用来控制VGRS马达202的旋转速度的增减,能够控制下部转向轴13的旋转速度的增减。 即,通过VGRS马达202以及减速机构203的作用,上部转向轴12和下部转向轴13可相对旋转。另外,基于减速机构203中的各旋转构件的构成,VGRS马达202的旋转速度在依照根据各旋转构件相互间的齿轮比确定的规定减速比而减速的状态下被传递给下部转向轴13。
这样,在车辆10中,通过上部转向轴12和下部转向轴13可相对旋转,转向传递比可在规定范围内连续变化,该转向传递比是作为上部转向轴12的旋转量的转向角MA与根据下部转向轴13的旋转量而唯一地确定(也与后述的齿条小齿轮机构的齿轮比相关)的作为转向轮的前轮的转向角θ st之比。
另外,减速机构204不仅是这里例示的行星齿轮机构,也可以具有其他方式(例如,与上部转向轴12以及下部转向轴13分别连结齿数不同的齿轮,设置与各齿轮局部相连的可挠性齿轮,并且通过经由波形发生器传递的马达转矩使该可挠性齿轮旋转,由此使上部转向轴12和下部转向轴13相对旋转的方式等),如果是行星齿轮机构,则还可以具有与上述不同的物理方式、机械方式、或机构方式。
VGRS驱动装置300是被构成为可对VGRS马达202的定子202b通电的、包括P丽电路、晶体管电路以及逆变器等的电驱动电路。VGRS驱动装置300与没有图示的蓄电池电连接,被被构成为可通过从该蓄电池供应而来的电力向VGRS马达202供应驱动电压。另外, VGRS驱动装置300与E⑶100电连接,并被构成为其动作被E⑶100控制。VGRS驱动装置 300与VGRS致动器200 —起构成了本发明涉及的“转角可变装置”的一个例子。
下部转向轴13的旋转被传递给齿条小齿轮机构。齿条小齿轮机构是包括与下部转向轴13的下游侧端部连接的小齿轮14以及形成有与该小齿轮的齿轮齿啮合的齿的齿条杆15的转向力传递机构,被构成为通过小齿轮14的旋转被变换成齿条杆15的图中左右方向的运动,转向力经由与齿条杆15的两端部连结的转向横拉杆以及转向节(省略附图标记)传递给各转向轮。即,在车辆10中,实现了齿条小齿轮式的转向方式。
EPS致动器400包括作为DC无刷马达的EPS马达,该DC无刷马达包括作为安装有永久磁铁的旋转构件的没有图示的转子;以及作为包围该转子的固定构件的定子。该 EPS马达被构成为转子在通过该定子经由EPS驱动装置500被通电而形成在EPS马达内的旋转磁场的作用下旋转,由此能够在其旋转方向上产生辅助转矩TA。
另一方面,没有图示的减速齿轮固定在作为EPS马达的旋转轴的马达轴上,该减速齿轮还与小齿轮14啮合。因此,从EPS马达产生的辅助转矩TA起到辅助小齿轮14的旋转的辅助转矩的功能。小齿轮14如上所述与下部转向轴13连结,下部转向轴13经由VGRS 致动器200与上部转向轴12连结。从而,施加至上部转向轴12的驾驶员转向转矩MT以通过辅助转矩TA被适当辅助的形式被传递至齿条杆15,从而可减轻驾驶员的转向负荷。
EPS驱动装置500是被构成为可对EPS马达的定子通电的、包括PWM电路、晶体管电路以及逆变器等的电驱动电路。EPS驱动装置500与没有图示的蓄电池电连接,并被构成为可通过从该蓄电池供应而来的电力向EPS马达供应驱动电压。另外,EPS驱动装置500 与E⑶100电连接,并被构成为其动作被E⑶100控制。
另一方面,车辆10中具有包括转向转矩传感器16、转向角传感器17以及旋转传感器18的各种传感器。
转向转矩传感器16是被构成为可检测从驾驶员经由转向盘11施加的驾驶员转向转矩MT的传感器。更具体地说,上部转向轴12具有被分割为上游部和下游部、并通过没有图示的扭杆相互连结的构成。在该扭杆的上游侧以及下游侧的两端部固定有用于检测旋转相位差的环。该扭杆被构成为根据在车辆10的驾驶员操作了转向盘11时经由上部转向轴 12的上游部传来的转向转矩(S卩,驾驶员转向转矩MT)而在其旋转方向上扭转,并被构成为能够在产生该扭转的情况下向下游部传递转向转矩。因此,在转向转矩传递时,在上述的用于检测旋转相位差的环彼此间产生旋转相位差。转向转矩传感器16被构成为可检测该旋转相位差,并且将该旋转相位差换算成转向转矩并作为与转向转矩MT对应的电气信号来输出。另外,转向转矩传感器16被构成为与ECU 100电连接,并被构成为检测出的转向转矩MT被ECU 100以固定或不定的周期参照。
转向角传感器17是被构成为可检测表示上部转向轴12的旋转量的转向角MA的角度传感器。转向角传感器17与ECU 100电连接,并被构成为检测出的转向角MA被ECU 100以固定或不定的周期参照。
旋转传感器18是被构成为可检测VGRS致动器200中的壳体201 (即,就旋转角来说与上部转向轴12相同)和下部转向轴13的旋转相位差△ θ的旋转编码器。旋转传感器18与E⑶100电连接,并且被构成为检测出的旋转相位差Δ θ被E⑶100以固定或不定的周期参照。
车速传感器19是被构成为可检测作为车辆10的速度的车速V的传感器。车速传感器19与E⑶100电连接,并且被构成为检测出的车速V被E⑶100以固定或不定的周期参照。
车载相机20是被设置在车辆10的车头、并被构成为可拍摄车辆10前方的规定区域的摄像装置。车载相机20与ECU 100电连接,并被构成为拍摄到的前方区域作为图像数据以固定或不定的周期被传送给ECU 100。ECU 100可解析该图像数据并获取后述的LKA 控制所需的各种数据。
实施方式的动作
以下,酌情参照附图来说明本实施方式的动作。
首先,参照图2来说明由E⑶100执行的LKA控制的详细情况。这里,图2是LKA 控制的流程图。LKA控制是使车辆10追随目标行驶路线(车道)的控制,并且是实现车辆 10具有的行驶辅助系统的一部分的控制。
在图2中,E⑶100读取包括车辆10所具有的各种开关类的操作信号、各种标志以及与上述各种传感器相关的传感器信号等各种信号(步骤S101),并且判别作为预先设置在车辆10的车厢内的LKA控制启动用的操作按钮被驾驶员操作等的结果的、LKA模式是否已被选择(步骤S102)。当LKA模式未被选择时(步骤S102 否),ECU 100将处理返回到步骤SlOl。
当LKA模式已被选择时(步骤S102 是),E⑶100还通过执行超控判定控制来进行超控判定(步骤S103)。超控判定的结果被存储为作为ECU 100的一部分的RAM上的预定存储区域中的超控标志的ON(打开)/OFF (关闭)。超控标志在初始状态下吧设定为OFF, 当进行了超控判定时,ECU 100将超控标志设定为ON。对于超控判定控制的详细情况,将在后面的对于超控判定控制的说明中进行详述。
在执行了超控判定控制之后,E⑶100参照超控标志的ON/OFF(步骤S104)。当超控标志为ON时(步骤S104 是),E⑶100控制车辆10,以使LKA控制终端预定期间。在经过了预定期间后(即,LKA控制的中断期间经过后),超控标志通过CPU自动被改写为OFF 状态,E⑶100将处理返回到步骤SlOl。
另一方面,当超控标志为OFF时(步骤S104 否),依次执行以下说明的步骤。
当超控标志为OFF时(步骤S104 否),E⑶100基于从车载相机20发送的图像数据来判别是否检测到规定LKA的目标行驶路线的白线(无需是白色)(步骤S105),当未检测到白线时(步骤S105 否),由于不能规定目标行驶路线,因此ECU 100将处理返回到步骤S101。另一方面,当检测到白线时(步骤S105 是),E⑶100计算使车辆10追随目标行驶路线时所需的各种路面信息(步骤S106)。
在步骤S106中,计算目标行驶路线的曲率R(即,半径的倒数)、白线与车辆10在横向上的偏差Y以及白线与车辆10的横摆角偏差Φ。这种向目标行驶路线的追随控制所需的信息的计算方式可应用包括公知的图像识别算法的各种方式,并且与发明的本质部分关联也小,因此这里不涉及。
在算出上述各种路面信息后,E⑶100计算使车辆10追随目标行驶路线所需的目标横向加速度GYTG(步骤S107)。另外,目标横向加速度GYTG也可按照公知的各种算法或计算式来计算。或者,E⑶100也可以在ROM等理应具有的存储装置中预先保存以上述曲率R、横向偏差Y以及横摆角偏差Φ为参数的目标横向加速度映射图,并通过酌情选择适合的值来计算目标横向加速度GYTG(这种选择也是计算的一个方式)。
在算出目标横向加速度GYTG后,处理分成两个系统。S卩,在一个处理中,E⑶100 计算LKA目标辅助转矩TLK(步骤S108),将该算出的LKA目标辅助转矩TLK存储在闪存或 RAM等可改写的理应具有的存储装置中(步骤S109)。LKA目标辅助转矩TLK被预先规定在存储于ROM中的以目标横向加速度GYTG和车速V为参数的LKA目标辅助转矩映射图中, E⑶100通过从该映射图中选择适合的数值来计算LKA目标辅助转矩TLK。
另外,在另一个处理中,E⑶100基于目标横向加速度GYTG来计算LKA基本目标角θ LKB (步骤Sl 10),接着基于曲率R来计算调节增益K2(步骤Sl 11)。并且,E⑶100按照下述⑴式来计算LKA修正目标角9 1^(步骤3112)。在算出LKA修正目标角θ LK后, E⑶100将该算出的LKA修正目标角θ LK存储在RAM或闪存等存储装置中(步骤Sl 13)。
θ LK= θ LKBXK2— (1)
这里,参照图3来说明目标横向加速度GYTG和LKA基本目标角θ LKB的关系。这里,图3是表示目标横向加速度GYTG和LKA基本目标角θ LKB的关系的模式图。
在图3中,纵轴表示LKA基本目标角θ LKB,横轴表示目标横向加速度GYTG。这里, 与目标横向加速度GYTG = 0相当的原点线的左侧的区域是与车辆左方向对应的目标横向加速度,同样地右侧的区域表示与车辆右方向对应的横向加速度。另外,与LKA基本目标角 θ LKB = 0相当的原点线的上侧的区域与车辆右方向的转向角对应,同样地下侧的区域与车辆左方向的转向角对应。因此,LKA基本目标角θ LKB具有以该原点线为界对称的特性。 LKA基本目标角θ LKB如果除去目标横向加速度GYTG = 0附近的死区则具有绝对值相对于目标横向加速度GYTG线性增加的特性。
另一方面,图3分别以图示的点划线、虚线以及实线例示了针对车速V = V1、V2(V2 > VI)以及V3 (V3 > V2)三种车速V的LKA基本目标角θ LKB的特性。从图示可知,车速越高,越向减少侧设定LKA基本目标角θ LKB。这是因为车速越高相对于转向角产生的横向加速度的程度就越大的缘故。
在ECU 100的ROM中预先存储有将图3所示的关系数值化而成的LKA基本目标角映射图(当然,作为参数值的车速V更为精细),在步骤S108中,从该LKA基本目标角映射图选择适合的值。
这里,参照图4来说明曲率R和调节增益K2的关系。这里,图4是表示曲率R和调节增益K2的关系的模式图。
在图4中,在纵轴表示调节增益K2,在横轴表示目标行驶路线的曲率R。因此,越是朝向图中右侧,目标行驶路线就越急剧弯曲(即为急弯)。如图所示,调节增益K2在小于 1的区域内设定,并且曲率R越大(即,越是急弯),被设定得就越小。这是因为曲率越大, 越是允许转向盘11的转向(从驾驶员来看不会产生不适感)。
另外,在ECU 100的ROM中预先存储有将图4所示的关系数值化而成的调节增益映射图,在步骤Slll中,从该调节增益映射图选择适合的值。
返回到图2,一旦在步骤S109以及步骤Slll中分别算出LKA目标辅助转矩TLK以及LKA修正目标角θ LK,则处理返回到步骤SlOl。LKA控制如上述执行。
另一方面,车辆10对目标行驶路线的实际的追随动作通过EPS控制来实现。
这里,参照图5来说明EPS控制的详细情况。这里,图5是EPS控制的流程图。在该图中,对于与图2重复的部分,标注相同的附图标记,并酌情省略其说明。
在图5中,E⑶100在读取各种信号之后(步骤S101),获取驾驶员转向转矩MT以及车速V (步骤S201)。接着,ECU 100基于该获取的驾驶员转向转矩MT以及车速V来计算 EPS基本目标转矩TBASE,该EPS基本目标转矩TBASE是应从致动器400的EPS马达输出的辅助转矩TA的基本值(步骤S202)。
这里,参照图6来说明EPS基本目标转矩TBASE和驾驶员转向转矩MT的关系。这里,图6是表示EPS基本目标转矩TBASE和驾驶员转向转矩MT的关系的模式图。
在图6中,在纵轴表示EPS基本目标转矩TBASE,在横轴表示驾驶员转向转矩MT。 与驾驶员转向转矩MT = 0相当的原点线的左侧的区域与向车辆左侧的转向操作对应,同样地右侧的区域与向车辆右侧的转向操作对应。因此,图中EPS基本目标转矩TBASE具有以该原点线为界对称的特性。
另一方面,图6分别以图示的实线、虚线以及点划线例示了针对车速V = V1、V2(V2 > VI)以及V3 (V3 > V2)三种车速V的EPS基本目标转矩TBASE的特性。由图示可知,车速越高,越向减少侧设定EPS基本目标转矩TBASE。这是因为车速越高用于获得必要的横向加速度的转向角就越小的缘故,通过在高车速侧增大转向盘11转向所需的力(即是方向盘重的状态),能够防止驾驶员过度操作,可使车辆10的行为变稳定。在ECU 100的ROM中预先存储有将图6所示的关系数值化而成的EPS基本目标转矩映射图(当然,作为参数值的车速V更为精细),在步骤S202中,从该EPS基本目标转矩映射图选择适合的值。
返回到图5,E⑶100基于在步骤S202中算出的EPS基本目标转矩TBASE和先前算出并存储的LKA目标辅助转矩TLK,按照下述(2)式计算EPS最终目标转矩TTG(步骤 S203)。
TTG = TBASE+TLK — (2)
在算出EPS最终目标转矩TTG后,E⑶100基于该算出的EPS最终目标转矩TTG来控制EPS驱动装置500,从EPS致动器400的EPS马达输出与该EPS最终目标转矩TTG对应的辅助转矩TA (步骤S204)。在执行步骤S204后,处理返回到步骤SlOl。
如此,在本实施方式中,EPS致动器400起到用于使车辆10追随目标行驶路线的主系统的功能,除了与驾驶员的转向操作对应的通常的辅助转矩以外,还输出用于使车辆10 追随目标行驶路线的LKA目标辅助转矩TLK。
另一方面,由于EPS致动器400不改变转向盘11的转向角和转向轮的转角的关系,因此当通过从EPS致动器400施加辅助转矩来进行对目标行驶路线的追随时,转向盘11 根据转角的变化而与驾驶员的意思无关地被转向。因此,驾驶员会感到不适感,可能会诱发驾驶员侧不需要的转向操作。因此,在本实施方式中,通过VGRS控制来补偿如上述那样通过EPS致动器400使车辆10追随目标行驶路线时的行为变化。
这里,参照图7来说明VGRS控制的详细情况。这里,图7是VGRS控制的流程图。 在该图中,对于与图2重复的部分,标注相同的附图标记,并酌情省略其说明。
在图7中,在读取各种信号后(步骤S101),E⑶100获取车速V以及转向角MA (步骤S301),并且基于获取的这些值按照下述(3)式来计算VGRS基本目标角θ VG,该VGRS基本目标角θ VG是相对于作为上部转向轴12的转角的转向角MA的、下部转向轴13的相对转角的基本值(步骤S302)。
θ VG = KlXMA ... (3)
在上述式(3)中,Kl是规定相对于转向角MA的下部转向轴13的转角的转向传递比,并且是根据车速V可变的数值。
这里,参照图8来说明转向传递比Kl和车速V的关系。这里,图8是表示转向传递比Kl和车速V的关系的模式图。
在图8中,转向传递比Kl在中车速区域的车速Vth下为0(即,上部转向轴12和下部转向轴13的旋转比为1 1),在车速低于Vth的一侧大于0,在车速高于Vth的一侧小于0。S卩,被构成为越向低车速侧,就越能够以小的转向角得到大的转角。这是因为如上所述车速越高相对于与转角的横向加速度就越大的缘故。
返回到图7,E⑶100还基于该算出的VGRS基本目标角θ VG和先前算出并存储的 LKA修正目标角θ LK,按照式⑷来计算VGRS最终目标角θ TGF (步骤S303)。
θ TGF= θ VG+θ LK... (4)
在算出VGRS最终目标角θ TGF后,E⑶100基于该算出的VGRS最终目标角θ TGF 来控制VGRS驱动装置300,使VGRS致动器200的VGRS马达202旋转与该VGRS最终目标角 θ TGF对应的量(步骤S304)。在执行步骤S304后,处理返回到步骤SlOl。
这样,根据本实施方式涉及的VGRS控制,由于对通常的VGRS的目标角另外附加 LKA修正目标角θ LK,因此可抑制通过之前的EPS控制来使车辆10追随目标行驶路线时的转向角MA的变化。因此,能够减轻带给驾驶员的不适感,能够减轻驾驶员的心理负担,从而能够使车辆10的行为稳定。
接着,参照图9和图10,对步骤S103 (参照图2)中的超控判定控制进行详细说明。 这里,图9是步骤S103中的超控判定控制的流程图。
在图9中,E⑶100在读取各种信号后(步骤S101),计算目标行驶路线的曲率 R(即,半径的倒数)、白线与车辆10在横向上的偏差Y、以白线与车辆10的横摆角偏差Φ。 这种向目标行驶路线的追随控制所需的信息的计算方式可应用包括公知的图像识别算法的各种方式,并且与发明的本质部分关联也小,因此这里不涉及。
在算出上述各种路面信息后,处理分成两个系统。S卩,在一个处理中,E⑶100计算超控用角度阈值AMAref (步骤S402),将该算出的超控用角度阈值AMAref存储在闪存或 RAM等可改写的理应具有的存储装置中(步骤S403)。
这里,参照图10,对超控用角度阈值AMAref与目标行驶路线的曲率R的关系进行说明。这里,图10是表示超控用角度阈值AMAref与目标行驶路线的曲率R的关系的模式图。
在图10中,纵轴表示超控用角度阈值AMAref,横轴表示目标行驶路线的曲率R。 从而,图越是朝向图中右侧,目标行驶路线就越急剧弯曲(即为急弯)。如图所示,曲率R越大(即越是急弯),超控用角度阈值AMAref设定得就越大。这是因为曲率越大,越是允许转向盘11的转向(从驾驶员来看不会产生不适感)。
另外,图10分别以图示的实线、虚线以及点划线例示了针对车速V = V1、V2(V2> VI)以及V3(V3>V2)三种车速V的超控用角度阈值AMAref的特性。由图示可知,车速越高,越向减少侧设定超控用角度阈值AMAref。这是因为车速越高,相对于转角发生的横向加速度的程度就越小的缘故。
ECU100的ROM中预先存储有将图10所示的关系数值化而成的超控用角度阈值映射图,在步骤S402中,从该超控用角度阈值映射图选择合适的值。
返回到图9。在另一个处理中,E⑶100基于LKA修正目标角θ LK与VGRS最终目标角9TGF,通过下述(5)式计算LKA中基准转向盘角度θ MAref (步骤S404)。LKA中基准转向盘角度θ MAref是本发明涉及的“基准转向角”的一个例子。
θ MAref = θ LK-θ TGF... (5)
通过如此分支的各个步骤算出超控用角度阈值AMAref与LKA中基准转向盘角度 θ MAref之后,在步骤S405中,对转向角MA与LKA中基准转向盘角度θ MAref的偏差的绝对值、和超控用角度阈值AMAref的绝对值的大小进行比较(步骤S405)。此时,执行步骤 S405的ECU100起到本发明涉及的“判别装置”的功能,进行超控判定。
超控判定的结果如上所述被存储为作为E⑶100的一部分的RAM上的预定存储区域中的超控标志的0N/0FF。超控标志在初始状态下被设定为OFF,当进行了超控判定时, E⑶100将超控标志设定为ON。
当转向角MA与LKA中基准转向盘角度θ MAref的偏差大于超控用角度阈值 AMAref时(步骤S405 是),E⑶100进行超控判定,E⑶100将超控标志设定为0Ν(步骤 S406)。
另一方面,当转向角MA与LKA中基准转向盘角度θ MAref的偏差小于或等于超控用角度阈值AMAref时(步骤S405 否),超控标志保持OFF。
通过超控判定控制如此设定的超控标志如上所述被存储在昨晚ECU100的一部分的RAM上,CPU通过该超控标志,能够适当地中断LKA控制。
如此,通过超控判定控制,当正在执行LKA行驶时,如果按照驾驶员的意思改变了行驶路线、或者为了避开路上的障碍物而请求了转向操作,则能够在适当的定时中断车道保持行驶,并通过基于驾驶员意思的转向操作可进行忠实的行驶。尤其当进行本实施方式中的LKA行驶时,通过VGRS控制,对通常的VGRS的目标角另外附加LKA修正目标角θ LK, 因此可抑制通过之前的EPS控制来使车辆10追随目标行驶路线时的转向角MA的变化,可减轻带给驾驶员的不适感,能够减轻驾驶员的心理负担,从而能够使车辆10的行为稳定, 另一方面,通过适当进行超控判定,能给个在驾驶员请求了转向操作时,在适当的定时中断车道保持行驶,并通过基于驾驶员意思的转向操作,可进行忠实的行驶。
第二实施方式
接下来,对第二实施方式进行说明。在第二实施方式中,当进行超控判定时,与上述的第一实施方式不同,通过判别装置基于确定的转向转矩和阈值来判别有没有发生超控。
在第二实施方式中,除超控判定控制之外,即EPS控制、VGRS控制等与第一实施方式相同。从而,这里对与第一实施方式不同的超控判定控制进行说明,而对于与第一实施方式相同的其他控制则省略说明。
参考图11和图12,对本实施方式涉及的超控判定控制进行说明。这里,图11是第二实施方式涉及的超控判定控制的流程图。此外,假定第二实施方式涉及的车辆构成与第一实施方式涉及的车辆10没有区别。
在图11中,E⑶100读取各种信号(步骤S101)。之后,读取在VGRS控制的步骤 S302中算出的转向传递比Kl(步骤S501),求出对应的超控用转向转矩阈值|Mtref| (步骤 S502)。
这里,参考图12,对超控用转向转矩阈值IMtrefI与转向传递比Kl的关系进行说明。这里,图12是示出超控用转向转矩阈值|mref|与转向传递比Kl的关系的模式图。
在图12中,超控用转向转矩阈值Iffl^efl随着转向传递比Kl的增加而成比例地增加。即,用于判定超控的阈值根据规定转向角与转角的相对关系的转向传递比Ki而可变。因此,在表示相对于转向角的转角变化相对小的情况的转向传递比Kl的值小的情况下,作为用于判定超控的阈值的超控用转向转矩阈值|mref ι被设定为相对小。另一方面, 在表示相对于转向角的转角变化相对大的情况的转向传递比κι的值大的情况下,超控用转向转矩阈值Iffl^efl被设定为相对大。
接着,对在步骤SIOi中读取的信号中的转向转矩MT的绝对值IMTI与在步骤S502 中算出的超控用转向转矩阈值|mref|的大小进行比较(步骤S503)。此时,执行步骤S503 的ECU100起到本发明涉及的“判别装置”的功能,执行超控判定。
超控判定的结果如上所述被存储为作为E⑶100的一部分的RAM上的预定存储区域中的超控标志的0N/0FF。超控标志在初始状态下被设定为OFF,当进行了超控判定时, E⑶100将超控标志设定为ON。
当转向转矩MT的绝对值|MT|大于超控用转向转矩阈值lmrefl时(步骤S503 YES),E⑶100进行超控判定,E⑶100将超控标志设定为ON (步骤S504)。
另一方面,当转向转矩MT的绝对值|MT|小于或等于超控用转向转矩阈值IMTref 时(步骤S503 否),超控标志保持OFF不变。
如此通过超控判定控制而设定的超控标志如上所述被存储到作为ECU100的一部分的RAM上,CPU通过参考该超控标志,能够适当中断LKA控制。
如此,即使在根据转向转矩进行超控判定的情况下,通过用于判定超控的阈值根据规定转向角与转角的相对关系的转向传递比Kl而可变,也可将检测到超控时驾驶员侧的转向感觉总是维持在固定的水平上。即,当使车辆追随目标行驶路线时,可迅速并正确地检测到驾驶员的超控。
本发明不限于上述的实施例,可在不违反可从权利要求书和说明书全体读取的发明的要旨和思想的范围内适当进行改变,而伴有这种改变的车辆的转向辅助装置也被在本发明的技术范围内。
产业上的可利用性
本发明例如可利用于用于使车辆追随目标行驶路线的车辆的行驶辅助装置。
附图标记说明
FL、FR…车轮、10…车辆、11…转向盘、12…上部转向轴、13…下部转向轴、14…小齿轮、16…转向转矩传感器、17…转向角传感器、18…旋转角传感器、100…E⑶、200…VGRS 致动器、300…VGRS驱动装置、400…EPS致动器、500…EPS驱动装置。
权利要求
1.一种车辆的行驶辅助装置,用于辅助车辆的行驶,其中,所述车辆包括转角可变装置,所述转角可变装置能够改变转向角与转角的相对关系,所述转向角是转向输入轴的旋转角,所述转角是转向轮的旋转角,所述车辆的行驶辅助装置的特征在于,包括追随控制装置,其控制所述转角可变装置,以使所述车辆追随目标行驶路线;转向角确定装置,其确定所述转向角;以及判别装置,其基于所述确定的转向角和基准转向角来判别有没有发生驾驶员进行的超控,所述基准转向角是使所述车辆追随所述目标行驶路线时的所述转向角;其中,当判别为发生了所述超控时,所述追随控制装置停止使所述车辆追随所述目标行驶路线。
2.如权利要求1所述的车辆的行驶辅助装置,其特征在于,当所述转向角与所述基准转向角的偏差大于或等于预定的阈值时,所述判别装置判别为发生了所述超控。
3.如权利要求2所述的车辆的行驶辅助装置,其特征在于,包括阈值设定装置,所述阈值设定装置根据所述车辆的行驶条件来设定所述阈值。
4.一种车辆的行驶辅助装置,用于辅助车辆的行驶,其中,所述车辆包括转角可变装置,所述转角可变装置能够改变转向角与转角的相对关系,所述转向角是转向输入轴的旋转角,所述转角是转向轮的旋转角,所述车辆的行驶辅助装置的特征在于,包括追随控制装置,其控制所述转角可变装置,以使所述车辆追随目标行驶路线;转向转矩确定装置,其确定施加至所述转向输入轴的转向转矩;判别装置,其基于所述确定的转向转矩和预定的阈值来判别有没有发生驾驶员进行的超控;以及阈值设定装置,其根据所述相对关系来设定所述阈值;其中,当判别为发生了所述超控时,所述追随控制装置停止使所述车辆追随所述目标行驶路线。
5.如权利要求1或4所述的车辆的行驶辅助装置,其特征在于,所述转角可变装置通过使与所述转向轮连结的转向输出轴相对于所述转向输入轴相对旋转来改变所述相对关系,所述追随控制装置控制所述转角可变装置,使得在对所述目标行驶路线进行追随时, 与不对所述目标行驶路线进行追随时相比,作为所述相对关系的转向传递比减小,所述相对关系规定相对于所述转向角的所述转向输出轴的旋转角。
全文摘要
当使车辆追随目标行驶路线时迅速且正确地检测驾驶员的超控。车辆(10)的行驶辅助装置辅助车辆的行驶,车辆包括可改变转向角与转角的相对关系的转角可变装置(200)。行驶辅助装置包括追随控制装置,其控制转角可变装置,以使车辆追随目行驶路线;转向角确定装置,其确定转向角;以及判别装置,其基于确定的转向角和基准转向角来判别有没有发生驾驶员的超控,该基准转向角是使车辆追随目标行驶路线时的转向角。当判别为发生了超控时,追随控制装置停止使车辆追随目标行驶路线。
文档编号B62D137/00GK102498026SQ201080034690
公开日2012年6月13日 申请日期2010年8月2日 优先权日2009年8月3日
发明者仁田博史, 小城隆博, 提拉瓦·林皮汶特恩格, 浅井彰司 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1