车辆后部构造的制作方法

文档序号:15451824发布日期:2018-09-15 00:09阅读:123来源:国知局

本发明涉及车辆后部构造,尤其是涉及车辆后部的骨架部件构造。



背景技术:

图10例示出俯视观察车辆的下车身中的保持车辆的强度的骨架部件的一部分时的图。具体而言,图10所示的骨架部件从车辆的行进方向中央部向后方周边设置,具备后纵梁100、中地板横梁102及底加强件104。另外,在图10中,为了简便起见而未图示与底加强件104并列地设置在车辆宽度方向端部的摇臂(也称为下边梁)。

后纵梁100沿车辆前后方向(图示fr方向)延伸设置,其前端的凸缘108与中地板横梁102的侧壁112抵接。中地板横梁102沿车辆宽度方向(图示w方向)延伸设置。底加强件104沿车辆前后方向(图示fr方向)延伸设置,其后端的凸缘109与中地板横梁102的侧壁114(相对侧壁)抵接。

如图10或国际公开第2013/031008公开那样,后纵梁100以从车辆宽度方向内侧向宽度方向外侧倾斜(画弧线)的方式从车辆后方向车辆前方延伸设置,以避开车辆的后轮106。



技术实现要素:

然而,当发生了所谓的后方碰撞即障碍物(屏障)从车辆后方碰撞了车辆或者车辆从后方碰撞了障碍物(屏障)时,可能会以后纵梁100的形状和其周边构造为起因而产生所谓的内倾。图11例示出后方碰撞初期的情况。由于后方碰撞而从车辆后方向后纵梁100输入载荷。此时,以后纵梁100采用了从车辆后方至前方而从车辆宽度方向内侧向外侧打开那样的形状为起因,容易产生后纵梁100以后纵梁100前端的凸缘108为中心而向车辆内侧(图示w方向)倾斜的所谓的内倾。

此外,如图12所示,当到达后方碰撞后期时,障碍物从后轮106后方碰撞,随之后轮106可能会以悬架110为旋转中心而将后纵梁100向车辆内侧压入。

因此,本发明从后方碰撞时的车室空间确保的观点出发,目的在于提供一种与以往相比能够抑制后纵梁的内倾的车辆后部构造。

本发明涉及车辆后部构造。在该构造中,设有后纵梁、横梁及加强部件。后纵梁具有:第一侧壁,以避开车辆后轮而从车辆宽度方向内侧向外侧倾斜的方式从车辆后方向前方延伸设置;及第一凸缘,从该第一侧壁的前端弯折而向车辆宽度方向内侧延伸设置。横梁具有形成为与后纵梁的第一凸缘抵接并沿车辆宽度方向延伸设置的第二侧壁。加强部件具备:第三侧壁,从车辆前方向车辆后方延伸至所述横梁而设置的第二侧壁;第二凸缘,从该第三侧壁的后端弯折而向车辆宽度方向外侧延伸设置,且该第二凸缘的至少一部分隔着所述横梁的第二侧壁与所述后纵梁的第一凸缘在车辆宽度方向上重合。

将后纵梁设为使第一凸缘从第一侧壁向车辆宽度方向内侧弯折的内钩构造,将加强部件设为使第二凸缘从第三侧壁向车辆宽度方向外侧弯折的外钩构造。此外,设为隔着横梁的第二侧壁而使两凸缘对顶的配置。通过设为这样的构造,在从车辆后方向后纵梁输入了载荷时,产生以加强部件的第三侧壁与第二凸缘的弯折点为旋转中心而使后纵梁向车辆外侧转动的力。其结果是,与以往相比能够抑制后纵梁的内倾。

另外,在上述发明中,可以是,横梁具有与自身的上述第二侧壁相对的第四侧壁。在该情况下,可以是,上述加强部件具有从自身的上述第三侧壁的前端弯折并沿车辆宽度方向延伸设置而与上述横梁的第四侧壁抵接的第三凸缘。此外,上述车辆后部构造可以具备骨架部件,上述骨架部件具有第四凸缘和第五侧壁,第四凸缘与上述第四侧壁抵接使得第四凸缘的至少一部分隔着上述横梁的第四侧壁与上述加强部件的第三凸缘在车辆宽度方向上重合,第五侧壁从该第四凸缘弯折而向车辆前方延伸设置。

通过使加强部件的第三凸缘与骨架部件的第四凸缘在车辆宽度方向上重叠,传递给后纵梁及加强部件的载荷也向骨架部件传递。通过载荷从车辆后方向前方高效地传递,能够抑制车辆后部变形。

另外,在上述发明中,可以使加强部件的第三侧壁与上述骨架部件的第五侧壁在车辆宽度方向上的位置重合。

通过使加强部件与骨架部件的侧壁在车辆宽度方向上重合,能够将向加强部件的第三侧壁传递的载荷(压缩载荷)高效地向骨架部件的侧壁传递。

另外,在上述发明中,可以是,骨架部件是设置在车室下的底加强件。

通过将后方碰撞时的载荷向底加强件传递,而能够向连接于底加强件前端的前纵梁传递载荷,从而从车辆后方至前方传递(分散)后方碰撞时的载荷。

另外,在上述发明中,可以是,骨架部件是设置在车辆宽度方向端部的摇臂。

通过将后方碰撞时的载荷向摇臂传递,能够向连接于摇臂前端的抗扭箱及前纵梁传递载荷,并能够从车辆后方至前方传递(分散)后方碰撞时的载荷。

根据本发明,与以往相比能够抑制后方碰撞时的后纵梁的内倾。

附图说明

上述及后述的本发明的特征及优点通过下面的具体实施方式的说明并参照附图而明确,其中,相同的附图标记表示相同的部件。

图1是例示本实施方式的车辆的下车身中的骨架构造的一部分的立体图。

图2是例示底加强件、后纵梁及中地板横梁的剖视图的图。

图3是底加强件、后纵梁及中地板横梁的连接部位的放大立体图。

图4是表示加强部件的例子的立体图。

图5是说明后方碰撞初期的载荷传递的示意图。

图6是说明后方碰撞后期的载荷传递及变形过程的示意图。

图7是例示另一实施方式(底加强件外钩构造)的车辆后部构造的图。

图8是例示又一实施方式(与摇臂连接的构造且摇臂侧壁为内钩构造)的车辆后部构造的图。

图9是例示又一实施方式(与摇臂连接的构造且摇臂侧壁为外钩构造)的车辆后部构造的图。

图10是说明以往的车辆后部构造的图。

图11是示意性地表示对于以往的车辆后部构造的后方碰撞初期的情况的图。

图12是示意性地表示对于以往的车辆后部构造的后方碰撞后期的情况的图。

具体实施方式

图1例示本实施方式的车辆的下车身中的骨架构造的一部分。另外,在图1~图12中,通过由附图标记fr表示的轴示出车辆前方,通过由附图标记w表示的轴示出车辆宽度方向,通过由附图标记h表示的轴示出车高方向。如图1所示,上述fr轴、w轴、h轴相互正交。以下,在说明本实施方式的骨架构造时,以这三个轴为基准而适当说明。

例如“前端”是指fr轴的正方向侧的端部,“后端”是指fr轴的负方向侧的端部。“车辆内侧”是指沿w轴的车辆的内侧,“车辆外侧”是指沿w轴的车辆的外侧。此外,“车辆上侧”是指h轴的正方向侧,“车辆下侧”是指h轴的负方向侧。

车辆的骨架构造大体分为沿车辆前后方向延伸设置的骨架部件(纵骨架)和沿车辆宽度方向延伸设置的骨架部件(横骨架)。前者(纵骨架)主要传递车辆前后方向上的碰撞能量,后者(横骨架)主要传递车辆侧面方向上的碰撞能量。

作为纵骨架,在图1中,从车辆前方起示出了底加强件10a、10b、摇臂12a、12b(也称为下边梁)及后纵梁14a、14b。而且,作为横骨架,在图1中,示出了中地板横梁16、后横梁18a、18b。

底加强件10a、10b从中地板横梁16的车辆宽度方向端部分别向车辆前方延伸设置。底加强件10a、10b的前端与前纵梁(未图示)连接,后端与中地板横梁16连接。而且,底加强件10a、10b以随着向车辆前方延伸设置而向车辆宽度方向内侧进入的方式延伸设置,也具备对车室地面进行加强的功能。

图2示出图1的a-a截面。底加强件10a、10b分别具备底加强件上部20a、20b及底加强件下部22a、22b。这些部件都由高张力钢材等刚体材料构成,例如通过冷压或热压(烫印)等而成形。

底加强件下部22a、22b是截面为礼帽(带突缘的帽子)形状,具备底壁24a、24b、侧壁26a、26b、相对侧壁28a、28b及顶面凸缘30a、30b。侧壁26a、26b、相对侧壁28a、28b均从底壁24a、24b大致垂直地(沿高度h方向)立起,顶面凸缘30a、30b从侧壁26a、26b、相对侧壁28a、28b大致水平地(沿宽度w方向)设置。

底加强件上部20a、20b为平板形状,以封闭底加强件下部22a、22b的开口的方式遍及相对的顶面凸缘30a、30a或30b、30b地配置。底加强件上部20a、20b的与顶面凸缘30a、30b抵接的抵接面的任意部位31a、31b通过点焊等而被接合,从而形成闭合截面。

图3例示出了图1中的d所示的虚线部位的放大立体图。另外,在该图中,为了简便起见,省略了底加强件10a的相对侧壁28a及与其抵接的摇臂12a的图示。而且,关于以底加强件10a为首的其他部件,还省略上部20a、42a、60的图示,仅图示下部22a、44a、62。此外,关于顶面凸缘30a、52a、70的一部分省略了图示。

另外,关于图3的以下的说明涉及底加强件10a及后纵梁14a,但是底加强件10b的后端及后纵梁14b的前端周边也设为与以下相同的构造。例如将附图标记末尾的a(10a等)置换成b(10b等)的说明成为底加强件10b及后纵梁14b的构造以及它们周边构造的说明。

底加强件10a的侧壁26a(第五侧壁)沿车辆前后方向延伸设置,其后端延伸至中地板横梁16的相对侧壁32(第四侧壁)而设置。此外,设有从侧壁26a的后端弯折而沿车辆宽度方向延伸设置并与中地板横梁16的相对侧壁32(第四侧壁)抵接的侧壁凸缘34a(第四凸缘)。例如如图3所示,侧壁凸缘34a从侧壁26a向车辆宽度方向内侧弯折,侧壁26a及侧壁凸缘34a成为朝向车辆内侧的内钩形形状。

侧壁凸缘34a(第四凸缘)形成为侧壁凸缘34a的至少一部分隔着中地板横梁16的相对侧壁32(第四侧壁)与加强部件36a的相对凸缘38a(第三凸缘)在车辆宽度方向上重合(重叠)。如后所述,通过具备这样的构造,底加强件10a能够传递来自加强部件36a的载荷。

返回图1,后纵梁14a、14b以避开车辆后轮40而从车辆宽度方向内侧向外侧倾斜的方式(画弧线的方式)从车辆后方向前方延伸设置。后纵梁14a、14b的前端与中地板横梁16连接,后端与后保险杠加强件(未图示)连接。而且,在后纵梁14a、14b的中间位置,以跨两者的方式沿车辆宽度方向连接有后横梁18a、18b。

图2示出图1的b-b截面。与底加强件10a、10b同样,后纵梁14a、14b具备后纵梁上部42a、42b及后纵梁下部44a、44b。这些部件都由高张力钢材等刚体材料构成,例如通过冷压或热压(烫印)等成形。

后纵梁下部44a、44b的截面为礼帽(带突缘的帽子)形状,具备:底壁46a、46b、侧壁48a、48b、相对侧壁50a、50b及顶面凸缘52a、52b。侧壁48a、48b、相对侧壁50a、50b均从底壁46a、46b大致垂直地(沿高度h方向)立起,顶面凸缘52a、52b从侧壁48a、48b、相对侧壁50a、50b大致水平地(沿宽度w方向)设置。

后纵梁上部42a、42b为平板形状,以关闭后纵梁下部44a、44b的开口的方式遍及相对的顶面凸缘52a、52a或52b、52b地配置。后纵梁上部42a、42的与顶面凸缘52a、52b抵接的抵接面的任意部位53a、53b通过点焊等而被接合,从而形成闭合截面。

参照图3,后纵梁14a的侧壁48a(第一侧壁)以避开车辆后轮40而从车辆宽度方向向外侧倾斜的方式从车辆后方向前方延伸设置,其前端与中地板横梁16的侧壁54(第二侧壁)抵接。此外,设有从该侧壁48a(第一侧壁)的前端弯折而沿中地板横梁16的侧壁54(第二侧壁)向车辆宽度方向内侧延伸设置的侧壁凸缘56a(第一凸缘)。通过采用这样的弯折构造,侧壁48a及侧壁凸缘56a将成为朝向车辆内侧的内钩形形状。

侧壁凸缘56a(第一凸缘)形成为侧壁凸缘56a的至少一部分隔着中地板横梁16的侧壁54(第二侧壁)在车辆宽度方向上与加强部件36a的凸缘58a(第二凸缘)重合(重叠)。如后所述,通过具备这样的构造,能够在后方碰撞时将来自后纵梁14a的载荷向加强部件36a传递。

返回图1,中地板横梁16是配置在车辆前后方向的中央且沿车辆宽度方向延伸设置的骨架部件。中地板横梁16的两端(车辆宽度方向两端)被底加强件10a、10b的后端、后纵梁14a、14b的前端及摇臂12a、12b的侧壁包围。

图2示出图1的c-c截面。与底加强件10a、10b及后纵梁14a、14b同样,中地板横梁16具备横梁上部60及横梁下部62。这些部件都由高张力钢材等刚体材料构成,通过例如冷压或热压(烫印)等而成形。

横梁下部62的截面为礼帽(带突缘的帽子)形状,具备:底壁64、侧壁54、与侧壁54相对的相对侧壁32及顶面凸缘70。侧壁54、相对侧壁32均从底壁64大致垂直地(沿高度h方向)立起,顶面凸缘70从侧壁54及相对侧壁32大致水平地(沿宽度w方向)设置。

横梁上部60为平板形状,以关闭横梁下部62的开口的方式遍及相对的顶面凸缘70、70地配置。横梁上部60的与顶面凸缘70抵接的抵接面的任意的部位72通过点焊等而被接合,从而形成闭合截面。

参照图3,中地板横梁16的侧壁54(第二侧壁)、底壁64及相对侧壁32(第四侧壁)沿车辆宽度方向延伸设置。侧壁54(第二侧壁)被后纵梁14a的侧壁凸缘56a(第一凸缘)与加强部件36a的凸缘58a(第二凸缘)夹持而与两者抵接。同样,中地板横梁16的相对侧壁32(第四侧壁)被加强部件36a的相对凸缘38a(第三凸缘)与底加强件10a的侧壁凸缘34a(第四凸缘)夹持而与两者抵接。

加强部件36a、36b配置在横梁下部62。加强部件36a、36b由高张力钢材等刚体材料构成,通过例如冷压或热压(烫印)等而成形。加强部件36a、36b也称为“块”。

加强部件36a、36b是将后纵梁14a、14b的侧壁48a、48b及底加强件10a、10b的侧壁26a、26b连结的部件,具有对沿车辆前后方向延伸设置的“纵骨架”进行加强的功能。

如图3所示,加强部件36a具备:凸缘58a(第二凸缘)、相对凸缘38a(第三凸缘)及将两者连结的侧壁74a(第三侧壁)。侧壁74a(第三侧壁)从车辆前方朝向后方延伸设置,其前端与中地板横梁16的相对侧壁32(第四侧壁)抵接,后端与中地板横梁16的侧壁54(第二侧壁)抵接。

另外,虽然由于部件的对称性而省略图示,但是加强部件36b也具备与加强部件36a同样的结构。具体而言,在以下的说明中,将附图标记a(例如相对凸缘38a)置换为附图标记b(相对凸缘38b)的结构成为加强部件36b及其周边部件的结构。

凸缘58a(第二凸缘)从加强部件36a的后端弯折而向车辆宽度方向外侧延伸设置。如上所述,凸缘58a(第二凸缘)设置成,凸缘58a的至少一部分隔着中地板横梁16的侧壁54(第二侧壁)在车辆宽度方向上与后纵梁14a的侧壁凸缘56a(第一凸缘)重合(重叠)。

如上所述,在后纵梁14a中具备从侧壁48a(第一侧壁)向车辆宽度方向内侧弯折而延伸设置有侧壁凸缘56a(第一凸缘)的内钩构造。另一方面,加强部件36a具备从侧壁74a(第三侧壁)向车辆宽度方向外侧弯折而延伸设置有凸缘58a(第二凸缘)的外钩构造。此外,侧壁凸缘56a(第一凸缘)和凸缘58a(第二凸缘)以隔着中地板横梁16的侧壁54(第二侧壁)而对顶的方式配置。

通过采用这样的构造,在中地板横梁16的与侧壁54抵接的抵接部位,后纵梁14a的侧壁48a配置在比加强部件36a的侧壁74a靠车辆宽度方向外侧处。其结果是,如后所述,在后方碰撞后期能够产生以加强部件36a的侧壁74a与凸缘58a的弯折点为旋转中心而使后纵梁14a向车辆外侧转动那样的变形模式。

加强部件36a的相对凸缘38a(第三凸缘)从侧壁74a(第三侧壁)的前端弯折而向车辆宽度方向外侧延伸设置。而且,相对凸缘38a与中地板横梁16的相对侧壁32(第四侧壁)抵接。

在图4上段,仅挑选出在图3中示出的加强部件36a进行图示。加强部件36a除了侧壁74a、凸缘58a、相对凸缘38a之外,还可以具备顶壁76a及底壁78a。底壁78a具备使加强部件36a与中地板横梁16的底壁64接合的接合面(焊接面)。而且,顶壁76a为了使加强部件36a具有一定强度而设置。

在此,如果顶壁76a及底壁78a过度伸出,则后述的凸缘58a的倾斜变形可能会受到阻碍。因此,优选的是,顶壁76a及底壁78a的伸出宽度w1、w2例如小于凸缘58a的长度l1及相对凸缘38a的长度l2中的较短的一方的一半。

或者,如图4下段所示,可以从加强部件36a去除顶壁76a。而且,关于底壁78a也可以仅保留焊接区域而去除其他部分。

<后方碰撞时的变形模式>

使用图5、图6来说明本实施方式的车辆后部构造的后方碰撞时(从后方进行碰撞时)的变形模式。图5、图6均示出图3的e-e截面(俯视观察截面)。另外,与图3的说明同样,在图5、图6中,主要图示出车辆宽度方向左侧的后纵梁14a、加强部件36a、底加强件10a,但是由于结构相同,因此在原理上,车辆宽度方向右侧的后纵梁14b、加强部件36b、底加强件10b也采用与以下同样的变形模式。

图5示意性地示出后方碰撞初期的情况。未图示的障碍物(屏障)从车辆后方碰撞,从未图示的后保险杠加强件向后纵梁14a输入载荷(主要是压缩载荷)。该载荷从后纵梁14a的侧壁48a(第一侧壁)及侧壁凸缘56a(第一凸缘)经由中地板横梁16的侧壁54(第二侧壁)而向加强部件36a的凸缘58a(第二凸缘)及侧壁74a(第三侧壁)传递。

假设在没有加强部件36a的情况下,从后纵梁14a输入的车辆前方向的载荷由中地板横梁16的侧壁54(第二侧壁)承受。此时,向侧壁54在正交于其延伸设置方向上输入载荷,因此成为弯曲载荷,与载荷沿延伸设置方向作用的压缩载荷相比容易变形。在本实施方式中,使加强部件36a的侧壁74a沿从后纵梁14a输入的载荷的输入方向延伸设置,并使载荷向其输入(传递),由此能够抑制中地板横梁16变形。

向加强部件36a的侧壁74a传递的载荷经由相对凸缘38a(第三凸缘)、中地板横梁16的相对侧壁32(第四侧壁)及底加强件10a的侧壁凸缘34a(第四凸缘)而向侧壁26a(第五侧壁)传递。这样,以抑制了各骨架部件及加强部件36a变形的状态传递载荷。

另外,该传递过程不仅在后方碰撞时,在前方碰撞(前碰撞)时也有效。即,从未图示的前保险杠加强件及前纵梁输入的载荷向底加强件10a的侧壁26a传递。此外,载荷从侧壁凸缘34a向中地板横梁16的相对侧壁32、加强部件36a的相对凸缘38a及侧壁74a传递。从侧壁74a进一步经由凸缘58a、中地板横梁16的侧壁54、后纵梁14a的侧壁凸缘56a向侧壁48a传递载荷。

图6示意性地示出后方碰撞后期的情况。当从后方施加载荷时,后纵梁14a向车辆前方进入(陷入)。此时,被施加以加强部件36a的侧壁74a与凸缘58a的弯折点为旋转中心而使后纵梁14a向车辆宽度方向外侧转动的力。

如上所述,在中地板横梁16的侧壁54的抵接位置,后纵梁14a的侧壁48a配置在比加强部件36a的侧壁74a向车辆宽度方向外侧偏移的位置。而且,后纵梁14a的侧壁凸缘56a及加强部件36a的凸缘58a隔着中地板横梁16的侧壁54而对顶地配置。

在这样的构造中,当后纵梁14a的侧壁48a向车辆前方进入时,后纵梁14a和加强部件36a的部分中的对于车辆前后方向的载荷相对较弱地侧壁凸缘56a及凸缘58a弯曲变形。具体而言,产生以凸缘58a与侧壁74a的弯折点为旋转中心而凸缘58a向侧壁74a侧倒下那样的弯曲变形。伴随着该弯曲变形,对后纵梁14a施加向车辆宽度方向外侧施力那样的力。其结果是,与以往相比能抑制后纵梁14a的内倾。

另外,在凸缘58a及侧壁凸缘56a弯曲变形后,后纵梁14a的侧壁48a向加强部件36a的侧壁74a的车辆宽度方向外侧进入,向车辆宽度方向内侧的进入被加强部件36a的侧壁74a阻止。其结果是,与以往相比能抑制后纵梁14a的内倾。

另外,如上所述,对于在后方碰撞时输入的载荷,车辆后部的骨架构造中的、后纵梁14a的侧壁凸缘56a及加强部件36a的凸缘58a成为最弱部分。因此,在后方碰撞时,该最弱部分比其他部件的变形早一步产生变形。由此,后方碰撞时的变形模式的预测变得容易,换言之变形模式的预测更可靠(按照预测那样压扁)。其结果是,容易对最弱部分的周边部件执行耐力设计等。

另外,在本实施方式中,作为后纵梁14a的内倾抑制对策,使用与其他部件相比小型且构造也简单的加强部件36a,与其他手段(例如各部件的刚性强化)相比能够低成本地实现内倾抑制。

<其他实施方式>

在上述实施方式中,将加强部件36a、36b的侧壁74a、74b和相对凸缘38a、38b设为外钩形状,将底加强件10a、10b的侧壁26a、26b和侧壁凸缘34a、34b设为内钩形状,但是不限于该方式。

例如如图7所示,也可以将加强部件36a、36b的侧壁74a、74b及相对凸缘38a、38b和底加强件10a、10b的侧壁26a、26b及侧壁凸缘34a、34b都设为外钩形状。

此外,也可以使加强部件36a、36b的侧壁74a、74b(第三侧壁)与底加强件10a、10b的侧壁26a、26b(第五侧壁)在车辆宽度方向上重合。由此,能够从加强部件36a、36b的侧壁74a、74b向底加强件10a、10b的侧壁26a、26b传递载荷(压缩载荷)。

另外,根据车辆不同,如图8那样,作为隔着中地板横梁16而与后纵梁14a、14b的前端在车辆宽度方向上重叠的骨架部件,有时配置摇臂12a、12b而取代底加强件10a、10b。在这样的情况下,只要使从摇臂12a、12b的侧壁80a、80b的后端弯折而与中地板横梁16抵接并且沿车辆宽度方向延伸设置的凸缘82a、82b的至少一部分在车辆宽度方向上与加强部件36a、36b的相对凸缘38a、38b重合即可。

另外,也可以如图8那样,将凸缘82a、82b设为相对于侧壁80a、80b向车辆宽度方向内侧弯折的内钩形状,也可以如图9那样,将凸缘82a、82b设为相对于侧壁80a、80b向车辆宽度方向外侧弯折的外钩形状。在后者的情况下,可以使摇臂12a、12b的侧壁80a、80b(第五侧壁)与加强部件36a的侧壁74a、74b(第三侧壁)在车辆宽度方向上重合。

此外,在上述实施方式中,与后纵梁14a、14b的前端抵接设置的横梁为中地板横梁16,但是不限于该方式。根据车辆不同,有时也在后纵梁14a、14b的前端连接后横梁18a(参照图1)。在该情况下,可以在后横梁18a的下部部件配置本实施方式的加强部件36a、36b。加强部件36a、36b的侧壁74a、74b遍及后横梁18a的相对的两个侧壁地延伸设置,其前端与相对凸缘38a、38b抵接,后端与凸缘58a、58b抵接。以使凸缘58a、58b的至少一部分与后纵梁14a、14b的凸缘56a、56b在车辆宽度方向上重合的方式配置加强部件36a、36b。此外,加强部件36a、36b的侧壁74a、74b设置在比后纵梁14a、14b的侧壁48a、48b靠车辆宽度方向内侧处。通过具备这样的构造,在后方碰撞时,产生上述那样的凸缘58a、58b及凸缘56a、56b的转动,可抑制后纵梁14a、14b的内倾。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1