炉箅式废弃物焚烧炉及其燃烧控制方法

文档序号:4535375阅读:155来源:国知局
专利名称:炉箅式废弃物焚烧炉及其燃烧控制方法
技术领域
本发明涉及焚烧一般废弃物、产业废弃物、污泥等废弃物的炉篦式废弃物焚烧炉的燃烧控制方法、以及适合实施这样的燃烧控制方法的炉篦式废弃物焚烧炉。
背景技术
作为焚烧处理城市垃圾等废弃物的焚烧炉,广泛采用炉篦式废弃物焚烧炉。其代表性结构简要地示于图3。投入漏斗31的废弃物32,通过滑槽被送入干燥炉篦33,利用来自下方的空气和炉内的辐射热干燥,并且升温着火。着火而开始燃烧的废弃物32,送到燃烧炉篦34,利用从下方送入的燃烧空气热分解而气化,一部分燃烧。然后在后燃烧炉篦35中,废弃物中的未燃部分完全燃烧。然后燃烧后残留的灰从主灰滑槽36取出到外部。
燃烧在燃烧室37内进行,并在二次燃烧室41进行二次燃烧使可燃性气体完全燃烧。从二次燃烧室41排出的气体,送到废热锅炉43,进行热交换后经过冷却塔、袋式过滤器等向外部排出。
在这样的炉篦式废弃物焚烧炉中,焚烧处理废弃物时,由于废弃物是由性状不同的多种物质构成,所以难以维持炉内的燃烧状态一定,不可避免地造成燃烧室37内的温度或燃烧气体的浓度分布在时间、空间上不均匀。
作为解决这样的课题的方法,在特开平11-211044号公报(专利文献1)中,公开了将蓄热式燃烧器产生的高温气体吹入焚烧炉的主燃烧室或二次燃烧室的方法。该技术目的在于,减少焚烧炉中产生的排出气体中的、含有较多CO及芳香族类碳氢化合物等的未燃气体和有害物质等。
又,在特开平11-270829号公报(专利文献2)中,公开了根据燃烧排出气体中的CO值、O2值及焚烧炉的炉内温度来控制垃圾焚烧炉的炉篦速度、燃烧用空气量及炉温冷却用空气量,从而使垃圾焚烧炉中产生的燃烧排出气体中的CO浓度达到预先设定的用于降低戴奥辛的值的方法。
专利文献1特开平11-211044号公报专利文献2特开平11-270829号公报以往,在废弃物焚烧炉中,实际供给到炉内的空气量与废弃物燃烧所所需的理论空气量之比(空气比)是1.7~2.0左右。这比一般燃料的燃烧所需的空气比1.05~1.2大。其原因是与其他液体燃料或气体燃料相比在废弃物中不可燃成分较多,且质地不均匀,所以空气的利用率低,进行燃烧必须要大量的空气。但是,随着空气比增大、排出气体量也增加,随之必须要更大的排出气体处理设备。
如果减小空气比则排出气体量减少,排出气体处理设备变得简洁,其结果可使废弃物焚烧设备整体小型化而降低设备费。并且,也可减少用于排出气体处理的药剂量,所以可降低运行费。又,可降低不能热回收而排入大气的热量,所以废热锅炉的热回收率提高,随之可提高垃圾发电的效率。
所以以低空气比进行燃烧的优点多,但在低空气比燃烧中存在燃烧不稳定的问题。即,如果以低空气比燃烧,则存在燃烧不稳定、CO的产生增加、火焰温度局部上升而使NOx激增、大量产生烟炱或熔渣、由于局部高温而使炉子的耐火物寿命缩短的问题。在上述专利文献1及专利文献2记载的燃烧技术中,没有充分解决这些问题。
又,作为炉温冷却用空气量,只使用空气,或在空气中混合来自焚烧炉的排出气体,都会向炉内导入新的空气所以也存在着不能降低排出气体总量的问题。
又,也公开过采用预热空气或富氧空气改善燃烧稳定性或降低排出气体中的未燃部分的方法,但会导致运行成本或设备成本增大,并且有NOx增加的趋势,所以有实用性的问题。
另一方面,一般采用以旋转燃烧为代表,通过改进向炉内的吹入空气的形态从而降低排出气体中的未燃部分的浓度的方法,但为了改善燃烧性必须要更多的空气,必须要更大的鼓风机和排出气体处理设备,运行成本或设备成本增大并且排出气体带走的热量(显热)增加,所以存在发电效率降低的问题。
又,如果在二次燃烧区域那样燃料浓度低的区域吹入过多的排出气体则随着反应性的下降燃烧变得不稳定,有时会引起熄火或排出气体中未燃部分增加。特别是在垃圾材质变动大时这样的现象成倍出现,有公害处理方面的问题。
如上所述,单独利用以往的燃烧改善方法,难以同时实现低公害化(降低NOx、CO等)和低成本化。
本发明是为了解决上述问题而作出的,目的在于提供在废弃物焚烧炉中即使进行低空气比燃烧时也可降低CO和NOx等有害气体的发生量,并且,可大幅降低从烟囱排出的排出气体总量的废弃物焚烧炉的燃烧控制方法及废弃物焚烧炉。

发明内容
为了解决这样的课题,本发明的特征如下。
一种废弃物焚烧炉的燃烧控制方法,是炉篦式废弃物焚烧炉的燃烧控制方法,其特征在于从炉篦下面向燃烧室内吹入燃烧用一次空气A,向前述燃烧室内的从燃烧开始区域到主燃烧区域间的任意区域吹入高温气体B,向前述高温气体B的吹入位置的上方或气体流动方向下游侧吹入包含从焚烧炉排出的排出气体作为至少一部分的循环排出气体C,向二次燃烧区域吹入由空气、循环排出气体、空气和循环排出气体的混合气体中的任一种构成的搅拌用气体D。
如上述[1]所述的废弃物焚烧炉的燃烧控制方法,其特征在于循环排出气体C仅由从焚烧炉排出的排出气体构成。
如上述[1]或[2]所述的废弃物焚烧炉的燃烧控制方法,其特征在于由燃烧用一次空气A供给的每单位时间的氧量Q1、由高温气体B供给的每单位时间的氧量Q2、由循环排出气体C供给的每单位时间的氧量Q3、由搅拌用气体D供给的每单位时间的氧量Q4,在设废弃物燃烧所需的每单位时间的理论氧量为1时,满足下式(1)及(2)Q1∶Q2∶Q3∶Q4=0.75~1.20∶0.05~0.20∶0.02~0.20∶0.02~0.25(1)1.2≤Q1+Q2+Q 3+Q4≤1.5 (2)[4]如上述[1]或[2]所述的废弃物焚烧炉的燃烧控制方法,其特征在于由燃烧用一次空气A供给的每单位时间的氧量Q1、由高温气体B供给的每单位时间的氧量Q2、由循环排出气体C供给的每单位时间的氧量Q3、由搅拌用气体D供给的每单位时间的氧量Q4,在设废弃物燃烧所需的每单位时间的理论氧量为1时,满足下式(3)及(4)
Q1∶Q2∶Q3∶Q4=0.75~1.1∶0.07~0.15∶0.02~0.15∶0.02~0.25(3)1.25≤Q1+Q2+Q3+Q4≤1.35 (4)[5]如上述[1]至[4]中的任一项所述的废弃物焚烧炉的燃烧控制方法,其特征在于保持Q1和Q2为规定值,并根据监测焚烧炉内状况的因子对Q3及/或Q4进行调节。
如上述[5]所述的废弃物焚烧炉的燃烧控制方法,其特征在于监测焚烧炉内状况的因子,是在燃烧室内产生的可燃性气体进行二次燃烧的二次燃烧区域出口附近的气体温度、气体中O2浓度、气体中CO浓度、气体中NOx浓度中的一个以上。
如上述[1]至[6]中的任一项所述的废弃物焚烧炉的燃烧控制方法,其特征在于高温气体B从不超过燃烧室高度的50%的高度位置向燃烧室内的从燃烧开始区域到主燃烧区域间的任意区域吹入。
如上述[1]至[7]中的任一项所述的废弃物焚烧炉的燃烧控制方法,其特征在于高温气体B,从自炉篦上的废弃物层表面向铅直上方离开0.2~1.5m的范围内的高度位置,向燃烧室内的从燃烧开始区域到主燃烧区域间的任意区域吹入。
如上述[1]至[7]中的任一项所述的废弃物焚烧炉的燃烧控制方法,其特征在于高温气体B,从自炉篦面向铅直上方离开0.2~2.5m的范围内的高度位置,向燃烧室内的从燃烧开始区域到主燃烧区域间的任意区域吹入。
如上述[1]至[9]中的任一项所述的废弃物焚烧炉的燃烧控制方法,其特征在于高温气体B,以至少10m/s以上的吹入速度向燃烧室内的从燃烧开始区域到主燃烧区域间的任意区域吹入。
如上述[1]至[10]中的任一项所述的废弃物焚烧炉的燃烧控制方法,其特征在于调整循环排出气体C及/或搅拌用气体D的流量,使二次燃烧区域的气体温度处于800~1050℃的范围内。
如上述[1]至[11]中的任一项所述的废弃物焚烧炉的燃烧控制方法,其特征在于吹入搅拌用气体D,使得在二次燃烧区域内形成旋转流。
如上述[1]至[12]中的任一项所述的废弃物焚烧炉的燃烧控制方法,其特征在于调整高温气体B的流量,使得经过燃烧开始区域或主燃烧区域的一次燃烧排出气体的温度高于经过后燃烧区域的一次燃烧排出气体的温度。
如上述[1]至[13]中的任一项所述的废弃物焚烧炉的燃烧控制方法,其特征在于调整高温气体B及/或循环排出气体C的流量,使主燃烧区域及后燃烧区域的温度分别处于800~1050℃的范围内。
如上述[1]至[14]中的任一项所述的废弃物焚烧炉的燃烧控制方法,其特征在于调整高温气体B的氧浓度及/或气体温度,使得主燃烧区域及后燃烧区域的温度分别处于800~1050℃的范围。
一种炉篦式废弃物焚烧炉,其特征在于,具有从炉篦下面向燃烧室内吹入燃烧用一次空气A的燃烧用一次空气吹入机构;向前述燃烧室内的从燃烧开始区域到主燃烧区域间的任意区域吹入高温气体B的高温气体吹入机构;向前述高温气体B的吹入位置的上方或气体流动方向下游侧吹入包含从焚烧炉排出的排出气体作为至少一部分的循环排出气体C的循环排出气体吹入机构;向二次燃烧区域吹入由空气、循环排出气体、空气和循环排出气体的混合气体中的任一种构成的搅拌用气体D的搅拌用气体吹入机构。
如上述[16]所述的炉篦式废弃物焚烧炉,其特征在于高温气体B的吹入喷嘴,设置在不超过燃烧室高度的50%的高度位置。
如上述[16]或[17]所述的炉篦式废弃物焚烧炉,其特征在于高温气体B的吹入喷嘴,设置在从炉篦上的废弃物层表面向铅直上方离开0.2~1.5m的范围内的高度位置。
如上述[16]或[17]所述的炉篦式废弃物焚烧炉,其特征在于高温气体B的吹入喷嘴,设置在从炉篦面向铅直上方离开0.2~2.5m的范围内的高度位置。
如上述[16]至[19]中的任一项所述的炉篦式废弃物焚烧炉,其特征在于设置有搅拌用气体D的吹入喷嘴,使得在二次燃烧区域中形成旋转流。
如上述[16]至[20]中的任一项所述的炉篦式废弃物焚烧炉,其特征在于具有可调整高温气体B的流量、使得经过燃烧开始区域或主燃烧区域的一次燃烧排出气体的温度高于经过后燃烧区域的一次燃烧排出气体的温度的机构。
如上述[16]至[21]中的任一项所述的炉篦式废弃物焚烧炉,其特征在于设置有可调整高温气体B及/或循环排出气体C的流量的机构。
如上述[16]至[22]中的任一项所述的炉篦式废弃物焚烧炉,其特征在于具有可调整高温气体B的氧浓度及/或气体温度的机构。


图1是表示本发明的废弃物焚烧炉的一实施方式的概要侧剖视图。
图2是表示本发明的混合在排出气体中的空气量调节机构的概略结构的一例的图。
图3是表示现有技术的废弃物焚烧炉的一例的概要侧剖视图。
具体实施例方式
以下,说明本发明的一实施方式。
图1是表示本发明的废弃物焚烧炉30的一实施方式的概要侧剖视图。
图1所示的废弃物焚烧炉30,是具有燃烧室3、配置在该燃烧室3的上游侧(图1的左侧)并用于将废弃物2投入燃烧室3内的漏斗1、在该漏斗1的相反侧的燃烧室3下游侧的上方连续设置的锅炉12的炉篦式双回流炉。
在燃烧室3的底部设置有使废弃物2一边移动一边燃烧的炉篦(stoker)。该炉篦随着远离漏斗1而向下倾斜地设置。在该炉篦上形成2级阶梯,而分成3部分。该3个炉篦,从接近漏斗1的一方起,分别叫做干燥炉篦5、燃烧炉篦6、后燃烧炉篦7。在干燥炉篦5上主要进行废弃物2的干燥和点火。在燃烧炉篦6上主要进行废弃物2的热分解、部分氧化,进行可燃性气体的燃烧。在燃烧炉篦6处,废弃物2的燃烧实质上结束。在后燃烧炉篦7上使仅剩的废弃物2中的未燃部分完全燃烧。完全燃烧后的燃烧灰从主灰滑槽15排出。
在上述干燥炉篦5、燃烧炉篦6及后燃烧炉篦7的下部,分别设置有风箱8、9、10。由鼓风机13供给的燃烧用一次空气通过燃烧用一次空气供给管16供给到前述各风箱8、9、10,通过各炉篦5、6、7供给到燃烧室3内。另外,从炉篦下面供给的燃烧用一次空气,除用于炉篦上的废弃物2的干燥及燃烧外,具有冷却炉篦的作用、搅拌废弃物的作用。
在与漏斗1相反侧的燃烧室3出口,连续设置有废热锅炉12的二次燃烧区域17。而且,在燃烧室3内,在燃烧室3的出口附近,设置有用于分流从废弃物产生的可燃性气体和燃烧气体的分隔壁(中间顶板)11,将可燃性气体和燃烧气体的气流分流到主烟道20和副烟道21。分流到前述主烟道20和副烟道21的可燃性气体和燃烧气体,导向废热锅炉12,在此混合·搅拌,在作为废热锅炉12的一部分的二次燃烧区域17内二次燃烧,该二次燃烧所产生的燃烧排出气体利用废热锅炉12进行热回收。热回收后,从废热锅炉12排出的燃烧排出气体通过管道14送到第1除尘装置18,在此回收前述燃烧排出气体中含有的飞灰。由前述第1除尘装置18除尘后的燃烧排出气体,利用熟石灰中和酸性气体,并利用活性炭吸附戴奥辛类,再送到第2除尘装置19,回收活性炭等。利用前述第2除尘装置19除尘而无害化后的燃烧排出气体受抽风机22引导,从烟囱23排入大气中。另外,作为前述除尘装置18、19,可采用例如袋式过滤器方式、旋风除尘器方式、电集尘方式等的除尘装置。
在这样的装置结构中,本发明是通过从炉篦下面向燃烧室内吹入燃烧用一次空气,向前述燃烧室内的从燃烧开始区域到主燃烧区域间的任意区域吹入高温气体,向前述高温气体的吹入位置的上方或气体流动方向下游侧吹入包含从焚烧炉排出的排出气体作为至少一部分的循环排出气体,并且,向二次燃烧区域吹入由空气、循环排出气体、空气和循环排出气体的混合气体中的任一种构成的搅拌用气体,从而进行废弃物焚烧炉的燃烧控制。另外,在图1中,表示具有中间顶板11且炉篦倾斜设置的炉子,但本发明当然也可应用于不具有这样的中间顶板的炉子或炉篦水平设置的炉子。
在此,前述燃烧用一次空气,如上述那样,从鼓风机13通过燃烧用一次空气供给管16供给到各干燥炉篦5、燃烧炉篦6及后燃烧炉篦7各自的下部设置的风箱8、9、10后,通过各炉篦5、6、7供给到燃烧室3内。供给到燃烧室3内的燃烧用一次空气的流量,利用前述燃烧用一次空气供给管16上设置的流量调节阀24调整,并且,供给到各风箱的流量,利用分支到各风箱上地设置的各供给管16a、16b、16c、16d所备有的流量调节阀24a、24b、24c、24d进行调节。又,前述风箱及供给燃烧用一次空气用的燃烧用一次空气供给管等的结构不限于图示,可根据焚烧炉的规模、形状、用途等适当选择。
前述高温气体吹入到燃烧室3内的从燃烧开始区域到主燃烧区域间的任意区域。这是因为,高温气体吹入到存在火焰、可燃性气体多的区域,从使燃烧稳定方面来说是优选的。另外,在炉篦式废弃物焚烧炉中,可燃性气体较多的区域是从燃烧开始区域到主燃烧区域。
废弃物焚烧时,首先水分蒸发,然后发生热分解和部分氧化反应,开始生成可燃性气体。在此所谓燃烧开始区域,是废弃物开始燃烧,利用废弃物的热分解、部分氧化而开始生成可燃性气体的区域。又,所谓主燃烧区域,是进行废弃物的热分解、部分氧化和燃烧,产生可燃性气体而伴随火焰燃烧的区域,是伴随着火焰的燃烧结束的点(烧尽点)之前的区域。在烧尽点之后的区域,成为废弃物中的固体未燃部分(炭)燃烧的炭燃烧区域(余烬燃烧区域)。在炉篦式焚烧炉中,所谓燃烧开始区域是干燥炉篦的上方空间,主燃烧区域相当于燃烧炉篦的上方空间。
通过向燃烧室3内的燃烧开始区域到主燃烧区域吹入高温气体而在废弃物层正上方形成滞留区域或旋转区域,从废弃物产生的可燃性气体的混合、搅拌得到促进所以可进行稳定的燃烧。其结果,可抑制CO、NOx、戴奥辛类等有害物质的产生并且抑制烟炱的生成。因此,可使吹入焚烧炉整体的空气的量减少,而进行低空气比燃烧。
又,由于在废弃物层正上方吹入高温气体,所以利用来自高温气体的热辐射和显热进行加热,促进废弃物的热分解。
在此,从前述高温气体吹入口25吹入的高温气体的温度优选设在300~600℃的范围。如果吹入小于300℃的气体,则炉内的温度下降,燃烧变得不稳定,CO增加。如果吹入超过600℃的气体则除助长炉内的熔渣的生成外,没有与高温化匹配的经济效果。通过将高温气体的温度设在300~600℃的范围,在炉内的废弃物层正上方附近形成从流体力学角度来说稳定的滞流区域而进行稳定的燃烧。又,高温气体含有的氧浓度优选5~18%左右。这样,能更有效地发挥上述效果,进一步促进低NOx化、低CO化。
作为达到前述气体温度及氧浓度的高温气体,适合使用送回的排出气体或送回的排出气体与空气的混合气体。送回的排出气体是从废弃物焚烧炉排出的排出气体的一部分,以往是通过使其返回燃烧室内或二次燃烧区域从而利用其显热,或改善燃烧室内的气体混合而可望改善燃烧状态。
前述送回的排出气体满足规定条件时,将送回的排出气体原样吹入炉内即可,但有时送回的排出气体的温度低,且氧浓度低。此时,也可将燃烧器燃烧气体等高温燃烧气体、或由高温空气制造装置或热风炉得到的高温的空气混合到送回的排出气体中,作为温度和氧浓度满足规定条件的高温气体吹入炉内,或加热送回的排出气体将其吹入炉内。
又,回流将二次燃烧区域的排出气体送回进行使用时,如果该送回的排出气体是温度充分高且氧浓度高的,则也可不设置高温空气制造装置等,用该送回的排出气体代替高温空气,与空气混合吹入。并且,若来自二次燃烧区域的送回的排出气体的温度和氧浓度满足规定的条件,则也可将该送回的排出气体作为高温气体直接吹入炉内。
作为前述高温空气制造装置的一例,可使用蓄热式燃烧器、同流换热器、在来自燃烧器的燃烧气体中混合空气或氧的装置、富氧燃烧器等。
在此,在利用气体混合装置混合送回的排出气体与高温燃烧气体或高温空气而调制高温气体时,也可将前述气体混合装置设为喷射装置29。此时,将前述高温燃烧气体或高温空气导向喷射装置29,将其作为驱动流,一边吸引前述送回的排出气体一边混合,吹入燃烧室3内。如果这样,由于不需要用于导出送回的排出气体的鼓风机,所以装置结构简化,并且,可减轻送回的排出气体中含有的粉尘等引起的故障。
在图1中,高温气体吹入口25设置在燃烧室3内相当于从燃烧开始区域到主燃烧区域的、干燥炉篦5的上方及燃烧炉篦6的上方。在此,废弃物的热分解反应在温度200℃左右发生,到温度400℃左右的阶段大致结束。通过在可燃性气体生成的区域使至少一对气体吹出口对置,且使气体的吹入方向为水平或向下地吹入高温气体,从而在炉内的废弃物层正上方附近形成从流体力学角度来说稳定的滞流区域而进行稳定的燃烧。在图1所示例子中,相当于干燥炉篦5的后部及燃烧炉篦6的前部,所以在这些位置上设置气体吹入口25以吹入高温气体。根据废弃物2的组成、性状,以更高的温度结束热分解反应,此时,优选在比图1所示位置更后侧(图的右侧),也设置气体吹入口25。另外,气体吹入口25的设置数量或吹出口的形状可根据焚烧炉的规模、形状、用途等适当选择。
又,气体吹入口25,优选如图1所示,在从燃烧开始区域到主燃烧区域的各区域的不超过燃烧室高度的50%的高度位置,更优选在不超过燃烧室高度的40%的高度位置,具体地、在从炉篦上的废弃物层表面向铅直上方离开0.2~1.5m的范围的高度位置,或从炉篦面向铅直上方离开0.2~2.5m的范围内的高度位置上,对置设置至少一对气体吹出口。从而在燃烧室内的废弃物层正上方,利用气体吹入口25吹出的高温气体实现稳焰效果,所以可在炉内的废弃物层正上方稳定高温区域(火焰)。这样,能有效进行废弃物的热分解,并使高温区域远离项板,所以可减轻顶板的烧损程度。另外,所谓前述燃烧室高度,是在炉篦的各部进行主燃烧的空间的高度,即、从炉篦到燃烧室顶板的高度。
在图1中,在燃烧室3的两侧面上对置设置至少一对气体吹入口25,从这里吹入高温气体。在此,气体吹入口25如上所述,优选设置为使得气体的吹入方向为水平或向下。
从废弃物产生的可燃性气体通常向上流动。因此,如果高温气体的吹入方向向上,则可燃性气体和高温气体的流动具有同一方向的速度分量,阻挡气体流动的效果减小,高温气体吹入的效果减弱。与之相对,如果高温气体的吹入方向为水平或向下,则形成上升的可燃性气体和高温气体的滞流区域,气体在此的实质滞留时间增加,从而增加可燃性气体的反应量并且火焰拉长,所以NOx的产生量减少。从促进这样的作用的意义出发,气体吹出口优选向下设置,但如果角度过大的话,则高温气体不能到达燃烧室3的宽度方向整体,并且在炉壁附近形成局部高温区域,助长熔渣的形成和炉壁的烧损。因此,角度优选为向下10~20°的范围。另外,一般降低焚烧炉的燃烧中的戴奥辛类等有害物质的主要因素是所谓的3T。它们是温度(Temperature)、搅拌(Turbulence)、滞流时间(Time),但特别是、通过高速吹入高温气体使高温气体的射流卷入周围的气体,所以可提高搅拌(Turbulence)和滞流时间(Time),可使焚烧炉内的空间温度更均匀化。
又,前述高温气体向燃烧室3内的吹入,也可仅从燃烧室3的单侧侧面进行。并且,也可不从燃烧室3的侧面而从中间顶板或顶板吹入。但任一情况都要注意防止在燃烧室的顶板附近的熔渣生成和炉子材料的烧损。
又,从前述气体吹入口25吹入的高温气体,优选以至少10m/s以上的吹入速度吹入燃烧室内的从燃烧开始区域到主燃烧区域间的任意区域。设计为10m/s以上的吹入速度,是为了确保炉内的平均的空塔速度(最大1m/s左右)的10倍以上的相对速度。另外,前述高温气体的吹入速度例如通过调整送回的排出气体的混合比例而进行。
这样,可在炉内的废弃物层正上方附近形成稳定的滞流区域,进行稳定的燃烧,可抑制CO、NOx、戴奥辛类等有害物质的产生并且抑制烟炱的生成。因此,可使吹入焚烧炉整体的空气的量减少,而进行低空气比燃烧。
又,优选地调整从设置为多个的吹入喷嘴吹入的高温气体的吹入流量,使得经过燃烧开始区域或主燃烧区域的一次燃烧排出气体的温度高于经过后燃烧区域的一次燃烧排出气体的温度。在此,将焚烧炉的燃烧室内的燃烧叫做一次燃烧,所谓经过前述燃烧开始区域或主燃烧区域的一次燃烧排出气体,在图1中,是通过副烟道21的气体,所谓经过前述后燃烧区域的一次燃烧排出气体,在图1中,是通过主烟道20的气体。
通过使燃烧状态为经过燃烧开始区域或主燃烧区域的一次燃烧排出气体的温度高于经过后燃烧区域的一次燃烧排出气体的温度,从而促进燃烧开始区域或主燃烧区域中的废弃物的热分解,促进可燃性气体向二次燃烧区域的供给。又,通过降低经过含氧量多的后燃烧区域的一次燃烧排出气体的温度,可望抑制一次燃烧区域或二次燃烧区域的急剧燃烧而实现低NOx化。
在此,经过前述燃烧开始区域或主燃烧区域的一次燃烧排出气体的温度、及经过后燃烧区域的一次燃烧排出气体的温度,优选调整到处于800~1050℃的范围内。如果经过前述燃烧开始区域或主燃烧区域的一次燃烧排出气体的温度超过1050℃则助长炉内的熔渣的生成。又,如果经过前述后燃烧区域的一次燃烧排出气体的温度小于800℃则二次燃烧区域的温度下降而不能充分燃烧,CO增加。
前述一次燃烧排出气体温度的调节,通过调整从设置有多个的吹入喷嘴吹入的高温气体及/或循环排出气体的吹入流量而进行。在提高经过燃烧开始区域或主燃烧区域的一次燃烧排出气体的温度时,通过增加供给该区域的高温气体的流量,减少循环排出气体的流量而调整。又,在降低一次燃烧排出气体的温度时,通过减少供给该区域的高温气体的流量,增加循环排出气体的流量而调整。
经过前述后燃烧区域的一次燃烧排出气体的温度调整也同样地进行。
又,一次燃烧排出气体的温度的调节,也可通过调整从设置有多个的吹入喷嘴吹入的高温气体的氧浓度及/或气体温度而进行。在提高经过燃烧开始区域或主燃烧区域的一次燃烧排出气体的温度时,通过增加供给该区域的高温气体的氧浓度,使气体温度上升而调整。在降低前述一次燃烧排出气体的温度时,通过减少供给该区域的高温气体的氧浓度,使气体温度下降而调整。
经过前述后燃烧区域的一次燃烧排出气体的温度调整也同样地进行。
在此,从前述设置有多个的吹入喷嘴吹入的高温气体的氧浓度的调整,优选在5~18%的范围进行。以确保一次燃烧区域或二次燃烧区域的燃烧的自我维持及温度调节的控制性。
又,从前述设置有多个的吹入喷嘴吹入的高温气体的温度,优选为300~600℃的范围。如果吹入小于300℃的气体,则炉内的温度下降,燃烧变得不稳定,CO增加。如果吹入超过600℃的气体则除助长炉内的熔渣的生成外,还没有与高温化匹配的经济效果。通过将高温气体的温度设在300~600℃的范围,从而在炉内的废弃物层正上方附近形成从流体力学角度来说稳定的滞流区域而进行稳定的燃烧。
包含从前述焚烧炉排出的排出气体或空气作为至少一部分的循环排出气体,吹入燃烧室3内的前述高温气体的吹入位置的上方或气体流动方向下游侧。另外,所谓前述气体流动方向下游侧,指相对于炉内的气体流动方向的下游侧。又,所谓前述气体,主要指在燃烧室内产生的可燃性气体及燃烧排出气体。
在此,作为包含从前述焚烧炉排出的排出气体作为至少一部分的循环排出气体,如图1所示,可使用例如抽出从废弃物焚烧炉30排出并通过第1除尘装置18后的排出气体中的一部分所得的气体(气体温度150~200℃左右,氧浓度4~8%左右),或抽出通过第2除尘装置19后的排出气体中的一部分所得的气体(气体温度150~190℃左右,氧浓度4~8%左右)。又,前述循环排出气体可原样使用从焚烧炉30排出的排出气体,也可混合空气。
在前述排出气体中混合空气时,也可使用将混合的空气作为驱动流的喷射器一边吸引排出气体一边混合,而吹入燃烧室3内的后燃烧区域。如果这样,则不一定需要用于抽出排出气体的鼓风机,所以装置结构简化,并且,可减轻由排出气体中含有的腐蚀性气体等引起的故障。
通过从前述高温气体的吹入位置的上方或气体流动方向下游侧吹入前述循环排出气体,从而降低利用燃烧室3内的高温气体的吹入而稳定化的燃烧区域的上方或气体流动方向下游侧的火焰温度,防止大范围的高温区域的产生,更有效地抑制NOx的产生。并且,通过吹入低氧浓度(4~8%左右)的循环排出气体,从而使前述高温气体的吹入位置的上方或气体流动方向下游侧区域接近还原性气氛,抑制NOx的发生。
在此,通过向利用高温气体的吹入形成的气体的滞流区域的上方或气体流动方向下游侧区域吹入前述循环排出气体,抑制滞流区域的上方或气体流动方向下游侧的局部高温区域的产生,即,使温度分布均匀化,并且,通过促进在该区域中的搅拌而使氧浓度分布均匀化,从而可实现更优良的低NOx化。
又,用于向前述高温气体的吹入位置的上方或气体流动方向下游侧区域吹入循环排出气体的循环排出气体吹入口27,优选在高温气体吹入口25的上方或气体流动方向下游侧(图1为正上方),并离开燃烧室高度的10%左右的距离设置。通过有效形成稳定的滞流区域及抑制局部高温区域的产生,更显著地抑制NOx的产生。
但也可将循环排出气体吹入口27和高温气体吹入口25设计为利用1块分隔壁分离的一体型的吹入口。此时,与前述实施例相比NOx的抑制效果稍差,但作成一体型吹出口可降低施工费用,并且,有利于确保空间。
另外,前述循环排出气体吹入口27,目的在于使利用高温气体的吹入所形成的气体的滞流区域的上方或气体流动方向下游侧区域的气体温度分布及氧浓度分布均匀,所以无需对置设置至少一对或使气体的吹入方向水平或向下地设置。
由空气、循环排出气体、空气和循环排出气体的混合气体中的任一种构成的搅拌用气体被吹入二次燃烧区域。
在此,前述搅拌用气体的吹入口31,优选以向在二次燃烧区域17内产生旋转流的方向吹入气体的方式设置1个或多个。通过向二次燃烧区域17内旋转吹入气体,可使二次燃烧区域17内的气体温度及氧浓度分布均匀化,抑制局部高温区域的产生,进而可望低NOx化。并且,由于促进可燃成分与氧的混合所以燃烧的稳定性提高,可完全燃烧,所以也可望实现低CO化。
前述搅拌用气体,如图1所示,可使用由鼓风机56供给的燃烧用二次空气、抽出通过第1除尘装置18后的排出气体的一部分或通过第2除尘装置19后的排出气体的一部分而得的循环排出气体、或前述燃烧用二次空气与循环排出气体混合的气体中的任一种。
在此,前述二次燃烧区域17内的气体温度,优选通过调整前述循环排出气体及/或搅拌用气体的流量而处于800~1050℃的范围。如果二次燃烧区域17内的气体温度小于800℃则燃烧不充分,CO增加。又,如果二次燃烧区域17内的气体温度超过1050℃则助长二次燃烧区域17内的熔渣的生成,并且,NOx增加。
可通过减少前述循环排出气体的流量而使二次燃烧区域17内的气体温度上升,可通过增加前述搅拌用气体的流量而使二次燃烧区域17内的气体温度降低。
又,由从前述炉篦下方向燃烧室3内吹入的燃烧用一次空气供给的每单位时间的氧量Q1、由吹入到前述燃烧室3内的燃烧开始区域到主燃烧区域间的任意区域的高温气体供给的每单位时间的氧量Q2、由吹入前述高温气体的吹入位置的上方或气体流动方向下游侧的循环排出气体供给的每单位时间的氧量Q3、由吹入前述二次燃烧区域的搅拌用气体供给的每单位时间的氧量Q4,在设废弃物燃烧所需的每单位时间的理论氧量为1时,满足下式(1)及(2),更优选满足(3)及(4)。
Q1∶Q2∶Q3∶Q4=0.75~1.20∶0.05~0.20∶0.02~0.20∶0.02~0.25 (1)1.2≤Q1+Q2+Q3+Q4≤1.5(2)Q1∶Q2∶Q3∶Q4=0.75~1.1∶0.07~0.15∶0.02~0.15∶0.02~0.25(3)1.25≤Q1+Q2+Q3+Q4≤1.35(4)在此,前述废弃物燃烧所需的每单位时间的理论氧量由下述内人能够决定,所述内容是指由投入燃烧室内的废弃物的性状及成分等决定的废弃物的每单位质量的燃烧所需的氧量(Nm3/kg)、和焚烧炉内的废弃物的焚烧速度(kg/hr)的积(Nm3/hr)。又,前述Q1,是由从炉篦5、6、7向燃烧室3内供给的燃烧用一次空气供给的每单位时间的氧量,通过增减前述燃烧用一次空气的流量来进行调整。又,Q2通过增减吹入燃烧室3内的燃烧开始区域到主燃烧区域间的任意区域的高温气体的流量来进行调整。又,Q3通过增减吹入燃烧室3内的前述高温气体的吹入位置的上方或气体流动方向下游侧的循环排出气体的流量来进行调整。又,Q4通过增减吹入二次燃烧区域的搅拌用气体的流量来进行调整。
另外,在以下,将Q1+Q2+Q3+Q4记为λ。
通过将前述Q1、Q2、Q3、Q4设在上式的范围,即使在废弃物焚烧炉中进行低氧比燃烧(1.2≤λ≤1.5)(即相当于低空气比燃烧)时也可降低CO和NOx等有害气体的发生量,可大幅降低从焚烧炉排出的排出气体总量。
作为抑制废弃物的余烬或有害物质的产生而实现稳定的低空气比燃烧的分配比,以Q1∶Q2∶Q3∶Q4=0.98∶0.10∶0.12∶0.10、λ=1.3为基准,根据投入到炉内的废弃物的组成和性状等使λ在1.2~1.5的范围而在上述范围内调整Q1、Q2、Q3、Q4。
Q1、Q2、Q3、Q4、λ的具体例记录如下。
Q1∶Q2∶Q3∶Q4=0.98∶0.10∶0.12∶0.10、λ=1.30Q1∶Q2∶Q3∶Q4=0.98∶0.12∶0.12∶0.08、λ=1.30Q1∶Q2∶Q3∶Q4=0.98∶0.14∶0.12∶0.06、λ=1.30Q1∶Q2∶Q3∶Q4=0.98∶0.10∶0.15∶0.12、λ=1.35Q1∶Q2∶Q3∶Q4=0.98∶0.10∶0.13∶0.14、λ=1.35Q1∶Q2∶Q3∶Q4=0.98∶0.10∶0.12∶0.15、λ=1.35Q1∶Q2∶Q3∶Q4=1.05∶0.10∶0.09∶0.06、λ=1.30Q1∶Q2∶Q3∶Q4=1.05∶0.10∶0.08∶0.07、λ=1.30Q1∶Q2∶Q3∶Q4=1.05∶0.12∶0.10∶0.08、λ=1.35Q1∶Q2∶Q3∶Q4=1.05∶0.12∶0.12∶0.06、λ=1.35Q1∶Q2∶Q3∶Q4=1.05∶0.14∶0.13∶0.08、λ=1.40Q1∶Q2∶Q3∶Q4=1.05∶0.14∶0.15∶0.06、λ=1.40Q1∶Q2∶Q3∶Q4=1.10∶0.05∶0.10∶0.05、λ=1.30Q1∶Q2∶Q3∶Q4=0.90∶0.10∶0.12∶0.18、λ=1.30Q1∶Q2∶Q3∶Q4=0.90∶0.10∶0.15∶0.15、λ=1.30Q1∶Q2∶Q3∶Q4=0.90∶0.12∶0.12∶0.16、λ=1.30Q1∶Q2∶Q3∶Q4=0.90∶0.15∶0.12∶0.13、λ=1.30Q1∶Q2∶Q3∶Q4=0.90∶0.12∶0.03∶0.25、λ=1.30Q1∶Q2∶Q3∶Q4=0.90∶0.15∶0.15∶0.10、λ=1.30Q1∶Q2∶Q3∶Q4=0.75∶0.15∶0.15∶0.25、λ=1.30Q1∶Q2∶Q3∶Q4=0.78∶0.12∶0.15∶0.25、λ=1.30Q1∶Q2∶Q3∶Q4=0.78∶0.15∶0.12∶0.25、λ=1.30Q1∶Q2∶Q3∶Q4=0.78∶0.15∶0.15∶0.22、λ=1.30Q1∶Q2∶Q3∶Q4=0.80∶0.10∶0.15∶0.25、λ=1.30Q1∶Q2∶Q3∶Q4=0.80∶0.12∶0.13∶0.25、λ=1.30Q1∶Q2∶Q3∶Q4=0.80∶0.15∶0.15∶0.20、λ=1.30下面,说明Q1、Q2、Q3、Q4的调整基准。
要使通常的城市垃圾等废弃物干燥燃烧,以Q1=0.9为基准,在对灰分少的废弃物或水分少的废弃物例如塑料等进行燃烧时,将Q1减少到0.75~0.9左右,取而代之增加Q2。
要使通常的城市垃圾等废弃物燃烧,以Q2=0.1为基准,在对灰分和水分少而可燃成分占大部分的废弃物例如塑料等进行燃烧,或者使挥发成分多的废弃物燃烧时,增加Q2。如果Q2少,则不能充分获得上述高温气体吹入的效果。另外,超过上述范围地增加Q2,则不能实现低空气比燃烧,用于产生高温气体的燃料费用增加,并且,燃烧室内的温度过高,内壁生成熔渣或NOx增加。
首先,作为废弃物焚烧炉的标准操作基准,根据上述基准,考虑废弃物的组成或性状等决定Q1及Q2,然后设定Q3及Q4的标准值。
在此,通过调整Q3的值从而调整燃烧室内的燃烧状态,通过调整Q4的值从而调整二次燃烧区域内的燃烧状态。Q3,以Q3=0.12为基准,在0.02~0.2的范围调整。Q4,以Q4=0.18为基准,在0.02~0.25的范围内调整。Q3+Q4,以Q3+Q4=0.3为基准,在0.15~0.4的范围调整。
在废弃物焚烧炉的实际操作中即使以标准操作基准操作,有时焚烧炉内的燃烧状况也会变化而使排出的排出气体中的有害物质量产生变动。因此,原样保持前述决定的Q1及Q2的值,而根据监测废弃物焚烧炉内的状况的因子调整Q3、Q4、或Q3和Q4的合计值中的任一个。通过采取这样的燃烧控制方法,即使焚烧炉内的燃烧状况变化,也可通过调整而稳定地进行燃烧,容易控制最终从废弃物焚烧炉排出的排出气体中的有害物质,进而可简化焚烧炉的燃烧控制系统。
在此,作为前述监测废弃物焚烧炉内状况的因子,优选地,为进行燃烧室3内产生的可燃性气体和燃烧气体的二次燃烧的二次燃烧区域17出口附近的气体温度、气体中O2浓度、气体中CO浓度、气体中NOx浓度的一个以上。作为前述监测因子的具体组合,可采用例如(1)气体温度、(2)气体中O2浓度、(3)气体温度和气体中O2浓度、(4)气体温度和气体中CO浓度、(5)气体中NOx浓度和气体温度、(6)气体中NOx浓度和气体中CO浓度。
又,作为调节前述Q3的方法,在吹入燃烧室3内的后燃烧区域的循环排出气体仅由从焚烧炉排出的排出气体构成时,通过调节前述排出气体的流量而进行,在前述循环排出气体是例如从焚烧炉排出的排出气体和空气的混合气体时,通过调节该混合的空气量而进行。
在图2中,作为Q3的调节方法,示出了调节混合在排出气体中的空气量时的调节机构26的概略结构的一例。图2所示的调节机构26设置在配管28的中途,配管28用于抽出通过第1除尘装置18后的排出气体的一部分、或通过第2除尘装置19后的排出气体的一部分,并通过鼓风机52从设置在燃烧室3的高温气体的吹入位置的上方或气体流动方向下游侧的循环排出气体吹入口27吹入循环排出气体。前述调节机构26具有用于混合排出气体和空气的气体混合装置50、用于向前述气体混合装置50供给空气的空气供给配管51、用于控制向前述气体混合装置50供给的空气量的空气量控制装置58。
在前述空气供给配管51上,设置有用于取入空气的鼓风机56、调节向气体混合装置50供给的空气量的流量调节阀54。又,前述空气量控制装置58,根据来自计测前述监测因子的计测装置59的计测信号决定混合在排出气体中的空气量,并控制前述流量调节阀54达到该空气量。
另外,吹入到前述高温气体的吹入位置的上方或气体流动方向下游侧的循环排出气体仅由从焚烧炉排出的排出气体构成时,通过控制设置在前述配管28的中途的调节器的开度而进行循环排出气体流量的调节。
又,作为调节前述Q4的方法,在吹入二次燃烧区域的搅拌用气体仅由空气或仅由循环排出气体构成时,通过调节前述空气或循环排出气体的流量而进行。在前述搅拌用气体是空气和循环排出气体的混合气体时,通过调节该混合的空气量或循环排出气体量而进行。
表1及表2中表示实际的废弃物焚烧炉中的Q3、Q4、或Q3和Q4的合计值的调节方法的一例。表示如何调节监测因子偏离基准值时的排出气体中的有害物质的变动、Q3、Q4、或Q3和Q4的合计值。
另外,前述搅拌用气体,从二次燃烧区域17入口附近的侧壁吹入,向在水平面上与后燃烧区域内的气氛的气流相对的方向形成旋转流。
在此,作为监测前述废弃物焚烧炉内状况的因子的二次燃烧区域17出口附近的气体温度、气体中O2浓度、气体中CO浓度、气体中NOx浓度的各基准值、及其计测机构如下所示。
气体温度950±50℃气体中O2浓度5.5±0.5%气体中CO浓度平均30ppm以下(控制为瞬间值不超过100ppm)气体中NOx浓度100ppm以下[计测机构]气体温度温度传感器(热电偶、辐射温度计)气体中O2浓度氧浓度计气体中CO浓度CO浓度计气体中NOx浓度NOx浓度计[表1] 在焚烧炉内使废弃物和由热分解产生的可燃性气体在适当的氧浓度和温度等的范围内燃烧时,最能抑制CO、NOx、DXN(戴奥辛类)等有害物质的产生。
在表1中,在二次燃烧区域17出口附近的气体温度高时[(1)的情况下],认为是燃烧室中的燃烧受到抑制,其结果二次燃烧区域的燃烧急剧进行,所以气体温度上升。此时,从焚烧炉排出的CO浓度及DXN浓度减少或没有变化但NOx浓度增加。因此,仅调整Q3时,使Q3增加而增加氧向燃烧室内的供给量,使燃烧室中的燃烧活跃而使二次燃烧区域的燃烧适当。仅调整Q4时,使Q4减少,而减少氧向二次燃烧区域的供给量,适当进行二次燃烧区域的燃烧。调整Q3+Q4的合计值时,使Q3增加,使Q4减少,使Q3+Q4的合计值增加或无变化而使燃烧室及二次燃烧区域的燃烧适当进行。
二次燃烧区域17出口附近的气体中O2浓度高时[(2)的情况下],从焚烧炉排出的CO浓度及DXN浓度减少或没有变化,但NOx浓度增加。因此,仅调整Q3时,使Q3增加而增加向燃烧室内的氧的供给量,使燃烧室中的燃烧活跃而使氧的消耗量增加。仅调整Q4时,使Q4减少,而减少氧向二次燃烧区域的供给量而适当进行二次燃烧区域的燃烧。调整Q3+Q4的合计值时,使Q3增加,使Q4减少,使Q3+Q4的合计值增加或无变化而使燃烧室及二次燃烧区域的燃烧适当进行。
相反,二次燃烧区域17出口附近的气体中O2浓度低时[(3)的情况下],从焚烧炉排出的NOx浓度减少,但CO浓度及DXN浓度增加或处于无变化的状态。因此,仅调整Q3时,使Q3减少而减小由燃烧室内的循环排出气体稀释的比例,提高二次燃烧区域的氧浓度。仅调整Q4时,使Q4增加,而增加氧向二次燃烧区域的供给量。调整Q3+Q4的合计值时,使Q3减少,使Q4增加,使Q3+Q4的合计值增加而使燃烧室及二次燃烧区域中的燃烧适当进行。
二次燃烧区域17出口附近的气体中CO浓度高时[(4)的情况下],认为是二次燃烧区域的燃烧不充分,残存有未燃烧的可燃性气体。因此,仅调整Q3时,使Q3减少而提高二次燃烧区域的温度使燃烧稳定化而抑制CO的排出。仅调整Q4时,使Q4增加而增加氧向二次燃烧区域的供给量使二次燃烧区域的燃烧适当进行。使Q3+Q4的合计值增加而使燃烧室及二次燃烧区域中的燃烧适当进行。
二次燃烧区域17出口附近的气体温度低而气体中O2浓度高时[(5)的情况下],认为是由于搅拌用气体的流量过剩,所以二次燃烧区域内的温度降低,使燃烧不稳定。此时,从焚烧炉排出的CO浓度及DXN浓度增加。因此,Q3增加或无变化而使Q4减少,使二次燃烧区域的燃烧适当进行。
二次燃烧区域17出口附近的气体温度低而气体中O2浓度低时[(6)的情况下],认为是二次燃烧区域内的燃烧受到抑制,气体温度下降。此时,从焚烧炉排出的CO浓度及DXN浓度增加。因此,使Q3减少而提高燃烧室的温度从而增加可燃性气体向二次燃烧区域流入的流入量,使Q4增加而增加氧向二次燃烧区域的供给量而使二次燃烧区域的燃烧适当进行。使Q3+Q4的合计值增加或无变化而使燃烧室及二次燃烧区域的燃烧适当进行。
二次燃烧区域17出口附近的气体中CO浓度高而气体温度高时[(7)的情况下],认为是燃烧室中的燃烧不完全,而二次燃烧区域的燃烧急剧进行,所以气体温度上升,并且,残存有未燃烧的可燃性气体。此时,从焚烧炉排出的CO浓度及DXN浓度增加。因此,使Q3增加而降低燃烧室内的温度,并且使Q4增加而降低二次燃烧区域的温度,增加向二次燃烧区域的氧的供给量而使二次燃烧区域的燃烧适当进行。
二次燃烧区域17出口附近的气体中CO浓度高而气体温度低时[(8)的情况下],认为是废弃物的供给量减少而吹入燃烧室内的循环排出气体的流量过剩,所以炉内温度下降,使燃烧不稳定。此时,从焚烧炉排出的CO浓度及DXN浓度增加。因此,使Q3减少而提高炉内温度使燃烧稳定,并且使Q4增加而增加氧向二次燃烧区域的供给量而使二次燃烧区域的燃烧适当进行。使Q3+Q4的合计值增加或无变化而使燃烧室及二次燃烧区域的燃烧适当进行。
二次燃烧区域17出口附近的气体中NOx浓度高而气体温度高时[(9)的情况下],认为是燃烧室中的燃烧受到抑制,其结果二次燃烧区域的燃烧急剧进行所以气体温度上升,气体中NOx浓度增加。因此,使Q3增加而降低燃烧室内的温度,抑制燃烧室中的燃烧,并且,使Q4减少而减少向二次燃烧区域的氧的供给量而使二次燃烧区域的燃烧适当进行。使Q3+Q4的合计值增加或无变化而使燃烧室及二次燃烧区域的燃烧适当进行。
二次燃烧区域17出口附近的气体中NOx浓度低而CO浓度高时[(10)的情况下],认为是二次燃烧区域的燃烧不充分,残存有未燃烧的可燃性气体。因此,使Q3减少而提高燃烧室内的温度,增加可燃性气体向二次燃烧区域流入的流入量,使Q4增加而增加氧向二次燃烧区域的供给量而使二次燃烧区域的燃烧适当进行。使Q3+Q4的合计值增加而使燃烧室及二次燃烧区域的燃烧适当进行。
二次燃烧区域17出口附近的气体中NOx浓度低、CO浓度也低时[(11)的情况下],认为是炉内的燃烧适当进行的状态。此时没有特别进行调节的必要,Q3、Q4、Q3+Q4的合计值保持原样。
通过上述控制,不进行复杂的控制即可有效降低从废弃物焚烧炉排出的CO、NOx、DXN等有害物质的量。
又,在表3中,表示在实际的废弃物焚烧炉中,在作为实施例设为Q1∶Q2∶Q3∶Q4=0.98∶0.10∶0.12∶0.10、λ=1.30而进行废弃物的燃烧时,测定从焚烧炉排出的排出气体中的CO浓度、NOx浓度、DXN浓度的结果。另外,在表3中,表示作为比较例1及比较例2,在现有技术的废弃物焚烧炉中,测定如表2那样设定由从炉篦下面吹入的燃烧用一次空气供给的每单位时间的氧量r1、由吹入主燃烧区域的空气供给的每单位时间的氧量r2、由吹入后燃烧区域的空气供给的每单位时间的氧量r3及λ’=r1+r2+r3时从焚烧炉的炉出口排出的排出气体中的CO浓度、NOx浓度、DXN浓度的结果。


如表3所示,在实施例中,可实现低空气比燃烧(λ=1.30),抑制CO、NOx、DXN的产生。与之相对,在比较例1中,不能实现低空气比燃烧(λ’=1.7),并且,NOx的产生量大。在比较例2中,如果进行低空气比燃烧(λ’=1.3),则虽然NOx的产生量低,但CO的产生多。这可认为是炉内的燃烧状态变得不稳定,可燃性气体没有燃烧而作为CO排出,并且,产生烟炱等未燃部分,并由于它们的存在而使戴奥辛类的产生量也增大。
又,也可使用相对从焚烧炉排出的排出气体流量的比率进行高温气体、循环排出气体及搅拌用气体的吹入流量的调整。从而可简便地进行吹入流量的设定和调整。
另外,上述废弃物焚烧炉是将融灰炉一体化后的融灰炉一体型废弃物焚烧炉时,也可使用融灰炉的排出气体作为上述循环排出气体及/或搅拌用气体的全部或一部分。又,前述融灰炉是具有窖罩的窖式融灰炉时,也可使用通过前述窖罩引导的在该窖罩内加热的空气作为上述高温气体及/或搅拌用气体的全部或一部分。通过使用融灰炉的排出气体或在窖罩内加热的空气可有效利用废热,可望节能化。
根据以上说明所述的本发明,可提供即使在废弃物焚烧炉中进行低空气比燃烧时也可维持燃烧的稳定性,且可抑制局部高温区域的产生,降低CO和NOx等有害气体的产生量的废弃物焚烧炉的燃烧控制方法及废弃物焚烧炉。并且,提供由于进行低空气比燃烧所以可大幅降低从焚烧炉排出的排出气体总量,且可提高废热的回收效率的废弃物焚烧炉的燃烧控制方法及废弃物焚烧炉。
权利要求
1.一种废弃物焚烧炉的燃烧控制方法,是炉篦式废弃物焚烧炉的燃烧控制方法,其特征在于从炉篦下面向燃烧室内吹入燃烧用一次空气(A),向前述燃烧室内的从燃烧开始区域到主燃烧区域间的任意区域吹入高温气体(B),向前述高温气体(B)的吹入位置的上方或气体流动方向下游侧吹入包含从焚烧炉排出的排出气体作为至少一部分的循环排出气体(C),向二次燃烧区域吹入由空气、循环排出气体、空气和循环排出气体的混合气体中的任一种构成的搅拌用气体(D)。
2.如权利要求1所述的废弃物焚烧炉的燃烧控制方法,其特征在于循环排出气体(C)仅由从焚烧炉排出的排出气体构成。
3.如权利要求1或2所述的废弃物焚烧炉的燃烧控制方法,其特征在于由燃烧用一次空气(A)供给的每单位时间的氧量Q1、由高温气体(B)供给的每单位时间的氧量Q2、由循环排出气体(C)供给的每单位时间的氧量Q3、由搅拌用气体(D)供给的每单位时间的氧量Q4,在设废弃物燃烧所需的每单位时间的理论氧量为1时,满足下式(1)及(2)Q1∶Q2∶Q3∶Q4=0.75~1.20∶0.05~0.20∶0.02~0.20∶0.02~0.25 (1)1.2≤Q1+Q2+Q3+Q4≤1.5(2)
4.如权利要求1或2所述的废弃物焚烧炉的燃烧控制方法,其特征在于由燃烧用一次空气(A)供给的每单位时间的氧量Q1、由高温气体(B)供给的每单位时间的氧量Q2、由循环排出气体(C)供给的每单位时间的氧量Q3、由搅拌用气体(D)供给的每单位时间的氧量Q4,在设废弃物燃烧所需的每单位时间的理论氧量为1时,满足下式(3)及(4)Q1∶Q2∶Q3∶Q4=0.75~1.1∶0.07~0.15∶0.02~0.15∶0.02~0.25 (3)1.25≤Q1+Q2+Q3+Q4≤1.35(4)
5.如权利要求1至4中的任一项所述的废弃物焚烧炉的燃烧控制方法,其特征在于保持Q1和Q2为规定值,并根据监测焚烧炉内状况的因子对Q3及/或Q4进行调节。
6.如权利要求5所述的废弃物焚烧炉的燃烧控制方法,其特征在于监测焚烧炉内状况的因子,是在燃烧室内产生的可燃性气体进行二次燃烧的二次燃烧区域出口附近的气体温度、气体中O2浓度、气体中CO浓度、气体中NOx浓度中的一个以上。
7.如权利要求1至6中的任一项所述的废弃物焚烧炉的燃烧控制方法,其特征在于高温气体(B)从不超过燃烧室高度的50%的高度位置向燃烧室内的从燃烧开始区域到主燃烧区域间的任意区域吹入。
8.如权利要求1至7中的任一项所述的废弃物焚烧炉的燃烧控制方法,其特征在于高温气体(B),从自炉篦上的废弃物层表面向铅直上方离开0.2~1.5m的范围内的高度位置,向燃烧室内的从燃烧开始区域到主燃烧区域间的任意区域吹入。
9.如权利要求1至7中的任一项所述的废弃物焚烧炉的燃烧控制方法,其特征在于高温气体(B),从自炉篦面向铅直上方离开0.2~2.5m的范围内的高度位置,向燃烧室内的从燃烧开始区域到主燃烧区域间的任意区域吹入。
10.如权利要求1至9中的任一项所述的废弃物焚烧炉的燃烧控制方法,其特征在于高温气体(B),以至少10m/s以上的吹入速度向燃烧室内的从燃烧开始区域到主燃烧区域间的任意区域吹入。
11.如权利要求1至10中的任一项所述的废弃物焚烧炉的燃烧控制方法,其特征在于调整循环排出气体(C)及/或搅拌用气体(D)的流量,使二次燃烧区域的气体温度处于800~1050℃的范围。
12.如权利要求1至11中的任一项所述的废弃物焚烧炉的燃烧控制方法,其特征在于吹入搅拌用气体(D),使得在二次燃烧区域内形成旋转流。
13.如权利要求1至12中的任一项所述的废弃物焚烧炉的燃烧控制方法,其特征在于调整高温气体(B)的流量,使得经过燃烧开始区域或主燃烧区域的一次燃烧排出气体的温度高于经过后燃烧区域的一次燃烧排出气体的温度。
14.如权利要求1至13中的任一项所述的废弃物焚烧炉的燃烧控制方法,其特征在于调整高温气体(B)及/或循环排出气体(C)的流量,使得主燃烧区域及后燃烧区域的温度分别处于800~1050℃的范围。
15.如权利要求1至14中的任一项所述的废弃物焚烧炉的燃烧控制方法,其特征在于调整高温气体(B)的氧浓度及/或气体温度,使得主燃烧区域及后燃烧区域的温度分别处于800~1050℃的范围。
16.一种炉篦式废弃物焚烧炉,其特征在于,具有从炉篦下面向燃烧室内吹入燃烧用一次空气(A)的燃烧用一次空气吹入机构;向前述燃烧室内的从燃烧开始区域到主燃烧区域间的任意区域吹入高温气体(B)的高温气体吹入机构;向前述高温气体(B)的吹入位置的上方或气体流动方向下游侧吹入包含从焚烧炉排出的排出气体作为至少一部分的循环排出气体(C)的循环排出气体吹入机构;向二次燃烧区域吹入由空气、循环排出气体、空气和循环排出气体的混合气体中的任一种构成的搅拌用气体(D)的搅拌用气体吹入机构。
17.如权利要求16所述的炉篦式废弃物焚烧炉,其特征在于高温气体(B)的吹入喷嘴,设置在不超过燃烧室高度的50%的高度位置。
18.如权利要求16或17所述的炉篦式废弃物焚烧炉,其特征在于高温气体(B)的吹入喷嘴,设置在从炉篦上的废弃物层表面向铅直上方离开0.2~1.5m的范围内的高度位置。
19.如权利要求16或17所述的炉篦式废弃物焚烧炉,其特征在于高温气体(B)的吹入喷嘴,设置在从炉篦面向铅直上方离开0.2~2.5m的范围内的高度位置。
20.如权利要求16至19中的任一项所述的炉篦式废弃物焚烧炉,其特征在于设置有搅拌用气体(D)的吹入喷嘴,使得在二次燃烧区域中形成旋转流。
21.如权利要求16至20中的任一项所述的炉篦式废弃物焚烧炉,其特征在于具有可调整高温气体(B)的流量、使得经过燃烧开始区域或主燃烧区域的一次燃烧排出气体的温度高于经过后燃烧区域的一次燃烧排出气体的温度的机构。
22.如权利要求16至21中的任一项所述的炉篦式废弃物焚烧炉,其特征在于设置有可调整高温气体(B)及/或循环排出气体(C)的流量的机构。
23.如权利要求16至22中的任一项所述的炉篦式废弃物焚烧炉,其特征在于具有可调整高温气体(B)的氧浓度及/或气体温度的机构。
全文摘要
本发明是一种炉箅式废弃物焚烧炉的燃烧控制方法,从炉箅下面向燃烧室内吹入燃烧用一次空气(A),向前述燃烧室内的从燃烧开始区域到主燃烧区域间的任意区域吹入高温气体(B),向前述高温气体(B)的吹入位置的上方或气体流动方向下游侧吹入包含从焚烧炉排出的排出气体作为至少一部分的循环排出气体(C),向二次燃烧区域吹入由空气、循环排出气体、空气和循环排出气体的混合气体中的任一种构成的搅拌用气体(D)。
文档编号F23G5/50GK1777776SQ20048001042
公开日2006年5月24日 申请日期2004年4月13日 优先权日2003年4月18日
发明者铃木实, 立福辉生, 山本浩, 西野雅明, 宫越靖宏 申请人:杰富意工程株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1