一种具有分级孔状结构的TiO2纳米粉体及其制备方法与流程

文档序号:15215854发布日期:2018-08-21 16:51阅读:834来源:国知局

本发明的技术方案涉及污水处理领域,具体地涉及一种可用于降解污水中有机染料的 TiO2纳米粉体及其制备方法。



背景技术:

全球化发展带来经济技术水平提高的同时,也导致生态环境污染等问题。其中,纺织、印刷等行业排放的废水中含有大量的致癌致畸作用的有机染料,对生态系统和人体健康构成了严重的威胁。目前,处理这类废水污染物的方法之一就是光催化降解有机染料,即选择禁带宽度适当的半导体材料作为催化剂,通过光照激发形成光生电子和空穴,利用光生电子或空穴与有机染料发生氧化还原反应,最终将有机染料分解成水、二氧化碳和无机酸等小分子。二氧化钛作为半导体光催化剂的代表,由于具有优良的光催化活性和稳定性而被广泛应用于有机染料降解领域。影响二氧化钛催化性能的因素主要有两个方面:1)光生电子-空穴对的复合速度,因为如果复合速度快,会导致光生电子和空穴在迁移过程中即被湮灭,无法到达催化剂表面完成降解反应;2)催化剂周围有机染料浓度,由于有机染料的降解反应多为一级反应,即反应速率与染料浓度呈正比,故催化剂吸附更多有机染料以提高其周围局部浓度有利于提高光催化效率。由此可知,将二氧化钛催化剂设计成小尺寸孔状结构将有利于提高其催化性能,具体原因是,首先减小二氧化钛颗粒的尺寸有利于增加比表面积并缩短电子或空穴的迁移距离,从而增加其吸附染料能力以提高催化剂周围反应物浓度,同时降低光生电子和空穴的复合比例;其次孔状结构同样能够增加催化剂的比表面积,此外,孔状结构还能够增强光源在催化剂体内的散射和吸收,进而提高了二氧化钛的量子产率,结合上述原因,二氧化钛催化剂需要设计成由纳米尺寸晶粒组装成的孔状二氧化钛分级结构才能对有机染料起到较好的光降解作用。

模板法,即通过选择合适的材料作为牺牲模板剂来调控组成颗粒的尺寸和内部孔径及分布,是得到这类分级孔状结构的基本方法。目前有效的模板剂主要包括金属泡沫、凝胶、固体纳米粒子等,但它们存在价格高、操作过程复杂、使用环境苛刻等问题。

海藻酸钠(sodium alginate,缩写为SA)作为褐藻类提取物,在食品工业中用作增稠剂、乳化剂等。其分子为β-D-甘露糖醛酸和α-L-古洛糖醛酸按1:4糖苷键形成的共聚物,含有大量的羧基(-COO-)基团。当向SA的水溶液中加入高价(≥2)阳离子时,SA分子链中的钠离子(Na+)会与高价阳离子发生离子交换反应,形成交联网络结构,从而在极其温和条件下迅速形成凝胶。

在已有的利用SA作为模板剂制备分级孔状二氧化钛材料的报道中提到的方法大致如下:首先用钙离子与SA交联形成水凝胶,再以生成的水凝胶作为模板与事先制备好的含钛前驱体混合,通过前驱体在模板表面水解形成二氧化钛,然后煅烧除去模板,即可产生具有孔状结构的二氧化钛粉料,可见,上述制备孔状二氧化钛粉料的方法中,存在操作过程繁琐、参数不易控制、生产周期长、产物纯度低和杂质难去除等一系列的缺点。例如, Caruso课题组发表的文章《Sol–gel synthesis of hierarchically porous TiO2beads using calcium alginate beads as sacrificial templates》中就采用了Ca-SA水凝胶作为模板剂制备分级孔状二氧化钛材料,其中就涉及单纯高温烧结后仍有模板剂中残留的Ca元素无法完全去除的问题。



技术实现要素:

本发明就是针对上述技术问题,提供了一种用于光催化降级有机染料的TiO2纳米材料及其制备方法,该TiO2纳米材料纯度高,不含有其他杂质离子,且其制备方法的操作简单,过程可控,生产周期短,并且本发明提供的TiO2纳米材料与商业TiO2粉体相比具有更高的催化效率。

本发明通过钛离子(Ti4+)与SA在水溶液中直接交联生成Ti-SA凝胶,而后通过煅烧去除Ti离子间的SA,得到白色细滑且表面亲水的纯锐钛矿相TiO2粉体。该TiO2粉体的微观结构存在大量的孔隙,由12~30nm的TiO2纳米晶体相互堆积构筑的分级孔状结构。此锐钛矿相TiO2分级孔状结构的比表面积为150~156m2/g,孔隙率为20~22%,孔径分布范围3~32nm,平均孔径23nm。

其具体步骤如下:

(1)酸性溶剂的配制:

将摩尔浓度为1mol/L的盐酸(HCl)滴入到去离子水中,得到pH=5的溶液A;

(2)两组反应液的配制:

将海藻酸钠加入到溶液A中,在50℃水浴锅中充分搅拌后得到浓度为0.5~3g/L的溶液B;将硫酸钛(Ti(SO4)2)溶于溶液A,得到摩尔浓度为0.1~0.8mol/L的溶液C;

(3)反应体系的获得:

将上述溶液B搅拌流加于上述溶液C中,得到混合反应体系D;

(4)分级孔状骨架的固定:

将上述混合反应体系D密封,并于25℃下静置24h,而后过滤分离出白色凝胶,该凝胶分别用去离子水和无水乙醇洗涤3遍后,再置于真空冷冻干燥机中干燥,得到干燥粉体,其真空度为350Pa;

(5)具有分级孔状结构的TiO2纳米材料的制备:

将上述真空冷冻干燥后得到的干燥粉体于马弗炉中,加热到400~800℃,并保温1~ 10h,遵循“高温短时,低温长时”的原则,得到分级孔状结构TiO2纳米材料。

上述步骤(2)中,溶液B中海藻酸钠在盐酸水溶液的浓度优选为2g/L,溶液C中硫酸钛在盐酸水溶液的浓度优选为0.4mol/L。

上述步骤(3)中搅拌速度为1200r/min,流加速度为3ml/min,且其搅拌速度随流加速度增加而增大。

上述步骤(5)中优选加热到600℃,并保温3h。

上述TiO2纳米材料对有机染料罗丹明B的降解率的检测步骤如下:

首先测出在1kW功率氙灯激发下,不同浓度罗丹明B溶液的吸光度,拟合后吸光度

(Y)对浓度(X)的直线为:Y=0.015X+0.08。

然后把本发明所得分级孔状结构TiO2纳米材料作为光催化剂按以下步骤进行RhB降

解率的测定:

1、将RhB加入到去离子水中,充分搅拌后得到浓度为10mg/L的溶液E;

2、将步骤(5)中制备的分级孔状结构TiO2纳米材料作为光催化剂加入到溶液E中,得到催化剂溶度为1g/L的反应体系F;

3、将上述反应体系F超声分散均匀后,再避光搅拌3h得到混合反应体系G;

4、将上述混合反应体系G至于光化学反应仪中,开1kW氙灯并通循环冷凝水,调节氙灯位于混合反应体系G上方10cm处;

5、1h后离心分离出上层清液H;

6、用日立U-3900H型紫外-可见分光光度计测试上层清液H在552nm(实施例中为 552nm)处的吸光度值,根据公式:η降=(c0-c)/c0(c0:罗丹明B溶液的起始浓度;c:罗丹明B溶液的当前浓度)计算RhB的降解率。

本发明取得的有益效果如下:

(1)本发明提供的TiO2纳米材料的粒径和孔径可控,可通过试验探索适用于降解不同有机污染物所需的最优粒径和孔径组合,以提高催化降解效率。

(2)本发明通过步骤(1)为反应体系D创造了酸性环境,从而抑制了Ti离子的水解,保证其和SA在水溶液中直接交联成凝胶,从而避免了Ca离子的引入。

(3)本发明不使用骨架模板,通过步骤(3)直接获得Ti-SA交联凝胶,省却了Ca-SA 模板剂的引入,从而简化了操作步骤,缩短了生产周期。

(4)本发明通过步骤(4)加固了Ti-SA骨架结构,保证TiO2纳米材料在煅烧中分级孔状结构的形成。

(5)本发明所得TiO2纳米材料中氧原子基本上来源于SA,而不是水分子,因此,相邻TiO2颗粒间的结合强度会更高。

(6)本发明所得TiO2纳米材料对有机染料罗丹明B(RhB)的降解率最高可达到 95.3%。

附图说明

下面结合附图和实施例对本发明进一步说明。

图1为本发明实例1的分级孔状结构的TiO2纳米材料的扫描电镜图片。

图2为本发明实例1的分级孔状结构的TiO2纳米材料的X射线衍射分析图。

图3为本发明实例1的分级孔状结构的TiO2纳米材料的透射电镜图片。

图4为本发明实例1的分级孔状结构的TiO2纳米材料的低温氮气吸附、脱附等温图。

图5为本发明实例1的分级孔状结构的TiO2纳米材料和商用TiO2粉体在1kW氙灯光照下降解浓度为10mg/L的RhB水溶液的数据图,图中:曲线1为分级孔状结构的TiO2纳米材料作为催化剂,曲线2为商用TiO2粉体作为催化剂。

具体实施方式

下面结合实施例对本发明的具体方案做进一步的描述。但是,所使用的具体方案、配方和说明并不是对本发明的限制。

实施例1

按以下步骤制备分级孔状结构的TiO2纳米材料:

(1)将摩尔浓度为1mol/L的盐酸(HCl)滴入到去离子水中,得到pH=5的溶液A;

(2)将海藻酸钠加入到溶液A中,在50℃水浴锅中充分搅拌后得到浓度为2g/L的溶液B;

(3)将硫酸钛(Ti(SO4)2)溶于溶液A,得到摩尔浓度为0.4mol/L的溶液C;

(4)用玻璃滴管吸取溶液B,并逐滴滴入溶液C中,得到混合反应体系D;

(5)将上述混合反应体系D密封,并于25℃下静置24h;

(6)静置结束后,进行过滤分离出白色凝胶,该凝胶分别用去离子水和无水乙醇洗涤3遍后,再置于真空冷冻干燥机中干燥,真空度为350Pa,得到干燥粉体;

(7)将上述冷冻干燥后的干燥粉体盛入陶瓷方舟后,放入马弗炉后,加热到600℃,并保温3h,得到分级孔状结构TiO2纳米材料粉体。

而后,将步骤(7)所得分级孔状结构TiO2纳米材料作为催化剂按照上述RhB降解率的测定方法进行RhB降解率的测定,其结果见表2。

图1为所得TiO2纳米材料2万倍下的电镜扫描照片,从中可得到其孔径和孔隙率分别为23nm和22%,图2为所得TiO2纳米材料X射线衍射的检测结果,可见该纳米材料由纯的锐钛矿组成,其晶粒尺寸为20nm,图3为所得TiO2纳米材料400万倍下的透射电镜照片,可见组成该分级孔状结构的TiO2纳米晶粒的尺寸为20nm,与图2所示的XRD 测试结果相吻合,图4为所得TiO2纳米材料低温氮气吸附、脱附等温图,通过对测试结果计算表明,其比表面积为156m2/g,孔径分布为3~32nm,与图1扫描电镜测试结果相吻合,图5为分别使用所得TiO2纳米材料和商用TiO2粉体作为催化剂在1kW氙灯光照下催化降解浓度为10mg/L的罗丹明B水溶液的数据图,两者的最佳催化降解效率分别为 95.3%和70.5%。

实施例2~11

按照表1所列工艺参数将实施例1中对应参数进行变换,其余工艺步骤同实施例1。对比例1

按照上述RhB降解率的测定方法对商业TiO2粉体进行RhB降解率的测定,结果见表 2。

表1.实施例2-11中的与实施例1不同的工艺参数的参数对照及所得二氧化钛粉体相关参数

表2 实施例及对比例所得纳米粉体的性能参数

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1