一种加氢裂化催化剂的制备方法与流程

文档序号:15818924发布日期:2018-11-02 22:54阅读:251来源:国知局

本发明具体涉及一种加氢裂化催化剂的制备方法。

背景技术

加氢裂化工艺是一种将高沸点原料转变成低沸点的石脑油和柴油馏分的炼油工艺。与催化裂化相比,其原料适应性高,柴油馏分的产率高、品质好,但是石脑油的辛烷值相对较低。随着社会对清洁交通燃料油的需求不断增加,加氢裂化工艺已成为现代炼厂的核心工艺之一。

加氢裂化催化剂是整个加氢裂化工艺的核心,其通常包括双功能中心:一为酸性中心,由载体提供,其基本决定催化剂的活性,在加氢裂化催化剂发展过程中酸性组分曾采用如卤素化(氯或氟)的氧化铝、无定型硅铝以及分子筛等材料,从上世纪70年代以来,随着分子筛制备技术的发展,硅铝分子筛由于其结构明确、酸性可调,逐渐成为加氢裂化催化剂中酸性中心的主流组分。第二个是金属中心,其在反应过程中起到加氢/脱氢作用,为酸性中心提供反应原料,并及时饱和酸性中心产物,防止深度裂化。金属中心一般由vib族金属或vib族与viiib族二元金属体系组成,以硫化物形态提供真正的加氢/脱氢活性。酸性中心与加氢/脱氢中心紧密结合,且二者协调作用是加氢裂化催化剂成功运行的关键。

为了满足社会对清洁交通燃料油不断增加的需求,在加氢裂化工艺中需要充分利用高沸点的原料以生产更多的石脑油和柴油产品,并减少生产低值气态产品(c1-c4)。同时为了降低生产操作费用,工业生产希望使用更高活性的催化剂,以降低反应温度。具体到催化剂设计时则希望同步提高催化剂的酸性中心性能和金属中心性能:酸性中心的性能可以通过增加酸性材料(如分子筛)的酸强度或其使用量得到提高;而金属中心性能则由于受到载体所能提供的有效比表面积以及金属本身特性的限制,不能简单的通过增加使用量得到提高。因此,如何提高金属中心性能一直是该领域研究的热点。

无机氧化物(如氧化铝)的表面具有大量的羟基,羟基的种类随着铝原子配位环境的不同可分为五种类型(参考文献:catalrev.sci.eng.17(1),31-70,1978)。这些羟基通过缩合作用形成al-o-m化学键是vib族金属与氧化铝载体之间形成较强作用的关键原因。本发明对无机氧化物载体进行表面修饰,将其表面的强羟基全部或部分替换为其他官能团,使其与vib金属之间形成弱的相互作用,甚至直接参与到vib金属氧化物的硫化过程中,从而在本质上改变过渡金属与无机载体表面之间相互作用,有利于过渡金属氧化物充分预硫化,从而在加氢裂化反应中发挥最佳的加/脱氢性能。



技术实现要素:

本发明的目的在于提供一种加氢裂化催化剂的制备方法,其所得加氢裂化催化剂具有较高的柴油液收率。

为实现上述目的,本发明采用如下技术方案:

一种加氢裂化催化剂的制备方法,其包括如下步骤:

1)将拟薄水铝石、无定型硅铝和分子筛按一定比例充分混合后,加入一定量的酸溶液,捏合2-60min,然后挤条成型;所得成型体在110-200℃干燥2-12h后,在400-900℃焙烧2-8h,制备得到无机载体;

2)在步骤1)所得无机载体中加入其重量0.5-20%的改性试剂,10-120℃进行反应,从而在无机载体表面通过化学键连接新的官能团,得到表面修饰的无机载体;

3)采用浸渍法将vib族金属元素和viiib族金属元素负载在步骤2)所得表面修饰的无机载体上,然后经60-120℃充分干燥,得到所述加氢裂化催化剂。

步骤1)中所用拟薄水铝石、无定型硅铝和分子筛的重量比为(20-80):(20-60):(1-20)。

所用酸溶液的加入量为拟薄水铝石、无定型硅铝和分子筛总重的0.5-10%,其浓度为不超过10wt%;所用酸包括硝酸、磷酸、盐酸、硫酸等无机酸或甲酸、乙酸、乙二酸、柠檬酸等有机酸。

步骤2)所述改性试剂中含有两种或两种以上能相互反应的官能团,其中一种官能团需能够与无机载体表面反应,其可为羟基、羧基、氨基、酸酐、卤素取代基(如-cl,-br,-i等)、硅氧基、磷酸基、偏磷酸基或亚磷酸基等,另一种官能团需能与含有vib族金属元素或viib族金属元素的氧化物或盐反应,其可为羟基、羧基、氨基、巯基、酰胺基或卤素取代基等。

步骤3)中vib族金属元素在无机载体上的负载量为5-30%,viiib族金属元素在无机载体上的负载量为1-15%。

本发明的显著优势在于:本发明通过化学键在无机载体表面修饰氨基、羟基、巯基、羧酸基等基团,使所得催化剂具有较高的柴油液收率。

具体实施方式

为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。

所用分子筛为超稳y分子筛原料,其si/al(摩尔比)为30,晶胞尺寸为24.31,骨架al/非骨架al(27alnmr法)为3.6。

所用拟薄水铝石的比表面积(bet法)为234m2/g,平均孔径(bjh法)6.7nm,单点吸附孔容为0.65cc/g,na2o含量(重量百分比)<0.1%。

所用无定型硅铝中硅含量为40%,单点吸附孔体积(bet)为1.56cc/g。

实施例1:

称取拟薄水铝石220g(干基,以下所有原材料如非特别指出,所有重量皆为干基重量)、无定型硅铝160g、分子筛20g,将这三种固体粉末充分混合后,向其中加入预先配制的稀硝酸溶液(6.6g、67wt%浓硝酸用400g去离子水稀释),15分钟强力捏合后,通过2.5mm的孔板挤条,经120℃干燥8h后再在500℃空气气氛中焙烧4h,得到无机载体z0。

实施例2:

称取7.2g3-膦酰基丙酸,加入到70ml95%的乙醇溶液中,室温搅拌20min使之充分溶解。然后向上述溶液中加入40g实施例1制备的载体z0,室温放置反应12h后加热到70℃,再反应3h。反应结束后倾倒出多余的乙醇溶液,用40ml无水乙醇室温洗涤所得固体颗粒3次,然后在空气气氛下70℃预干燥1h,再放入真空干燥箱70℃充分干燥,得到经表面修饰的载体z1。

实施例3:

称取6.4g3-氨基丙烷-1-磷酸加入到70ml95%的乙醇溶液中,室温搅拌20min使之充分溶解。然后向上述溶液中加入40g实施例1制备的载体z0,反应容器用氮气吹扫后并保持氮气氛微正压,室温放置反应12h后加热到60℃,再反应3h。反应结束后倾倒出多余的乙醇溶液,用40ml无水乙醇室温洗涤所得固体颗粒3次,然后在空气气氛下室温预干燥4h,再放入真空干燥箱在70℃充分干燥,得到经表面修饰的载体z2。

实施例4:

称取5.5g3-巯丙基三乙氧基硅烷加入到80ml95%的乙醇溶液中,室温搅拌20min使之充分溶解。然后向上述溶液中加入40g实施例1制备的载体z0,室温放置反应8h后加热到80℃,再反应4h。反应结束后倾倒出多余的乙醇溶液,用40ml无水乙醇室温洗涤所得固体颗粒3次,然后在空气气氛下70℃预干燥1h,再放入真空干燥箱70℃充分干燥,得到经表面修饰的载体z3。

实施例5:

称取5.2g3-氨基丙基三乙氧基硅烷加入到80ml95%的乙醇溶液中,室温搅拌20min使之充分溶解。然后向上述溶液中加入40g实施例1制备的载体z0,反应容器用氮气吹扫后并保持氮气氛微正压,室温放置反应8h后加热到60℃,再反应4h。反应结束后倾倒出多余的乙醇溶液,用40ml无水乙醇室温洗涤所得固体颗粒3次,然后在空气气氛下室温预干燥4h,再放入真空干燥箱在70℃充分干燥,得到经表面修饰的载体z4。

实施例1-5所得载体的性能数据见表1。

表1实施例1-5所得载体性能

实施例6:加氢裂化催化剂的制备

将实施例1-5制备的载体经充分干燥后取样测试其吸水率。然后分别取该载体与偏钨酸铵和硝酸镍的混合水溶液进行等体积浸渍,使其负载上18%的w和5.4%的ni(理论重量),然后经干燥后,在500℃空气气氛中焙烧4h,所得催化剂分别标记为c0、c1、c2、c3和c4。

实施咧7:蜡油加氢裂化反应

采用为加氢裂化循环油为蜡油原料,其密度为0.923g/ml,原料中氮含量为2.1ppmw,硫含量为23ppmw,其馏程分布为如表2。

表2馏程分布情况

加氢裂化装置采用一次通过加氢工艺,装置主要由气体进料、液体进料、加氢反应、气液分离和产品收集等几部分组成。配置有单台反应器填装加氢裂化催化剂,采用5段电炉加热。反应流出物进入高压分离器和低压分离罐进行气液分离。高分富氢气体经分液罐分液,并采用夹套水冷却降温和相应的技术措施,让铵盐结晶、沉降,防止堵塞下游的管线和设备。压控阀之后的低压尾气用气体流量表计量,并由在线色谱分析组成。液体产品离线分析馏程。

加氢裂化反应条件为:氢气压力15mpa,氢气流速832ml·min-1;原料进料速率为70ml·h-1;加氢裂化催化剂填装14cm-3并用石英砂稀释至原来体积的4倍。所制备催化剂的测试结果见表3。

表3催化剂测试结果

结果表明,与无机载体z0制得的催化剂c0相比,将无机载体z0表面官能团置换成羧酸和氨基后得到的催化剂c1和c2反应活性提高2-3℃,但是产品选择性没有显著变化。这是由于虽然官能团置换后金属中心的性能得到提高,但是催化剂载体中引入了p元素,p元素增强了载体的酸性使得催化剂裂化性能也得到提高。因此催化剂整体表现为催化剂活性提高,同时保持了各类产品的选择性。

而通过有机硅氧烷将巯基和氨基引入到无机载体z0表面制得的催化剂c3和c4的催化剂活性略有提高,但是产品选择性发生了显著变化,其中催化剂c3气态产品和石脑油产品的选择性共降低2个百分点,相应的柴油选择提高了2个百分点;在使用催化剂c4的加氢裂化反应中也观察到类似现象,但是柴油收率提高得更加显著,达到3.4个百分点。原因是催化剂c3和c4的载体中通过有机硅氧烷引入不同官能团,显著提高了金属性能,但是si元素的引入对于载体酸性的增强不如p元素明显,因而催化剂整体表现为催化剂活性略有提高,但是柴油选择性显著增加。

以上实验证明通过载体表面的修饰引入新的官能团,弱化过渡金属与载体表面之间的强相互作用,确实有助于过渡金属的硫化从而提高金属中心的加/脱氢的性能。

以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1