一种工件局部表面改性的制备装置的制作方法

文档序号:12779656阅读:215来源:国知局

本发明涉及材料应用技术领域,更具体地说,涉及一种工件局部表面改性的制备装置。



背景技术:

现代科技的高速发展,对金属材料表面性能要求的日益提高,对表面处理技术及工艺有了新的发展和扩充,对金属工件表面进行亲疏水等仿生结构的表面改性是较为热门的表面技术。

随着疏水表面“荷叶效应”的发现,超疏水材料广泛用于自清洁、防冻、防雾、防腐、防阻、微流体芯片、无损液体输送等方面,展示了超疏水材料的广阔运用前景。

现有技术中对材料表面改性的方法中较为常见的有热烧结法、镍盐热分解法等,然而,在这些方法中可能存在以下技术问题:需要进行高温处理,成本较高,并且在浸渍过程中改性物质附着可能不均,容易导致处理碳材料表面亲疏水性质不均匀。镍盐热分解法不适用于熔点较低的基体材料,只适用于陶瓷、玻璃、碳酸硅等耐热物质。另外,常规平面及非平面金属表面局部改性加工通常较为困难,非平面工件上高效制取表面织构和有选择性的高效制备表面织构也具有一定的困难。

综上所述,如何提供一种方便对多种加工件进行表面处理的制备装置,是目前本领域技术人员亟待解决的问题。



技术实现要素:

有鉴于此,本发明的目的是提供一种工件局部表面改性的制备装置,该制备装置能够方便对工件进行表面改性处理。

为了实现上述目的,本发明提供如下技术方案:

一种工件局部表面改性的制备装置,包括:

用于向工件提供纳米颗粒溶液的颗粒溶液供给装置;

电泳系统,所述电泳系统用于提供电泳作用以辅助所述纳米颗粒溶液中的颗粒沉积到所述工件表面;

用于覆盖工件表面的局部以实现局部绝缘处理的活动掩膜,所述活动掩膜为绝缘件;

温控装置,所述温控装置用于改变所述工件的表面温度。

优选地,所述电泳系统包括:

用于连接所述电泳辅助阴极的电泳辅助阴极夹具,所述电泳辅助阴极夹具上设有电泳辅助阴极;

电泳辅助系统,所述电泳辅助系统的输出端分别连接所述电泳辅助阴极和所述工件。

优选地,所述活动掩膜连接控制装置,所述控制装置用于控制所述绝缘活动掩膜覆盖位置并压紧于工件表面的局部。

优选地,所述纳米颗粒溶液包括若干种金属颗粒、和/或若干种非金属颗粒,所述颗粒溶液供给装置为用于将所述纳米颗粒溶液混合的颗粒溶液混合循环系统。

优选地,所述颗粒溶液混合循环系统包括振动装置、磁力搅拌装置、悬浮液吸引装置、溶液循环装置中的一个或多个。

优选地,所述电泳辅助阴极连接于机床主轴,所述机床主轴用于控制所述电泳辅助阴极与所述工件的距离。

优选地,还包括能够实现准确三维运动的微三维运动平台,所述微三维运动平台上设有加工槽,用于固定所述工件的工件夹具设置于所述加工槽内。

优选地,所述微三维运动平台与所述机床主轴均与集成控制柜连接。

优选地,所述温控装置包括真空控制模块或辅助气体控制模块。

优选地,还包括用于对工件表面沉积情况和熔融状态下的颗粒分布情况进行检测的CCD视频检测系统。

本发明提出一种工件局部表面改性的制备装置,针对常规平面及非平面金属表面局部改性加工的较为困难的问题,以及非平面工件上高效制取表面织构、有选择性的高效制备表面织构的问题,利用绝缘的活动掩膜在平面与曲面工件上都能获得较好的贴合效果,活动掩膜的使用对平面与曲面工件均能展现出较强的表面织构制备能力和适应性,由于绝缘的活动掩膜可以控制工件表面的导电性,能够高效、高定域性、高质量的进行局部区域或者特定形状的金属表面亲疏水表面改性。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。

图1为本发明所提供的一种工件局部表面改性的制备装置的示意图。

1为工作台、2为颗粒溶液混合循环系统、3为CCD在线视频检测系统、4为机床主轴、5为电泳辅助阴极夹具、6为工件、7为加工槽、8为工件夹具、9为活动掩膜及其控制系统、10为微三维运动平台、11为电泳辅助系统,12为真空及温度控制系统、13为集成控制柜。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明的核心是提供一种工件局部表面改性的制备装置,该制备装置能够方便对工件进行表面改性处理。

请参考图1,图1为本发明所提供的一种工件局部表面改性的制备装置的示意图。

本发明所提供的一种工件局部表面改性的制备装置,主要用于对金属加工件的表面进行加工处理,在结构构成上主要包括:颗粒溶液供给装置、电泳系统、活动掩膜和温控装置。

颗粒溶液供给装置用于向工件6提供纳米颗粒溶液,以下简称溶液,纳米颗粒溶液即为对工件6进行表面处理的溶液。电泳系统用于提供电泳作用以辅助纳米颗粒溶液中的颗粒沉积到工件6表面。绝缘的活动掩膜用于覆盖于工件表面的局部以实现局部绝缘处理,使用时可将活动掩膜设置在工件6表面,避免工件局部直接接触上述溶液。温控装置用于改变工件6的表面温度。

需要说明的是,上述纳米颗粒溶液可以参考现有技术中对工件进行表面处理的纳米级颗粒溶液,溶液设置于容器中,若包含至少两种类型颗粒的溶液,可以在容器中设置用于搅拌的装置,以便使溶液的混合度较高。电泳系统运用电泳作用将溶液颗粒更好的沉积到工件6表面,使工件和溶液形成辅助电场,以便辅助溶液中的颗粒有序沉积到工件表面。

需要说明的是,上述活动掩膜覆盖于工件表面,由于活动掩膜由绝缘橡胶或绝缘材料制成,所以能够使工件的覆盖部分避免沉积颗粒,避免形成表面改性。活动掩膜的结构多样,可以为软质或者硬质,形状结构也均可以根据工件需要进行调整。加工过程中,活动掩膜与工件6相互压紧,以加工出工件局部区域表面不同形状,不同位置的表面改性效果。

上述温控装置用于在工件完成颗粒沉积后通过改变工件的表面温度,控制工件表面不同颗粒熔融自组装亲疏水改性。

本发明提出一种利用电泳系统辅助活动掩膜的工件局部区域表面改性的制备装置,针对常规平面及非平面金属表面局部改性加工较为困难的问题,以及非平面工件上高效制取表面织构、有选择性的高效制备表面织构的问题,利用绝缘的活动掩膜在平面与曲面工件上都能获得较好的贴合效果,活动掩膜的使用对平面与曲面工件均能展现出较强的表面织构制备能力和适应性,由于绝缘的活动掩膜可以控制工件表面的导电性,能够实现高效、高定域性、高质量的进行局部区域或者特定形状的金属表面亲疏水表面改性。

在上述实施例的基础之上,电泳系统具体包括:电泳辅助阴极和电泳辅助系统11,主轴上有用于连接颗粒溶液供给装置的吸引管的夹具,电泳辅助阴极上设有电泳辅助阴极夹具5。电泳辅助系统11的输出端分别连接所述电泳辅助阴极和工件6。

需要说明的是,电泳辅助阴极与工件6之间具有电场,便于纳米级颗粒的沉积。本实施例中采用电泳辅助系统提供电场,能够保证安全和稳定的电场环境。

可选的,上述电泳辅助阴极夹具5可以设置在动力装置上,例如机床的主轴等,通过动力装置带动电泳辅助阴极夹具5运动,主要沿靠近和远离工件的方向运动,从而调整工件上颗粒积累的速度等。

可选的,在加工时给电泳辅助阴极与工件6通以交流或者直流电源,使工件6与电泳阴极间形成辅助电场,辅助颗粒有序沉积,并提高沉积效率。

在上述任意一个实施例的基础之上,活动掩膜连接控制装置,控制装置用于控制绝缘活动掩膜覆盖位置并压紧于工件6表面的局部。

可选的,上述控制装置可以为图1中设置在工件6上的活动掩膜控制装置,或者为图1中的集成控制柜13。

在上述任意一个实施例的基础之上,上述所有装置和系统均可以设置在工作台1上。

在上述任意一个实施例的基础之上,纳米颗粒溶液包括若干种金属颗粒、和/或若干种非金属颗粒,颗粒溶液供给装置为用于将纳米颗粒溶液混合的颗粒溶液混合循环系统2。

在上述任意一个实施例的基础之上,颗粒溶液混合循环系统2包括振动装置、磁力搅拌装置、悬浮液吸引装置、溶液循环装置中的一个或多个。

颗粒溶液混合循环系统2放在工作台1上,颗粒溶液混合循环系统2里安装有超声振动模块、磁力搅拌模块、悬浮液吸引模块和溶液循环模块中的一个或多个,从而可以实现相同颗粒或者不同颗粒的充分混合,溶液循环模块具有对悬浮液进行过滤、循环利用等功能。

在上述任意一个实施例的基础之上,电泳辅助阴极连接于机床主轴,机床主轴用于控制电泳辅助阴极与工件的距离。颗粒溶液混合循环系统2与机床主轴4连接,机床主轴4与吸引管夹具连接,吸引管用于将颗粒溶液混合循环系统2中的纳米颗粒溶液吸引至工件表面,机床主轴4用于控制电泳辅助阴极夹具及吸引管夹具沿靠近或远离工件的方向运动,以便调整工件上颗粒积累的速度等。

可选的,上述机床主轴4也可以使电泳辅助阴极夹具5沿平行于工件6平面移动。

请参考图1,机床主轴4可以方便的与颗粒溶液混合循环系统2组合,通过与主轴4连接的吸引管夹具5把混合好的溶液从颗粒溶液混合循环系统2吸引至工件6表面。其中,可以一次也可以多次把混合好溶液置于工件6表面。另外,可以包括多个电泳辅助阴极夹具5,机床主轴可以与电泳辅助阴极夹具5相组合使用,并可在线切换不同阴极,与不同工件组成电泳辅助电场,实现电泳辅助沉积。

在上述任意一个实施例的基础之上,还包括能够实现准确三维运动的微三维运动平台10,微三维运动平台10上设有加工槽7,用于固定工件6的工件夹具8设置于加工槽7内。加工槽7内安装有工件夹具8,可以使待加工工件6安装在加工槽内,进行表面改性加工。微三维运动平台10控制加工槽7进行小范围的三维方向的移动,以便工件6与电泳辅助阴极夹具5或与供液管的位置对准。也就是说,微三维运动平台10可以使加工槽7进行准确定向运动,保证加工槽7与主轴4的相对位置,并使加工前悬浊液准确置于工件6上。

在上述任意一个实施例的基础之上,微三维运动平台10与机床主轴4均与集成控制柜13连接。

可选的,上述任何一个装置或系统均可以与集成控制柜13连接,通过连接实现集成控制柜13对全部装置、模块及系统的控制。

在上述任意一个实施例的基础之上,温控装置包括真空控制模块或辅助气体控制模块。具体地,上述具有真空控制模块、辅助气体控制模块的系统也称为真空及温度控制系统12,可以保证其内的温度控制,并在工作时保证里面的真空度或者通以其他辅助气体保证不会发生氧化效果,保证金属工件表面改性时的需要。

在上述任意一个实施例的基础之上,还包括用于对工件表面沉积情况和熔融状态下的颗粒分布情况进行检测的CCD视频检测系统3。CCD视频检测系统3集成在加工机床的工作台1上,可以实时对金属工件6表面沉积情况和熔融状态下的颗粒分布情况进行检测,以便提升系统的监控效果。

上述各个实施例所提供的工件局部表面改性的制备装置在加工时,先把需要的纳米颗粒置于颗粒溶液混合循环系统2里进行充分混合,然后把待加工金属工件6置于加工槽7内,并用工件夹具8夹紧,通过控制柜13,控制微三维运动平台10和机床主轴4,把溶液置于工件6上,通过电泳辅助系统11形成辅助电场,进行表面改性加工。同时,可以通过活动掩膜及控制系统9,控制活动掩膜与工件6的相对位置,并保证加工过程中,活动掩膜与工件6相互压紧,以加工工件局部区域表面不同形状,不同位置的表面改性效果。加工过程中可以通过CCD在线监测系统3对其进行观测,然后把工件6置于真空及温度控制系统12,进行加热处理,控制加工条件,最终达到金属工件6的表面亲疏水改性。

本发明所提供的制备装置的重要改进在于通过将纳米级的微粒在溶液中以超声和磁力搅拌充分融合,将纳米级的不同金属颗粒或者不同非金属颗粒或者不同金属与非金属颗粒充分融合在溶液中,然后,通过施加在加工区域中的电泳作用下,使微粒吸附到金属工件表面。

在工件端,用一种绝缘胶体制作活动掩膜,例如可以为PDMS胶体掩膜,当然活动掩膜可以是硬膜也可以是软膜。活动掩膜通过覆盖并压紧在工件上,实现对工件局部进行绝缘处理,上述溶液置于待加工的金属工件上,利用电泳辅助法在金属工件表面得到有序的微粒排列;然后,再把工件放置到温控装置中,加热到熔点较低的牺牲颗粒融化温度,由于不同颗粒的融化温度不同,在特定温度下只有特定种类的颗粒会熔化成熔融状态,熔融的颗粒包裹或者粘连到另一种改性颗粒上,从而把该种颗粒和工件焊在一起,有效提高结合力。

由于上述各个实施例的制备装置中均采用了活动掩膜,活动掩膜的不导电的部分不会对微粒有电场力作用,所以不会对微粒沉积有电泳效应,只有工件裸露部分有微粒沉积,所以只会有局部表面进行改性,可以改变模板形状,从而改变局部亲疏水区域形状,通过改变掩膜板的不同位置,可以改变不同区域表面的亲疏水结构改性。

除了上述各个实施例中所提供的工件局部表面改性的制备装置的主要结构和部件,该工件局部表面改性的制备装置的其他各部分的结构请参考现有技术,本文不再赘述。

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。

以上对本发明所提供的工件局部表面改性的制备装置进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1