固定型等速万向节的制作方法

文档序号:5611395阅读:226来源:国知局
专利名称:固定型等速万向节的制作方法
技术领域
本发明涉及一种固定型等速万向节,其中位于驱动侧的旋转轴和位于从动侧的旋转轴相连接,其甚至能够在两根轴形成一个角度时以固定的角速度传递扭矩。可以只发生角位移而不发生窜动,用于汽车和各种工业机器上。
背景技术
当汽车的驱动轴的连接结构根据车辆悬吊系统变化时,例如在使应用独立悬吊系统的车辆中,与车体的侧面相连的差速齿轮,或末减速齿轮,和驱动轴的相对端通过万向节分别与差速齿轮和车轴相连。为了使驱动轴的位移与悬吊系统的运动相适应,上述这种连接结构允许在轮侧连接中驱动轴产生角位移和在车体侧边连接中产生角位移和轴向位移。
对于上面提到的万向节,目前使用等速万向节,轮侧面连接使用固定型等速万向节,它只允许两根轴发生角位移,如Rzeppa型;而车体侧连接使用滑动型等速万向节,它允许位于两个轴之间发生角位移和轴向位移,如双偏移型,三脚架型和十字群型。
如图9A和图9B所示的固定型等速万向节包括一个外组件1,一个内组件2,多个扭矩传递球3和一个保持架4;所述外组件1具有6个轴向形成于球形内圆周面1a上的曲线导向槽1b,所述内组件2具有6个轴向形成于球形外圆周面2a上的曲线导向槽2b,外组件1的导向槽1b和内组件2的导向槽2b相配合形成6个球径,所述每一扭矩传递球30位于一球径内,保持架4支撑扭矩传递球3。
外组件1的内圆周表面1a的曲率中心和内组件2的外圆周表面2a的曲率中心与节点中心O重合。外组件1的每个导向槽1b的曲率A的中心和内组件2的每个导向槽2b的曲率B的中心偏离万向节的中心O,位于万向节的中心O的两侧相等的轴向距离F处(在这个例子中用同样的数字表示,中心A位于万向节的开口端,中心B位于万向节的最里端)。因此,位于导向槽1b和2b之间的球径是楔形的,朝一个轴端(在所示的例子中,朝向万向节的开口端)开口。
在这个例子中,两根轴没有发生角位移,即,两根轴的旋转轴线形成一个直线,如图9A所示,所有扭矩传递球3的中心位于垂直于旋转轴线的一个平面内,万向节中心O也位于这个平面内。当外组件1和内组件2发生一个角位移θ,保持架4使扭矩传递球3位于角θ的一个平分面内,确保万向节的等速特性。
本实施例以有8个扭矩传递球的等速万向节为例,以实现在尺寸紧凑和减轻重量、确保强度、载荷能力和耐用性方面比图9A和图9B所示的具有6个扭矩传递球的等速万向节优越。
在大工作角状态,对于等速万向节来说,其中一个最主要的损伤是保持架梁剪切断裂模式,它是由外组件和内组件的球形端切入造成的。图3是解释固定型等速万向节损伤模式的放大视图,图示了最大工作角时位于最外面的扭矩传递球的附近区域的情况。从该视图上可以看出,当外组件和内组件的球形端接触点(载荷点)向保持架轴向方向大幅度偏移,保持架梁的剪应力增大,其上的载荷过大,保持架的强度大大降低。

发明内容
本发明的目的是减小固定型等速万向节中的保持架梁的剪应力,保证保持架的强度。
本发明通过调整内外组件的球形端接触点的轴向偏移量到一个优选的值来降低保持架梁的剪应力,从而保证保持架的强度。
即,根据本发明的一个实施例的固定型等速万向节包括一个外组件,一个内组件,多个扭矩传递球和一个保持架;所述外组件有多个沿轴向延伸而形成于该外组件的球形内圆周面上的导向槽,所述内组件有多个沿轴向延伸而形成于该内组件的球形外圆周面上的导向槽,而该外组件的导向槽和该内组件的导向槽配合形成多个球径,所述扭矩传递球各自位于一球径内,所述保持架支撑所述扭矩传递球;其中,所述保持架与所述外组件以及所述内组件各有一接触点,而连接该两个接触点的直线与上述保持架的中心线之间所形成的夹角α不大于10度。
本发明提供一种固定型等速万向节,所述保持架与所述外组件以及所述内组件各有一接触点,连接所述两个接触点的直线与上述保持架的中心线形成一个夹角,该角不大于10度,本发明通过所述角来减小保持架梁上的剪应力,并保证保持架的强度。
外组件的导向槽的数量是8个,内组件的导向槽的数量也是8个。
内、外组件的导向槽都具有带有直槽底的直部分。


图1A是产生最大工作角时的固定型等速万向节的截面图;图1B是内组件的截面图;图2A是产生最大工作角时的固定型等速万向节的截面图;图2B是内组件的截面图;图3是一固定型等速万向节的截面图,其中当最大工作角变大时,扭矩传递球定位于最外侧。
图4是与图3类似的截面图,解释内组件端位置和剪应力之间的关系。
图5是固定型等速万向节的纵向截面图;图6是图5中所示的固定型等速万向节的横向截面图;图7是固定型等速万向节的纵向截面图;图8是角α和保持架强度之间关系的图表;
图9A是现有技术的固定型等速万向节的纵向截面图;图9B是图9A所述的万向节的横截面图。
具体实施例方式
下面结合附图对本发明的具体实施方式
进行说明,首先,图5到7显示了固定型等速万向节的基本结构。
在图5和6所示的具体实施方式
中,固定型等速万向节包括一个外组件10,一个内组件20,多个扭矩传递球30,和一个保持架40。
外组件10是杯形的,在一个轴端开口,有一个球形内圆周表面12,内圆周表面12在周向等分的8个位置上(图6)具有弓形的(图5)导向槽14。导向槽14的曲率中心在图5中以O1标记。另外,图5显示了轴16与外组件10一体成型的一个例子。
内组件20有一个球形外圆周表面22,球形外圆周表面22在周向等分的8个位置上具有(图6)弓形的导向槽24。导向槽24的曲率中心在图5中以O2标记。图5显示了内组件20有一个花键孔26,内组件20通过花键孔26固定在轴5的花键轴上的一个例子。
外组件10的导向槽14和内组件20的导向槽24配合形成8个球径。每一个扭矩传递球30位于一个球径内。扭矩传递球30的中心在图5中以O3表示。
扭矩传递球30由保持架40支撑。保持架40有一个球形外圆周表面42和一个球形内圆周表面44。外圆周表面42与外组件10的内圆周表面1 2球面配合,而内圆周表面44与内组件20的外圆周表面22球面配合。保持架40的外圆周表面42的曲率中心和外组件10的内圆周表面12的曲率中心与万向节中心O重合,外组件10的内圆周表面12用作保持架40的外球形表面42的导向面。而保持架40的内圆周表面44的曲率中心和内组件20的外圆周表面22的曲率中心与节点中心O重合,内组件20的外圆周表面22用作保持架40的内球形表面44的导向面。
在本实施例中,外组件10的导向槽14的曲率01的中心和内组件20的导向槽24的曲率02的中心偏离节点中心O的两侧,位于万向节的中心O的两侧相等的轴向距离F处(在所示的例子中,中心O1位于万向节的开口端,中心O2位于万向节的最里侧)。换句话说,导向槽14的曲率O1的中心的偏移量F与曲率O1的中心和万向节中心O之间的轴向距离相等;导向槽24的曲率O2的中心的偏移量F与曲率O2的中心和万向节中心O之间的轴向距离相等;因此这两个曲率O1、O2的中心的偏移量相等。因此,位于导向槽14和24之间的球径是楔形的,具有一个轴端(在所示的具体实施例中,万向节的开口端)开口。
连接外组件10的导向槽14的曲率01的中心和扭矩传递球30的中心O3的直线在长度上与连接内组件20的导向槽24的曲率O2的中心和扭矩传递球30的直线相等,此直线在图5上由附图标记PCR表示。当外、内组件10和20发生一个角位移θ,保持架40使扭矩传递球30位于θ角的一个平分面内,因此保证了万向节的等速特性。
本实施例的等速万向节有8个扭矩传递球30,这意味着每一个扭矩传递球所承载的载荷占总的载荷的比例比现有的万向节(6球固定型等速万向节,下同)小;因此,对于现有的同样额定尺寸的万向节,可以减小扭矩传递球30的直径使内、外组件20和10的壁厚与现有技术的大致相等。再者,对于相同额定尺寸的现有万向节,能够根据外径而使整个结构更加紧凑,而确保相同的强度,载荷能力和耐用性。实验结果证明本发明的万向节比现有的万向节发热少。
在图7所示的实施例中,外组件10a的导向槽14a和内组件20a的导向槽24a各有一个直的部分U1和U2,直的部分具有一个直的槽底,其余的结构与上面图5和图6所示的实施例相同。直的部分U1和U2使本实施例的等速万向节与图5和图6所示的等速万向节相比最大工作角增大。
接下来,对图1A和2B描述的本发明的实施例进行说明。图1A显示图5和图6所示的实施方式的固定型等速万向节产生的最大工作角(θmax)。图2A显示图7所示的实施方式的固定型等速万向节的产生最大工作角(θmax)。从图1A和图2A上看出,决定向保持架轴向方向的,位于外组件10,10a和保持架40间的接触点A的偏移量和位于内组件20,20a和保持架40间的接触点B的偏移量的因素包括接触点A和B。为了减小接触点A和B向保持架轴向的偏移量,可以预先减小外组件10,10a的内径ФC或增大内组件20,20a的宽度D。但是,从与保持架40的配合的安全性来考虑,内径ФC尺寸的减小是受限。因此,可考虑增大内组件20,20a的宽度。
另外,现有的固定型万向节的内组件的宽度设置为最小值,在此值下,考虑减轻重量和降低造价(输入重量减小),扭矩传递球的接触椭圆在大工作角期间不会膨胀突出。这时测量现有万向节的角α,α的范围为从19度到34度左右。
图4是与图3大体相同的视图,但显示了通过轴向延长如双点划线所示的内组件,使外组件的球形端接近内连接组件的球形端,使作用于保持架梁上的剪应力减小。而且,可以看出,如果点A,B向保持架轴向的偏移量连接点A和B的直线与保持架的中心线形成的夹角α控制,通过减小角α降低保持架梁上的剪应力。换句话说,当角α为0时,即连接点A和B的直线与保持架的中心线平行,保持架梁上的剪应力最小。
角α由内组件20,20a的宽度D决定。即,为了减小角α,只需将宽度D设为如图1B和图2B虚线所示的最大值。但,因为增大宽度D导致内组件20,20a的重量增加,并引起E部分(图1B)和F部分(图2B)变尖,因此有必要保持节头组件20,20a的形状优化,并找到一个角α的优化值,减小保持架梁的剪应力。
以α=10度作为一个例子进行实验,与现有的万向节相比在大工作角时保持架的强度提高5-14%。图8所示为角α和保持架强度之间的关系。在实际的设计中,因内组件20,20A的宽度D是圆的,角α的值并不总是整数。在图7所示的实施例中,角α的值,虽然不同于尺寸对尺寸,介于8.2到9.7之间。在图5所示的例子中,接触点A和B的位置关系与角α取最小值时的位置关系不变。所以从上面的描述可以说角α优选的是不大于10度,更优选的是不大于10度不小于8度。
另外,本发明是通过一个具有8个球的固定型等速万向节的例子来说明,但本发明同样适用于现有的6个球的固定型等速万向节,并产生同样的效果。
权利要求
1.一种固定型等速万向节,其特征在于包括一个外组件,一个内组件,多个扭矩传递球和一个保持架;所述外组件有多个沿轴向延伸而形成于该外组件的球形内圆周面上的导向槽,所述内组件有多个沿轴向延伸而形成于该内组件的球形外圆周面上的导向槽,而该外组件的导向槽和该内组件的导向槽配合形成多个球径,所述扭矩传递球各自位于一球径内,所述保持架支撑所述扭矩传递球;其中,所述保持架与所述外组件以及所述内组件各有一接触点,而连接该两个接触点的直线与上述保持架的中心线之间所形成的夹角不大于10度。
2.如权利要求1所述的固定型等速万向节,其特征在于所述外组件的导向槽的数量是8个,而所述内组件的导向槽的数量也是8个。
3.如权利要求1所述的固定型等速万向节,其特征在于所述内、外组件的导向槽都具有带有直槽底的直部分。
全文摘要
本发明公开了一种固定型等速万向节,连接保持架和外组件之间的接触点与保持架和内组件之间的接触点的直线和上述保持架的中心线形成一个夹角,该角不大于10度。
文档编号F16D3/2245GK1523244SQ200410004340
公开日2004年8月25日 申请日期2004年2月13日 优先权日2003年2月18日
发明者中川亮, 小林正纯, 纯, 中村正道, 道, 登根宏 申请人:Ntn株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1