测定硝酸盐浓度的方法

文档序号:6165451阅读:6588来源:国知局
测定硝酸盐浓度的方法【专利摘要】测定硝酸盐浓度的方法包括将酸与醛、氯化物和硝酸盐样品和/或蒸馏水的第一混合物混合以获得第二混合物。使酚与该第二混合物反应以在反应时间后在第三混合物中显色。利用第三混合物比色确定硝酸盐的浓度。【专利说明】测定硝酸盐浓度的方法[0001]本发明提供了灵敏的比色硝酸盐分析方法。该分析能够以简单方式在μg/1的检测水平测定广谱溶液的硝酸盐水平。[0002]硝酸盐离子是具有分子式NOf以及分子量62.0049g/mol的氧化离子。硝酸盐代表了自然系统中发现的氮的最高氧化化学形态。所有生物系统都需要氮存在,因为氮被用于构建许多必需成分,例如蛋白质、DNA、RNA和维生素、以及激素和酶。诸如动物的高等生物不能利用简单形式的氮,例如硝酸盐和铵,而相反依赖复杂形式的氮,例如氨基酸和核酸。[0003]虽然氮是生命的必需构件,但硝酸盐形式的氮也可为有害的。当通过进食食物和饮用水摄入硝酸盐时,硝酸盐转化为亚硝酸盐。亚硝酸盐接着与血红蛋白结合以形成高铁血红蛋白。此过程可导致器官组织中缺氧(医学)以及称作高铁血红蛋白血症的危险状况。婴儿中的高铁血红蛋白血症被称为蓝婴症。婴儿相比于大龄儿童或成人对于硝酸盐毒性更为敏感。虽然罕见死亡,但亚急性高铁血红蛋白血症可影响发育。高水平硝酸盐的慢性消耗也可引起其他健康问题,例如癌症或可促成干扰胚胎或胎儿的生长和发育。这是因为过量亚硝酸盐移入血流,其在其中强力结合于血液血红蛋白并损害胚胎或胎儿的氧气递送。提高的硝酸盐水平还通过硝酸盐还原细菌导致胃肠道中亚硝酸盐的积聚。最近已报道了饮用水中硝酸盐水平与女性中膀胱癌之间的关联。血液和血清硝酸盐水平还可因为一氧化氮(NO)的增加生成而变得升高。一氧化氮是不稳定的气体化合物,其易于扩散入体液中并在其中可转化为硝酸盐、亚硝酸盐或S-硝基硫醇(S-nitiOthiol)。NO水平在免疫反应提升期间上升,例如发生在脓毒症、器官衰竭或移植排斥期间。[0004]一些成年人相比其他人对于硝酸盐的影响更为敏感。在具有遗传突变的特定人中细胞色素b5还原酶可是低生成或缺乏的。此类个体不能如同具有该酶的那些人一样快速分解高铁血红蛋白,导致增加的高铁血红蛋白循环水平,结果他们的血液不是富氧的。胃酸不足的那些人也是有风险的。此类个体可包括例如,素食者和素食主义者。典型伴随素食者和素食主义者饮食的绿色、多叶蔬菜的增加消耗可导致硝酸盐摄入的增加。虽然硝酸盐风险最容易由饮用水引起,但其也可由食用具有高水平硝酸盐的蔬菜引起。植物中硝酸盐高水平例如可由于生长条件,如减少的阳光、必需微量营养素钥(Mo)和铁(Fe)的供应不足,或归因于植物中减少的硝酸盐同化的硝酸盐高浓度而引起。高水平硝酸盐施肥还促成收获植物中硝酸盐水平的提升。多种医学病症,例如食物过敏、哮喘、肝炎和胆结石可与低胃酸相关联;这些个体对于硝酸盐的影响也可以是高度敏感的。[0005]然而,硝酸盐并不只影响人类。其它动物也受影响。硝酸盐在靠近陆地的一些淡水或河口系统中可达到潜在引起鱼类死亡的高水平。硝酸盐水平超过30ppm可在一些水生生物中抑制生长、损害免疫系统并引起应力。向氮有限的生态系统供应高水平的硝酸盐可导致浮游植物(藻类)和大型植物(水生植物)水平的显著增加。这可造成对脆弱生态系统的显著威胁。避免藻花蔓延的硝酸盐推荐水平是0.1至lmg/L。[0006]硝酸盐是全世界地下水和地表水的广泛传播污染物。环境中硝酸盐的积聚极大地受到来自氮肥过度使用的径流(runoff)的影响。硝酸盐污染还可发生自集中动物饲养以及不良或未处理的人类污水。因为硝酸盐是动物或人类废弃物分解或腐烂后遗留的自然产生化学品,如果在流域(watershed)中存在大量腐烂的系统也会影响水质。腐烂物下渗入地下水源或含水层并在水体附近供应。依赖地下水的湖泊经常通过此过程受到硝化作用的影响。含硝酸盐废物还可产生自许多工业过程,包括纸张和军需品制造。在发电厂、汽车、SUV以及所有内燃机中燃烧化石燃料导致作为空气污染的硝酸和氨气的产生。[0007]来自肥料、污水和制造业的硝酸盐离子已在全世界供水中达到了高浓度。在大多数发达国家中,对地表水,特别是用作饮用水源的那些地表水中的硝酸盐浓度的分析控制进行管制。美国环保局(EPA)已例如建立了针对硝酸盐的强制性规章,称10mg/L或IOppm为最大污染级(maximumcontaminantlevel,MCL)。EPA由此注释饮用包含超过最大污染级的硝酸盐的水的小于六个月的婴儿可患重病,如果未治疗可能死亡。[0008]因为硝酸盐的主要环境释放源自其在肥料中的使用,所以硝酸盐问题将不可能在任何时候很快消失。在最终饮用水、水域、工业废水、私人水井和河口中存在监控硝酸盐的持续需求。水源水的硝酸盐污染还将持续与依赖水纯度用于制造其产品的工业相关。[0009]除了诸如离子色谱法或直接电位法(所谓的NO3ISE或离子选择电极法)的其它熟知的具体的硝酸盐测定方法,比色硝酸盐测定方法当前用作水实验室中硝酸盐分析的“支柱”。[0010]一种现有技术的比色法是由HachLangeGmbH(哈克兰格有限责任公司)提供的LCK339硝酸盐试剂盒。该LCK339采用Ilmm的比色杯路径长度(cuvettepathlength)在0.23-13.50mg/LNO3-N的范围内提供对于废水、饮用水、原水、地表水、土壤、基质(substrate)和营养物溶液的高精度和可信赖的硝酸盐分析。LCK339测定硝酸盐浓度所基于的原理是包含高浓硫酸和磷酸的溶液中的硝酸盐离子与2,6-二甲基苯酚反应以形成4-硝基-2,6-二甲基苯酚,其转而可在340nm的波长下被比色检测。[0011]LCK339凭借使用2,6_二甲基苯酚比色测定NO3-N浓度本身改善了现有技术分析方法。然而,所述已知方法采用IOmm的比色杯路径长度在338nm波长下仅具有0.5-25.0mg/L的NO3-N检测范围,因而其不如HachLangeGmbH所提供的LCK339。[0012]使用前述方法的硝酸盐水平的比色检测具有若干缺点。例如,使用2,6-二甲基苯酚的分析方法对于氯化物存在下的副反应敏感。此导致低NO3-N回收并给检测极限加盖(上限)。进一步,含氯化物、钙或亚硝酸盐的样品无法被分析或仅能够以有限方式被分析。因而通常无法采用前述方法分析具有高盐含量的海水、苦咸水和/或来自城市污水处理厂的水。也无法检测或仅可使用前述方法不准确地检测具有低于前述检测极限的硝酸盐浓度的超纯水和饮用水中的硝酸盐。约340nm-370nm的波长也易受负面影响检测精度的干扰的影响。[0013]其它比色硝酸盐法例如默克(Merck)提供的使用副反应的SpeciToqtiaiit*?比色杯测试114556,该副反应为所谓的利伯曼亚硝基反应(LiebermannNitrosoReaction,LNR),在氯化物存在下形成强烈彩色产物。此反应主要用于比色检测酚类。应用LNR作为硝酸盐分析法具有如果氯化物是唯一还原剂时需要至少30分钟的长反应时间用于将硝酸盐完全还原为亚硝基化合物的缺点。提早测量将导致不严密及不准确的结果。使用LNR的硝酸盐测试使用16mm比色杯通常具有0.1-3.0mgNO3-Nmg/L的测量范围极限。然而此方法的变异系数(variationcoefficient)是使用2,6-二甲基苯酹的前述硝酸盐分析方法的变异系数的两倍。比色杯的16mm厚度也几乎是2,6-二甲基苯酚分析方法中所使用的Ilmm比色杯的1.5倍厚。此分析方法的准确性因而将必然小于2,6-二甲基苯酚分析方法的准确性。[0014]然而,其它存在的检测硝酸盐浓度的分析方法都具有一定缺点。[0015]硝酸盐浓度可例如通过还原硝酸盐为亚硝酸盐以间接测定。用于此方法的还原剂通常为粒状和/或活性镉或肼盐,然而两者都是剧毒的,使得其销售和处置在许多国家因为环境原因而被禁止或限制。还原后,在存在酸性缓冲液的情况下亚硝酸盐离子接着与芳香胺反应以形成重氮盐。该重氮盐继而与Ν-α-萘基)-乙烯-二胺反应以形成红紫色偶氮染料,其可与出现的色度进行半定量视觉对比。基于此原理的试纸、色立方(colorcube)和色盘(colordisk)是可获得的。虽然使用方便,但试纸和色立方仅可测定特定、有限浓度的硝酸盐浓度,例如,来自HachLangGmb!^tJAqua(__'hek'i式纸可测定O、1、2、5、10、20和50ppm的Ν03-Ν。方便使用的色盘可稍更精确地测定NO3-N浓度,但还是限于mg/LNO3-N范围的准确度。例如,来自HachLangeGmbH的色盘N1-11的准确度为0_50mg/LΝ03_Ν。颜色检测溶液的吸收的稍更精确的评价还可能为光测量的(photometrically)。[0016]还可通过诸如NITRATAX?探针家族或由HachLangeGmbH提供的GANIMEDE实验室分析仪器的复杂高端系统精确测量硝酸盐浓度。该ΜΠ?Α?ΑΧ5探针为特别设计通过直接浸入活性污泥、废水和/或地表水中持续监测硝酸盐浓度。例如,MTRATAXeplusSC型具有0.l-100mg/LNO3-N的非常好的测量范围。由HachLangeGmbH提供的自动GANMEDEN分析仪可分析总硝酸盐浓度。该GANMEDEN的操作使用试剂消化不想要的副产物并因而提供用于分析的“纯”水样品。对比约228nm的参照波长在约210nm处直接紫外(UV)测定,使用高品质镜片和复杂算法以0.5-150mg/LN03-N(消化后)的非常好的测量范围计算硝酸盐浓度。[0017]本发明的一方面是提供比色硝酸盐分析方法,其方便使用、廉价且由此是针对大众市场的(massmarketable),且其避免使用剧毒还原剂。本发明的进一步的方面是提供比色硝酸盐分析方法,其比相当的大众市场的比色硝酸盐分析方法明显更敏感,且避免在卤化盐存在时的低NO3-N回收从而内在配合(dateinherent)使用2,6_二甲基苯酹的硝酸盐分析方法。[0018]在一实施方式中,本发明提供了测定硝酸盐浓度的方法,其包括混合酸与醛、氯化物和硝酸盐样品和/或蒸馏水的第一混合物以获得第二混合物。使酚与第二混合物反应以在一反应时间后在第三混合物中显色。采用第三混合物比色测定硝酸盐的浓度。[0019]附图简述[0020]在下基于实施方式和附图更加详细地描述本发明,其中:[0021]图1在y轴中显示了在X轴的特定波长(nm)处的已知硝酸盐样品的吸光度;[0022]图2显示了0-2,OOOppb硝酸盐N范围内的校准图,x轴代表NO3-N的浓度(ppb)而I轴代表吸光度;[0023]图3显示了线性校准函数,其中y轴的吸收峰相当于X轴的硝酸盐浓度(μm/L)作图;[0024]图4显示了与针对10个硝酸盐样品计算的校准线的样品偏差(μg/L);且[0025]图5显示了本发明硝酸盐分析方法与现有技术对于各种饮水和城市污水来源的比较研究。[0026]发明详述[0027]在本发明的一实施方式中,该第一混合物的获得例如可通过混合包含醛的第一溶液与包含氯化物的第二溶液以获得醛-氯化物溶液,并将包含硝酸盐样品和/或蒸馏水的第三溶液加至该醛-氯化物溶液以获得第四溶液以作为第一混合物。第二混合物的获得例如可通过混合酸与第四溶液来获得第五溶液以作为第二混合物。例如通过使含酚的第六溶液与第五溶液反应以获得第三混合物。[0028]对于第三溶液,硝酸盐样品可与蒸馏水混合或可在无蒸馏水的条件下使用。本领域普通技术人员将理解如果仅使用蒸馏水的话,样品中应不存在硝酸盐。在第三溶液中使用无硝酸盐的蒸馏水因而可用于获得不含硝酸盐的样品的基线读数,例如用于校准目的。[0029]在本发明的一实施方式中,醛是甲醛。该甲醛例如可作为固体、液体/溶液和/或气体形式提供。其还作为在与酸和/或酚反应时会释放甲醛的化合物来提供,例如甲醛释放塑料和/或甲醛释放抗微生物化合物。虽然申请人:不希望受限于特定理论,但据信使用甲醛作为醛用作反应加速剂和/或硝酸盐还原剂。在反应混合物中使用甲醛作为加速剂可使本发明反应相比于基于例如2,6-二甲基苯酚的当前可用的硝酸盐分析系统更为快速地进展完成。所获结果也更为精密和准确。已发现当例如以相对于分析物硝酸盐NO3-N过量比例提供甲醛时,例如NO3-N:甲醛范围为1:500-1:1时,本发明方法效果好。[0030]在与酸和酚反应时会产生甲醛的化合物的实例包括低聚甲醛(paraformaldehyde)、六亚甲基四胺(Urotropin)和/或甲醒合次硫酸氢钠(Rongalit?)。[0031]本领域普通技术人员还可使用其它化合物提供甲醛。例如还可使用甲醛释放塑料。甲醛释放塑料是采用甲醛制造并随后通过气体释放或通过洗脱过程来释放甲醛的塑料。甲醛释放塑料的实例包括甲醛树脂例如酚醛树脂、工程热塑性聚甲醛(Ρ0Μ,其还被称为乙缩醛、聚缩醛和聚甲醛)以及三聚氰胺树脂。这些可以多种形式使用,例如包括作为塑料颗粒和/或作为诸如塑料容器的模制品(moldedpart)。因而可在甲醛释放塑料容器中并入全部或部分甲醛。可将氯化物以及硝酸盐样品和/或蒸馏水例如置于该容器中以与正被释放的甲醛反应。[0032]还可通过在化妆品工业中已知的甲醛释放抗微生物化合物提供甲醛。此类化合物包括,例如,5-溴-5-硝基-1,3-二喝烧(还称作Brcmidox.)、2-溴-2-硝基丙烧-1,3-二醇(还称作Bronopol)、二偶氮烷基脲、咪唑烷基脲和/或DMDM乙内酰脲(还称作1,3-双(羟甲基)-5,5-二甲基咪唑烷-2,4-二酮)。[0033]还可使用构成最终甲醛产品中的中间体的化合物。此种化合物的实例是可被醇氧化酶氧化成甲醛的甲醇。[0034]在本发明的一实施方式中,氯化物可为例如,碱金属氯化物例如氯化锂、氯化钠、氯化钾和/或氯化铷。已发现当使用氯化锂时该方法效果好。所使用氯化物的量应为例如10-100,OOOppm或例如500-50,OOOppm的浓度。如果例如硝酸盐样品已含有足量的氯化物,则无需单独加入氯化物。这可是硝酸盐样品为海水的情况。[0035]在本发明的一实施方式中,酸具有pH〈l,优选pH〈〈l。酸可为例如,盐酸、高氯酸、硫酸、磷酸、或其它们的混合物。该混合物可为例如,硫酸和磷酸的混合物。一个可能的混合物是,例如约60体积%硫酸和40体积%磷酸。[0036]在本发明的一实施方式中,酹是具有至少一个单芳基(singlearylgroup)的未取代或取代一元酹或二酹,其中亚硝基取代指向对位(anitrososubstitutionisdirectedtotheparaposition)。此类酌.包括例如,4_乙基间苯二酌.和/或2,6_二甲基苯酚(2,6-二甲酚)。[0037]虽然优选起始材料在溶液中或作为液体形式,但本领域技术人员将认识到还可使用其它起始材料。该起始材料例如能够以固体形式、冷冻干燥形式(例如作为粉末)、固定形式、片剂形式和/或它们的组合来提供。[0038]在本发明的一实施方式中,反应时间应当足够长以可以显色。已显示通常反应时间达到(upto)20分钟,例如10至15分钟是充分的。更长或更短的反应时间可为充分的,基于所使用的起始材料或诸如温度的外部环境力。虽然申请人:不希望受限于特定理论,但据信反应时间后所显颜色取决于所使用的酚类型。例如,当酚是2,6-二甲基苯酚时颜色是红色、带红色(reddish)和/或粉色,当酹是4_乙基间苯二酹时颜色是蓝色、带蓝色(bluish)和/或紫色。[0039]申请人:还未确定显色背后的确切化学性质。利伯曼亚硝基反应(LNR)可为例如观察到的颜色反应的基础,然而,还可发生其它颜色产生反应。[0040]在存在高浓度强吸湿性酸的情况下,硝酸盐可能与过量氯化物反应以在硝酸盐-还原步骤中形成氯(C12)和亚硝酰氯化物(N0C1)。NOCl,作为亚硝基化合物,将随后与酚反应以形成作为LNR第一反应的亚硝基酚。[0041]在LNR中,亚硝基酚与过量酚反应以形成有色靛酚化合物。化合物的颜色取决于溶液PH以及反应混合物中的总水浓度。该化合物分别将具有红色(I,酸性)和蓝色(II,碱性):[0042]【权利要求】1.测定硝酸盐浓度的方法,该方法包括:将酸与醛、氯化物和硝酸盐样品和/或蒸馏水的第一混合物混合以获得第二混合物;使酚与第二混合物反应,以在反应时间后在第三混合物中显色;以及利用第三混合物比色确定硝酸盐的浓度。2.如权利要求1中所述方法,其中:如下获得第一混合物:通过混合包含醛的第一溶液与包含氯化物的第二溶液以获得醛-氯化物溶液并将至少一种包含硝酸盐样品和/或蒸馏水的第三溶液加至该醛-氯化物溶液来获得第四溶液以作为第一混合物,如下获得第二混合物:通过混合酸与第四溶液来获得第五溶液以作为第二混合物,以及通过使含酚的第六溶液与第五溶液反应以获得第三混合物。3.如权利要求1和2中一或多项所述的方法,其中醛是甲醛。4.如权利要求3中所述方法,其中甲醛作为固体、液体/溶液和/或气体、作为在与酸和酚反应时会产生甲醛的化合物、作为甲醛释放塑料和/或甲醛释放抗微生物化合物来提供。5.如权利要求4中所述方法,其中在与酸和/或酚反应时会释放甲醛的化合物包括低聚甲醛、六亚甲基四胺和/或甲醛合次硫酸氢钠,甲醛释放塑料包括酚醛树脂、聚甲醛和/或三聚氰胺树脂,且甲醛释放抗微生物化合物包括5-溴-5-硝基-1,3-二喝烷、2-溴-2-硝基丙烷-1,3-二醇、二偶氮烷基脲、咪唑烷基脲和/或DMDM乙内酰脲。6.如权利要求1-5中一或多项所述的方法,其中氯化物是碱金属氯化物,例如氯化锂、氯化钠、氯化钾和/或氯化铷,优选氯化锂,其中氯化物的使用浓度为10至100,OOOppm,优选500至50,OOOppm。7.如权利要求1-6中一或多项所述的方法,其中酸的pH〈l和/或是硫酸和磷酸的混合物,优选约60体积%硫酸和40体积%磷酸。8.如权利要求1-7中一或多项所述的方法,其中酚是具有至少一个单芳基的未取代或取代的一元酚或二酚,其中亚硝基取代指向对位。9.如权利要求8中所述方法,其中酚是2,6-二甲基苯酚(2,6二甲酚)和/或4-乙基间苯二酚。10.如权利要求1-9中一或多项所述的方法,其中反应时间达到20分钟,优选10至15分钟。11.如权利要求1-10中一或多项所述的方法,其中颜色是红色、带红色、粉色、蓝色、带蓝色和/或紫色。12.如权利要求1-11中一或多项所述的方法,其中硝酸盐浓度的比色测定是通过采用测光装置测定第三混合物的吸收和/或将第三混合物的颜色与诸如色盘和/或色块的预设色谱进行比较。13.如权利要求12中所述方法,其中测光装置在约460nm至约540nm,优选在约500nm至约515nm,或在约540nm至约620nm,优选在约565nm至约575nm操作。14.如权利要求1-13中一或多项所述的方法,其中该方法具有6μg/L的外推检测极限和/或21ppb的测定极限。15.用于测定硝酸盐浓度的检测试剂盒,其使用如权利要求1-14中一或多项所述的方法。16.如权利要求15中所述的检测试剂盒,其中该检测试剂盒包括如权利要求1-14中一或多项所述的方法以及基于诸如HachLangeGmbH的LCK339的2,6_二甲基苯酚的第二硝酸盐分析方法。`【文档编号】G01N31/22GK103534590SQ201280023611【公开日】2014年1月22日申请日期:2012年3月7日优先权日:2011年3月15日【发明者】H.拉德申请人:哈克兰格有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1