压电陶瓷组合物的制作方法

文档序号:6929782阅读:153来源:国知局
专利名称:压电陶瓷组合物的制作方法
技术领域
本发明涉及用于检测振动的陶瓷压电传感器的压电陶瓷组合物,以及特别是适于检测汽车发动机振动的压电陶瓷组合物。
当用于检测振动的压电陶瓷传感器使用压电陶瓷组合物时,要求该组合物在厚度方面纵向振动的机电偶合因数kt高(例如,50%或更高)和比介电常数大(例如,1000或更大)的特性。
由于要稳定传感器对环境温度变化的灵敏度,诸如机电偶合因数,电容等压电特性的变化是一种小到与温度变化无关的变化是可取的(例如,就机电偶合因数来说,当温度在-40℃-85℃之间变化时机电偶合因数是-100ppm/℃-100ppm/℃)。
而且,根据使用情况,传感器本身经常受压力作用,因为发动机及其周围设备必须在大的振动下运行,因此要求强度尽可能地高。
已知钛锆酸铅基组合物通常用作陶瓷振荡器或陶瓷滤波器的压电陶瓷组合物,并随使用情况而有各种改进。
例如已知一种材料,其中将Nb,Sb,W,Mn等氧化物加入钛锆酸铅基组合物中以增进陶瓷特性,另一种材料中,复合钙钛矿化合物如Pb(Nb1/2Sb1/2)O3和Pb(Mg1/3Nb2/3)O3作为第三组分在钛锆酸铅基基底组合物中制成固溶体以增进陶瓷特性并进一步加入Nb,Sb,W,Mn的氧化物,或者再一种材料,其中上述组合物中的部分铅用Ba,Sr或Ca取代以改良共振频率的温度特性。
本申请人曾提出将烧绿石类型的Pb2Sb2O7,Ba2Sb2O7或其它复合氧化物制成固溶体在钛锆酸铅基基底陶瓷组合物中作为第三组分,由此获得高的机电偶合因数kp和比介电常数ε,以及电容随温度变化仅产生小的变化(JP-B-54-26716和JP-B-54-26717)。
而且,申请人曾提出将烧绿石类型的Ba2Sb2O7复合氧化物制成固溶体在钛锆酸铅基陶瓷组合物中作为第三组分,加入Nb2O5作为副组分,由此使之获得高的机电偶合因数kt和比介电常数ε,以及机电偶合因数kt的温度特性小(JP-A-50-156700)。
已知常规的压电陶瓷组合物制造要求是使比介电常数和机电偶合因数如用于传动装置的压电陶瓷那样大,尽管在厚度方面纵向机电偶合因数kt和比介电常数ε是大的,但问题是压电特性随温度变化的改变也是大的。
JP-B-54-26716和JP-B-54-26717提出一种方法即加入MnO2以提高机械强度,但问题是该方法使机械质量因数Qm增大,从而不能将产品使用到此类传感器上。
此外,JP-A-50-156700公开了具有良好压电特性和温度特性的压电传感器,但存在机械强度问题,因此该产品不能应用于剧烈振动条件下使用的压电传感器。
因此,本发明的目的之一是提供一种具有高的比介电常数和机电偶合因数,同时随温度和机械质量因数变化的压电特性变化小,以及机械强度高的压电陶瓷组合物。
为解决这些问题,本发明公开了以下构成。
(1)压电陶瓷组合物的组成是包括主组分x(Pb2Sb2O7)1/2·(1-x)[Pba(ZryTiz)O3](条件是0.98≤a≤0.999,0.005≤x≤0.05,0.50≤y≤0.54,0.46≤z≤0.50,y+z=1),和以每1mol重量的主组分计,加入换算成WO3,Sb2O3,Nb2O5和Ta2O5的0.1-1.0重量%的W,Sb,Nb和Ta中的至少一种作为副组分,以及加入换算成SiO2的0.01-0.1重量%的Si作为另一种副组分。
(2)压电陶瓷组合物的组成是包括主组分x(Me2Sb2O7)1/2(1-x[Pba(ZryTiz)O3](条件是0.98≤a≤0.999,0.005≤x≤0.05,0.50≤y≤0.54,0.46≤z≤0.50,y+z=1,Me是选自Ba和Sr中的至少一种),和以每1mol重量的主组分计,加入换算成WO3,Sb2O3,Nb2O5和Ta2O5的0.1-1.0重量%的W,Sb,Nb和Ta中的至少一种作为副组分,以及加入换算成SiO2的0.01-0.1重量%的Si作为另一种副组分。
通过该结构可以获得用于压电传感器的具有极佳的灵敏度和温度特性以及高压电陶瓷强度的压电陶瓷组合物。
将烧绿石类型的Pb2Sn2O7或Me2Sb2O7复合氧化物(Me是选自Ba和Sr中的至少一种)制成固溶体在钛锆酸铅基陶瓷组合物中作为第三组分,从而增进了压电陶瓷特性。由此获得可用于检测振动的压电传感器的压电陶瓷组合物,其中Ti/Zr的比例可在相当宽的范围内。
在1mol重量的主组分中加入换算成WO3,Sb2O3,Nb2O5和Ta2O5的0.1-1.0重量%的W,Sb,Nb和Ta中的至少一种作为副组分,因为减小陶瓷晶粒直径而可以增进压电陶瓷稳定性以及减小由于温度变化而引起的压电特性变化。因此可以获得用于压电传感器的温度特性变化下的压电陶瓷。
每1mol重量主组分加入换算成SiO2的0.01-0.1重量%的Si作为另一种副组分,由此使粘合力增大并提高了压电陶瓷强度而并未使压电陶瓷特性劣化。
如果将Pb组合物的比例变成0.98-0.999,元件强度可以获得更大地提高。


图1表示3-点弯曲强度试验结果,此时a数值是变化的。
图2是观测实施例中15号试样元件的粒径的电子显微镜照片;图3是观测实施例中15号试样元件断面的电子显微镜照片;图4是实施例中样品号15的副组分Sb2O3加入量为0而作为对比实施例生产的元件的观测其粒径的电子显微镜照片;图5是实施例中样品号15的SiO2加入量为0而作为对比实施例生产的元件观测其断面的电子显微镜照片。
以下叙述本发明实施例。
使用化学纯的PbO,TiO2,ZrO2,Sb2O5,Nb2O5,Ta2O5,WO3,BaCO3,和SrCO3作为起始原料,称重的各组分列于表1和2,并用球磨机湿磨。然后,将混合颗粒在空气中850℃-950℃下短暂焙烧,随后使用球磨机湿磨成粉状。
此后,在这样获得的粉末中加入有机粘合剂并造粒,在2000kg/cm2压力下形成直径15mm和厚度1.5mm的盘状结构。形成的产品在大气压下1100℃-1240℃焙烧。
将上述获得的烧结产品表面研磨直至厚度为1.0mm并加工成直径为10mm。然后,在形成银-焙烧电极之后,将烧结产品在80℃-120℃的绝缘油中在2kV/mm-3kV/mm的供电电压下于厚度方向上进行极化处理30分钟以获得待评估元件。
使用阻抗分析仪测定评估元件的元件电容(C),共振频率(fr),以及抗-共振频率(fa)。根据测定结果,计算获得比介电常数(ε),厚度纵向振动的机电偶合因数(kt),以及机械质量因数(Qm)。
针对温度变化产生的压电特性改变,将元件置于常温测试容器中测定在-40℃-85℃的温度变化条件下机电偶合因数kt的变化,同时以20℃为基础,计算-40℃-85℃下的机电偶合因数kt的温度系数。
通过3-点弯曲方法,使用精密负荷测量装置测定并计算压电陶瓷强度。
将上述方法获得的结果列于表1和2。表1和2中的*号表示本发明范围外的对比实施例。[表1]
*表示超出本发明范围的比较例。[表2]
*表示超出本发明范围的比较例。本发明组合物如下所述。
(1)第一种压电陶瓷组合物的组成如下主组分是x(Pb2Sb2O7)1/2·(1-x)[Pba(ZryTiz)O3](条件是0.98≤a≤0.999,0.005≤x≤0.05,0.50≤y≤0.54,0.46≤z≤0.50,y+z=1)。作为副组分,加入W,Sb,Nb和Ta中的至少一种。以每1mol重量的主组分计,W,Sb,Nb,Ta的加入量是换算成WO3,Sb2O3,Nb2O5和Ta2O5的0.1-1.0重量%。另外,加入Si作为副组分,以及每1mol重量的主组分计,加入Si的量是换算成Si2O2的0.01-0.1重量%。
(2)第二种压电陶瓷组合物的组成如下主组分是x(Me2Sb2O7)1/2·(1-x)[Pba(ZryTiz)O3](条件是0.98≤a≤0.999,0.005≤x≤0.05,0.50≤y≤0.54,0.46≤z≤0.50,y+z=1,Me是选自Ba和Sr的至少一种)。作为副组分,加入W,Sb,Nb和Ta中的至少一种。以每1mol重量的主组分计,W,Sb,Nb,Ta的加入量是换算成WO3,Sb2O3,Nb2O5和Ta2O5的0.1-1.0重量%。另外,加入Si作为副组分,以及每1mol重量的主组分计,加入Si的量是换算成Si2O2的0.01-0.1重量%。
对上述本发明组合物的限定条件的理由如下所述。
(1)如果x小于0.005,由于机电偶合因数(kt)和比介电常数(ε)小,同时机械质量因数(Qm)高,因此这种产品不适用于本发明(参见样品号5和31)。相反,如果x大于0.05,机电偶合因数(kt)的温度系数的绝对值是大的(参见样品号8和34)。
(2)如果z小于0.46或y大于0.54,由于机电偶合因数(kt)的温度系数绝对值高,因此这种产品不适用于本发明(参见样品号23和58)。如果z大于0.50或y小于0.50,则不能获得理想的机电偶合因数(kt)和比介电常数(ε)(参见样品号26和61)。
(3)图2是作为本发明实施例的样品15号的研磨面进行蚀刻处理后的电子显微镜照片,而图4是样品15号中副组分Sb2O3加入量为0获得对比样品的电子显微镜照片,并测定对比样品。
可见图2实施例中,粒径小于图4的对比实施例,以及颗粒大小比图4的对比实施例更加均匀。上述对比清楚表明,加入副组分Sb2O3对粒径的细度和均匀性有效果。
就副组分的含量而言,针对每1mol重量的主组分,换算成WO3,Sb2O3,Nb2O5和Ta2O5的W,Sb,Nb和Ta中的至少一种的含量如果小于0.1重量%,不可能获得上述效果,而且机电偶合因数(kt)的温度系数绝对值高(参见样品号9和35)。相反,如果该含量大于1.0重量%,机电偶合因数(kt)的温度系数绝对值也是高的而机电偶合因数(kt)小,因此这种产品不适用于本发明(参见样品号12和38)。
(4)图3是本发明实施例样品号15的元件断面的电子显微镜照片,以及图5是样品号15中SiO2加入量为0的以本发明实施例同样方法获得的断面电子显微镜照片。
可见当SiO2作为图3实施例中的副组分存在时,在断面上几乎看不到颗粒阴影,以及断面发生在颗粒内。这意味着颗粒之间的粘合力强。相反,可见当图5的对比实施例没有加入副组分SiO2时,颗粒阴影是清楚的同时断面发生在颗粒界面,这意味着颗粒之间的粘合力弱。通过比较,加入副组分SiO2的效果是显而易见的。
当副组分SiO2的加入量大于0.1重量%时,机电耦合因数(kt)是小的,同时机电偶合因数的温度系数绝对值大,因此这种产品不适用于本发明(参见样品号14和40)。
(5)如果a小于0.98,则不能获得理想的机电偶合因数(kt)和比介电数(ε)(参见样品号1和27)。
图1表示3-点弯曲强度试验结果,此时a数值是变化的。图1中,表示的是样品(1)和样品(2)的3-点弯曲强度试验结果,此时压电陶瓷组合物中a数值是变化的。样品(1)和样品(2)组合物表达如下样品(1)0.025(Pb2Sb2O7)1/2·0.975[Pba(Zr0.52Ti0.48)O3]+Nb2O50.5重量%+SiO20.05重量%,以及样品(2)0.025(Sr2Sb2O7)1/2·0.975[Pba(Zr0.52Ti0.48)O3]+Nb2O50.5重量%+SiO20.05重量%。
从图1可以明显看出,当a数值超出0.98-0.999范围时3-点弯曲强度显著降低(参见样品号4和30)。
如上所述,本发明提供了一种压电陶瓷组合物,其组成为主组分是x(Pb2Sb2O7)1/2·(1-x)[Pba(ZryTiz)O3](条件是0.98≤a≤0.999,0.005≤x≤0.05,0.50≤y≤0.54,0.46≤z≤0.50,y+z=1)。以每1mol重量的主组分计,加入换算成WO3,Sb2O3,Nb2O5和Ta2O5的0.1-1.0重量%W,Sb,Nb,Ta中的至少一种作为副组分以及加入换算成SiO2的0.01-0.1重量%的Si作为另一种副组分。根据本发明压电陶瓷组合物,获得的该组合物具有高比介电常数和机电耦合因数,和小的机械质量因数,同时压电陶瓷随温度变化的改变小,以及强度高。另一种压电陶瓷组合物的组成为主组分是x(Me2Sb2O7)1/2·(1-x)[Pba(ZryTiz)O3](条件是0.98≤a≤0.999,0.005≤x≤0.05,0.50≤y≤0.54,0.46≤z≤0.50,y+z=1,Me是选自Ba和Sr中的至少一种),以每1mol重量的主组分计,加入换算成WO3,Sb2O3,Nb2O5和Ta2O5的0.1-1.0重量%W,Sb,Nb,Ta中的至少一种作为副组分以及加入换算成SiO2的0.01-0.1重量%的Si作为另一种副组分。
形成的用于压电传感器的压电陶瓷组合物,其传感器具有良好的灵敏度和温度特性和高可靠性的压电陶瓷强度。
权利要求
1.一种压电陶瓷组合物,其包含主组分包括x(Pb2Sb2O7)1/2·(1-x)[Pba(ZryTiz)O3],条件是0.98≤a≤0.999,0.005≤x≤0.05,0.50≤y≤0.54,0.46≤z≤0.50,以及y+z=1;每1mol重量的主组分加入换算成WO3,Sb2O3Nb2O5和Ta2O5的0.1-1.0重量%的W,Sb,Nb,Ta中的至少一种;和每1mol重量的主组分加入换算成SiO2的0.01-0.1重量%的Si。
2.一种压电陶瓷组合物,其包含主组分包括x(Me2Sb2O7)1/2·(1-x)[Pba(ZryTiz)O3],条件是0.98≤a≤0.999,0.005≤x≤0.05,0.50≤y≤0.54,0.46≤z≤0.50,y+z=1,以及Me是Ba和Sr中的至少一种;每1mol重量的主组分加入换算成WO3,Sb2O3,Nb2O5和Ta2O5的0.1-1.0重量%的W,Sb,Nb,Ta中的至少一种;每1mol重量的主组分加入换算成SiO2的0.01-0.1重量%的Si。
全文摘要
本发明提供了一种压电陶瓷组合物,其组成为主组分是x(Pb
文档编号H01L41/187GK1289130SQ00131699
公开日2001年3月28日 申请日期2000年9月20日 优先权日1999年9月20日
发明者佐佐木诚志 申请人:Tdk株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1