稀土磁铁及其制造方法

文档序号:6865267阅读:507来源:国知局
专利名称:稀土磁铁及其制造方法
技术领域
本发明涉及稀土磁铁及其制造方法。
背景技术
目前,在制造R-Fe-B型稀土烧结磁铁时,为使烧结体的结晶粒径细微化的同时提高磁铁的耐热性,提出向原料合金中添加Nb(铌)。已知,Nb在烧结时可抑制晶粒粗大并可改善磁铁的磁化性能。
特开平7-94311号公报发表了在Nd-Fe-Co-B型烧结磁铁中添加0.1~2.0重量%的Nb,使磁铁性能及耐热性得到改善的技术。
另外,在特公平6-69003号公报中宣布,在用超急冷法制作稀土磁铁合金时,若在原料合金中添加1~10原子%的金属元素(Ti、Zr、Hf、Nb等金属元素),可改善矫顽磁力等磁铁性能。
在特开平7-94311号公报所记载的现有技术中,由于使用铸锭法制造合金,因此在熔融原料合金冷却时,冷却速度较慢。从而易形成粗大的NbFeB2等非磁性硼化物。由于生成了这种非磁性硼化物,烧结工序后稀土磁铁硬化,使切断及表面研磨加工等的加工效率大大降低。
另外,在特公平6-69003号公报所记载的现有技术中,由于添加的Nb等金属的量较多,易生成NbFeB2等非磁性硼化物。导致在烧结工序后,稀土磁铁的剩余磁通密度下降,而且磁铁的加工效率也降低。
本发明是鉴于所述问题而进行的,主要目的是提供一种在永久磁铁性能及加工性两方面均优异的稀土磁铁及其制造方法。

发明内容
本发明的急冷凝固合金的组成式为(Fe1-mTm)100-x-y-zQxRyMz(式中T表示选自Co和Ni的1种以上的元素;Q表示选自B和C的1种以上的元素;R表示1种以上的稀土金属元素;M表示选自Nb和Mo的至少1种元素),组成比x、y、z及m分别满足2≤x≤28(原子%),8≤y≤30(原子%),0.1≤z<1.0(原子%),以及0≤m≤0.5。
在对熔融原料合金进行急冷时,冷却速度优选102K/秒以上104K/秒以下的范围。
在一种优选实施方式中,Nb作为必须含有的元素。
在另一种优选实施方式中,含有短轴尺寸在0.1μm以上100μm以下,长轴尺寸在5μm以上500μm以下的R2Fe14B型化合物晶粒,并且在所述晶粒的晶界间分散有富R相,厚度在0.03mm以上10mm以下。
本发明的稀土磁铁是由所述任一种急冷凝固合金制成的。
本发明的稀土磁铁是由添加了原子比在0.1%以上1.0%以下的Nb和/或Mo的急冷凝固合金制成的。
本发明的稀土磁铁的制造方法包括将组成式为(Fe1-mTm)100-x-y-zQxRyMz(式中T表示选自Co和Ni的1种以上的元素;Q表示选自B和C的1种以上的元素;R表示1种以上的稀土金属元素;M表示选自Nb和Mo的至少1种元素)、组成比x、y、z及m分别满足2≤x≤28(原子%),8≤y≤30(原子%),0.1≤z<1.0(原子%)和0≤m≤0.5的合金熔液进行急冷、凝固,制作急冷凝固合金的工序;以及用所述急冷凝固合金制成永久磁铁的工序。
在所述急冷凝固合金制作工序中,冷却速度优选在102K/秒以上104K/秒以下的范围。
在一种优选实施方式中,在制作所述急冷凝固合金时,用带式铸造法将所述合金熔液急冷。
在另一种优选实施方式中,包括使所述急冷凝固合金吸附氢后再将所述氢排出的脆化工序。
应用本发明,通过将Nb或Mo均匀地分散在急冷合金的微细组织中,达到虽添加量很少(0.1原子%以上1.0原子%以下),但可抑制烧结时颗粒生长的效果。因此可使稀土烧结磁铁的剩余磁通密度和加工性几乎不降低,而矫顽磁力大幅度增加,并且可使退磁曲线的矩形性良好。


图1表示在本发明的实施例和比较例中,矫顽磁力Hcj与Nb添加量(原子%)的依存关系。
图2表示在本发明的实施例和比较例中,剩余磁通密度Br与Nb添加量(原子%)的依存关系。
图3表示在本发明的实施例中,所求得的磨削抗力(N牛顿)与Nb添加量(原子%)的依存关系。
具体实施例方式
本发明者发现,在以102~104K/秒的冷却速度对熔融原料合金进行急冷,制作凝固合金时,仅添加少量的Nb或Mo(不到全体的1.0原子%),并使这些添加物均匀分散到合金组织中,便可抑制由于添加金属而生成硼化物所导致的烧结磁铁的剩余磁通密度降低及加工性能下降,并且可使矫顽磁力增加,还可使去磁曲线的矩形性良好。
在现有的铸锭法中,为增加矫顽磁力,认为有必要添加较多的Nb等。但在利用带式铸造法进行急冷凝固合金的制作时,若添加与现有等量的Nb,则使最终获得的烧结磁铁的硬度非常高,致使烧结磁铁所必需的表面研磨及切断等加工变得非常困难。
在本发明中,添加的Nb等的量少于现有方法所必需的量。与铸锭法相比,其矫顽磁力有显著的提高,而且还成功地抑制了剩余磁通密度及加工性。
应添加的Nb或Mo的最佳量与合金熔液的冷却速度之间存在着很强的依存关系,其原理还未探明。但从限定冷却速度的范围可实现合金组织的细微化这一事实可以认为,这是由于虽然量很微少但添加的Nb等元素充分地发挥了作用。
在本发明中,需准备组成式为(Fe1-mTm)100-x-y-zQxRyMz的原料合金熔液。其中,T表示选自Co和Ni的1种以上的元素;Q表示选自B和C的1种以上的元素;R表示1种以上的稀土金属元素;M表示选自Nb和Mo的至少1种元素。组成比x、y、z及m分别满足2≤x≤28(原子%),8≤y≤30(原子%),0.1≤z<1.0(原子%)和0≤m≤0.5。
另外,为了提高矫顽磁力,优选含有1.0at%以上的Dy和/或Tb。将添加了Nb或Mo的合金熔液用众所周知的带式铸造装置等急冷装置进行冷却、凝固。在本发明中,此时的冷却速度控制在1.0×102K/秒以上1.0×104K/秒以下的范围内。这一冷却速度希望为,从合金熔液接触到冷却辊表面开始到合金温度下降约500℃的区间内应达到的冷却速度。优选的冷却速度范围是2×102K/秒以上1×103K/秒以下,更优选范围是3×102K/秒以上6×102K/秒以下。
另外,添加的Nb和/或Mo的量的范围,考虑后述的实验结果等,应选0.1≤z<1.0(原子%),优选为0.20≤z<0.95(原子%),更优选为0.35≤z<0.75(原子%)。
下面,对本发明稀土磁铁的制造方法的实施方式进行详细说明。
首先制作含有R(R为含有Y的稀土元素中的至少一种)8~30原子%、B2~28原子%、Nb0.1~1.0原子%、其余为Fe及含有不可避免的杂质的R-Fe-B系合金熔液。其中,Fe的一部分可用Co、Ni中的1种或2种置换,B的一部分可用C置换。另外,B的一部分也可用Si、P和/或S等置换。
然后用带式铸造法将所述合金熔液以102~104K/秒的冷却速度急冷凝固成厚度为0.03~10mm的薄片。将R2Fe14B型正方晶作为主相,并分散有5μm以下的微细的富R相组织的铸片铸好后,收纳在可吸、放气体的容器内。然后将容器抽真空后,向容器内供给压力为0.03~1.0MPa的H2气体,形成破碎合金粉。优选将所述破碎合金粉经脱氢处理后,在惰性气体中进行微细粉碎。
本发明使用的磁铁材料铸片,是将特定组成的合金熔液用单辊或双辊带式铸造法急冷制成的。可根据所要求铸片的厚度,分别使用单辊法和双辊法。铸片厚时应使用双辊法,薄时应使用单辊法。
若铸片厚度小于0.03mm,由于急冷作用较强,有可能导致晶粒粒径过小。若晶粒粒径过小,则在粉末化时,每个粒子将多结晶化,使晶体取向不一致,导致磁性能降低。反之,若铸片厚度超过10mm,由于冷却较慢,易使α-Fe相大量析出,并产生富Nd相的偏析。铸片的厚度优选在0.1mm以上5mm以下的范围内。
吸氢处理可如下进行将破碎成规定大小的铸片插入原料盒内后,将原料盒插入可以密闭的氢气炉中,将氢气炉密闭。然后,将氢气炉充分抽真空后,供应压力为30kPa~1.0MPa的氢气,使铸片吸氢。合金铸片吸氢后自然破碎。
将吸氢后脆化的合金冷却后,在真空中进行脱氢处理。由于在脱氢处理后所得到的合金粉末上存在着微细的龟裂,因此可用球磨机、喷射式粉碎机等在短时间内进行微细粉碎,可制成粒径为2~6μm(FSSS尺寸)的合金粉末。氢气处理的优选形式为特开平7-18366号公报所示。
上述的微细粉碎,优选为使用作为氛围气体的惰性气体(如N2、Ar等)的喷射式粉碎机进行。也可为使用有机溶剂(如苯或甲苯等)的球磨机等进行。
另外,在进行以上粉碎处理时,为将粉末中的含氧量控制得较低,应将惰性气氛气体中的氧浓度控制得较低(如500ppm以下)。
在所述合金粉末中优选添加以脂肪酸酯为主要成分的液体润滑剂。添加量例如为0.15~5.0质量%。脂肪酸酯如己酸甲酯、辛酸甲酯、月桂酸甲酯等。在润滑剂中可以含有粘合剂等成分。关键是在后续工序中润滑剂可挥发除掉。另外,若润滑剂本身是难与合金粉末均匀混合的固体形状,应用溶剂稀释后使用。作为溶剂可以使用以异构链烷烃为代表的石油系溶剂或环烷系溶剂等。润滑剂添加的时机可任意,即在微细粉碎前、微细粉碎中及微细粉碎后均可。液体润滑剂包覆在粉末粒子的表面,可起到防止粒子氧化的作用,同时还可起到在压制时使成型体密度均匀,可使磁场中的取向度提高。
然后,用压制装置进行磁场取向和压缩成型。磁性粉末的充填密度设定在可进行磁场取向的范围内(如真密度为30~40%)。
将成型体从压制装置取出后,经脱粘合剂、烧结、时效处理等众所周知的制造工序,最终制成永久磁铁制品。(实施例和比较例)用带式铸造法制成具有下述表1上半部分所示组成的薄片状合金(试样No.1~8)。此时,合金熔液的冷却速度在与辊接触一侧的相反侧是不同的,但在2×102~8×102K/秒的范围内。另外,用铸锭法制成具有下述表1下半部分所示组成的薄片状合金(试样No.9~16)。


在所述表1中,各元素的组成比单位为“原子%”。在试样No.1~16中,Nb的添加量在0.00原子%到2.87原子%范围内变化,其它元素的组成比设定成实质上相等。另外,本发明的实施例和比较例分别为试样No.2~5与试样No.1、No.6~16。为便于参考,将上述试样No.1~16的组成换算成重量%,换算值如下述表2所示。[表2]


将具有表1及表2所示组成的各急冷合金,通过吸、排氢进行脆化、粗粉碎后,用喷射式粉碎装置进行平均粒径(FSSS尺寸)约3.5μm的微细粉碎。将这样制得的微细粉末用压制装置进行成型,制成粉末成型体。然后在低压氩气气氛中(100Torr=约13.3kPa)进行烧结。制成尺寸为27mm×52mm×52mm的烧结磁铁。
上述各烧结磁铁的矫顽磁力Hcj及剩余磁通密度Br的测定值如表1所示。另外,矫顽磁力Hcj与Nb添加量(原子%)的依存性及剩余磁通密度Br与Nb添加量(原子%)的依存性分别如图1、图2所示。为便于参考,在图1和图2中也示出比较例的相关测定值。比较例包括与实施例(试样No.2~5)具有相同合金组成,但用铸锭法(合金熔液的冷却速度5~40K/秒)制造的试样(No.10~No.13)和虽用带式铸造法制造,但Nb的添加量在本发明的规定范围之外的试样(No.1、No.6~8)两部分。
由图1可知,在使用带式铸造法时,Nb的添加量对增大矫顽磁力效果非常显著。更详细的情况即Nb的添加量在0.1~1.0原子%范围内,矫顽磁力增加迅速,Nb的添加量在1.0原子%以上,矫顽磁力的增加则趋于饱和。另外,试验还可证实,添加Nb可提高磁铁的耐热性。与此相对应,在使用铸锭法时,添加Nb对矫顽磁力的增加几乎不起作用。
由图2可知,剩余磁通密度Br与合金熔液的冷却方法无关,随Nb添加量的增加而减小。
图3为由带式铸造法制成的急冷合金粉末制造的烧结磁铁的磨削抗力和Nb添加量关系的示意图。这一磨削抗力是通过驱动切刀的马达的负载电流计算求得的。由图3可知,磨削抗力随着Nb的增加直线上升。这表明Nb使烧结磁铁硬化,导致加工性降低。
从上述结果可知,向原料合金添加Nb的量应在0.1原子%以上1.0原子%以下。若Nb的添加量在1.0原子%以上,则Nb的硼化物生长显著,导致饱和磁化和加工性降低。另外,若Nb的添加量小于0.1原子%,则通过添加Nb使矫顽磁力增大的效果不明显。Nb的添加量的优选范围为0.20原子%以上0.95原子%以下,更优选的范围为0.35原子%以上0.75原子%以下。
另外,作为M元素,可以取代Nb或Mo,或同Nb或Mo一起使用V或Zr。只是V或Zr的磁特性不稳定,所以优选添加Nb或Mo。
权利要求
1.一种急冷凝固合金,该急冷合金的组成式为(Fe1-mTm)100-x-y-zQxRyMz(式中T表示选自Co和Ni的1种以上的元素;Q表示选自B和C的1种以上的元素;R表示1种以上的稀土金属元素;M表示选自Nb和Mo的至少1种元素),其中,组成比x、y、z及m分别满足2≤x≤28(原子%),8≤y≤30(原子%),0.1≤z<1.0(原子%),以及0≤m≤0.5。
2.根据权利要求1所述的急冷凝固合金,其中,对原料合金熔液进行急冷制造时的冷却速度在102K/秒以上104K/秒以下的范围内。
3.根据权利要求1所述的急冷凝固合金,其中,Nb作为必需含有的元素。
4.根据权利要求1所述的急冷凝固合金,其中,所述急冷凝固合金含有短轴尺寸在0.1μm以上100μm以下,长轴尺寸在5μm以上500μm以下的R2Fe14B型化合物晶粒,以及分散在所述晶粒的晶界间的富R相,其厚度在0.03mm以上10mm以下。
5.一种由权利要求1至4的任一项所述的急冷凝固合金制成的稀土磁铁。
6.一种由添加了原子比在0.1%以上1.0%以下的Nb和/或Mo的急冷凝固合金制成的稀土-铁-硼型磁铁。
7.一种稀土磁铁的制造方法,包含将组成式为(Fe1-mTm)100-x-y-zQxRyMz(式中T表示选自Co和Ni的1种以上的元素;Q表示选自B和C的1种以上的元素;R表示1种以上的稀土金属元素;M表示选自Nb和Mo的至少1种元素),组成比x、y、z及m分别满足2≤x≤28(原子%),8≤y≤30(原子%),0.1≤z<1.0(原子%)和0≤m≤0.5的合金熔液进行急冷、凝固,制作急冷凝固合金的工序;以及由所述急冷凝固合金制成永久磁铁的工序。
8.根据权利要求7所述的稀土磁铁的制造方法,其中,在所述急冷凝固合金制作工序中,急冷速度在102K/秒以上104K/秒以下的范围内。
9.根据权利要求8所述的稀土磁铁的制造方法,其中,在所述急冷凝固合金制作工序中,用带式铸造法将所述合金的熔液进行急冷。
10.根据权利要求7~9的任一项所述的稀土磁铁的制造方法,其中,包含使所述急冷凝固合金吸附氢后再将所述氢排出的脆化工序。
全文摘要
本发明提供一种稀土磁铁及其制造方法。通过将组成式为:(Fe
文档编号H01F1/057GK1335628SQ0112006
公开日2002年2月13日 申请日期2001年7月10日 优先权日2000年7月10日
发明者李钢 申请人:住友特殊金属株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1