具减低捕捉之三族氮化物基础场效晶体管和高电子移动晶体管及其制造方法

文档序号:6892691阅读:224来源:国知局
专利名称:具减低捕捉之三族氮化物基础场效晶体管和高电子移动晶体管及其制造方法
技术领域
本发明涉及高频固态晶体管,更特别是涉及三族氮化物基础场效晶体管及高电子移动晶体管。
背景技术
微波系统一般使用固态晶体管做为放大器及振荡器,这使系统大小降低而可靠度升高。希望可增加系统之作用频率及功率以容纳越来越多之微波系统。较高频之信号可携带较多信息(频宽),而使天线较小却具极高增益,并使雷达之分辨力改良。
场效晶体管(FET)及高电子移动晶体管(HEMT)是常见之固态晶体管由如硅(Si)或砷化镓(GaAs)之半导体材料制成。Si的一个缺点是电子移动率低(约1450cm2/V-S),而产生高来源电阻。此电阻使该高性能增益大为劣化,否则可有Si基础之FET及HEMT[CRC Press,The Electrical Engineering Handbook,Second Edition,Dorf,p.994(1997)]。
GaAs亦是FET及HEMT常用之材料且成为卫星通讯、细胞式手机以及民用及军用雷达之信号放大标准。GaAs较硅电子移动率高(约6000cm2/V-S)及来源电阻低,这使GaAs基础装置在较高频作用。但GaAs之带隙很小(室温1.42eV)及崩溃电压很小,这使GaAs基础FET及HEMT无法在高频提供高功率。
GaN/AlGaN半导体材料制造之改良着重在GaN/AlGaN基础FET及HEMT之发展。这些装置可产生大量功率,因其独特之材质特性组合包含高崩溃场、宽带隙(GaN在室温3.36eV)、大导带偏移及高饱和电子漂移速度。相同作用频率下,GaN放大器产生之功率可达相同大小之GaAs放大器之10倍。
Khan et al之US专利No.5,192,987揭示于一缓冲器及一基体生长之GaN/AlGaN基础之HEMT及其制造方法。其它于Gaska et al.HEMT″High-Temperature Performance of AlGaN/GaN HFET’s on SiC Substrates″,IEEEElectron Device Letters,Vol.18,No 10,1997年10月第492页及Ping etal.,″Dc and Microwave Performance of High Current AlGaN HeterostructureField Effect Transistors Grown on P-type SiC Substrates,″IEEE ElectronDevices Letters,Vol.19,No.2,1998年2月,第54页中描述。这些装置一些在增益频宽产品(fT)高达67千兆赫(K.Chu et al.WOCSEMMAD,Monterey,CA,1998年2月)及在10GHz达2.84W/mm之高功率密度(G.Sullivan et al.,″High Power 10-GHz Operation of AlGaN HEMT’s in Insulating SiC″,IEEEElectron Device Letters,Vol.19,No.6,1998年6月第198页;及Wu etal.,IEEE Electron Device Letters,Volume 19,No.第50页,1998年2月)。
GaN/AlGaN基础FET及HEMT虽有这些优点却无法产生具高效率及高增益之足够总微波功率。以DC闸驱动时其产生大量功率增益,但对低到毫赫至几千赫调定之频率其放大大为降低。
目前认为AC及DC放大之差益主要是由该装置信道之表面捕捉造成。虽术语也许不同,但通常均视一不纯或瑕庇中心为捕捉中心(或捕捉),若捕获一种载子后最可能之下一状况是再激发。通常深入能隙之捕捉能级较靠近价带导通之其它能级慢释放捕捉载子。这是因为和将较近导带能级之电子再激发所需能量相较,将近带隙中间之中心捕捉电子再激发至导带所需之能量增加。
AlXGa1-XN(X=0~1)之表面捕捉密度可和激活能范围0.7至1.8eV(和X有关)深施主状态捕捉之晶体管信道电荷相比。在FET及HEMT作用时该捕捉捕获信道电子。该慢捕捉及深捕捉处理使晶体管速度劣化,这使微波频率之功率性能大为劣化。

发明内容
本发明提供一由GaN/AlGaN形成之改良三族氮化物基础FET及HEMT,并响应AC闸驱动提供改良之放大特性。本发明亦提供一制造新GaN/AlGaN FET及HEMT之新方法。
该新FET包含在一高电阻非导电层上之阻挡层。其包含源极、漏极与栅极接触各和该阻挡层接触。一电子施主层在该接触间之阻挡层表面形成,该施主层最好为具高比例施主电子之介电层。
对该新HEMT,该阻挡层带隙较该非导电层宽,结果在该阻挡层及该非导电层间接面形成一二维电子气(2DEG)。该2DEG电子浓度高使装置跨导增加。该新HEMT之接触和FET导通信道类似,而该HEMT导通信道包含一类似介电层。
认为各装置之阻挡层表面捕捉带正电。亦认为该介电层施主电子移至该装置阻挡层及填满该表面捕捉。这使之成为电中性而不会捕获自由电子。该新介电膜层亦增加该装置未选通区薄层电子密度及保护该装置在处理时不会有不要之钝化、杂质及损坏。
本发明亦提供制造新GaN FET及HEMT之方法。该新方法和溅射技术有关,并使该导通信道表面损坏很小或没有。亦在该介电层及该信道表面间提供强而稳定之键结。
精于本技术者由以下细述加上附图将清楚本发明这些及其它特性及优点,其中


图1是一新GaN/AlGaN FET剖面图,于其表面有一介电层;图2是一新GaN/AlGaN HEMT剖面图,于其表面有一介电层;图3是该新GaN/AlGaN HEMT闸极之带能图;图4是该新GaN/AlGaN HEMT一进入区之带能图;图5是该新GaN/AlGaN HEMT之介电层及信道间接面之能带图;图6之一组图显示该新GaN/AlGaN HEMT和无介电层时相较之输出特性;图7之一组图显示该新HEMT做为该介电层厚度函数性能之差异;图8是传统溅射室剖面图;以及图9是制造具一介电层之晶体管之新方法流程图。
具体实施例方式
新GaN/AlGaN FET及HEMT图1显示依照本发明架构之新三族氮化物基础FET 10。其包含可为蓝宝石(Al2O3)或碳化硅(SiC)之基体11,较佳之基体为4H多型(polytype)之碳化硅。其它亦可使用之碳化硅polytype包含3C,6H及15R polytype。该基体11包含一AlXGa1-XN缓冲层12(X在0及1间)在该碳化硅基体及该FET 10剩余部份提供一适当之晶体架构过渡。
碳化硅对三族氮化物之晶体晶格匹配较蓝宝石接近,故有较高品质之三族氮化物膜。碳化硅之热导性亦很高,故碳化硅之三族氮化物装置总输出功率未受该基体之热耗散限制(一些于蓝宝石形成之装置有此情形)。另外碳化硅基体之可用度提供装置绝缘能力及降低寄生电容,使之可做为商用。NorthCarolina Durham之Cree Research,Inc.有提供SiC基体,而其制造方法参考科学文献及U.S.专利No.Re.34,861;4,946,547及5,200,022。
三族氧化物是指在氮和周期表三族元素通常为铝(Al)、锗(Ga)及铟(In)间形成之半导体化合物。该名词亦指如AlGaN及AlInGaN之三元及第三化合物。
该FET 10有一阻挡层18由AlXGa1-XN制成,其于由GaN制成之高电阻非导电层20上。该高电阻层20在该阻挡层18及该缓冲层12间。该阻挡层通常约0.1至0.3微米厚,而该阻挡层18、高电阻层20及缓冲层12利用外延生长或离子注入于该基体11上形成。
该FET亦有一源极及一漏极接触13及14在该高电阻层20表面上。该阻挡层12位于该接触13及14间,各和该阻挡层之边缘接触。对微波装置该接触13及14通常由3到10微米范围之距离分隔。一整流肖特基接触(闸极)16位于该源极及漏极接触13及14间之阻挡层12表面上及通常长度范围在0.1至2微米间。该FET总宽度和所需总功率有关。其可宽过30微米,而通常宽度范围为50至100微米。该等接触间之阻挡层表面区域视为该阻挡层之进入区。
该源极及漏极接触13及14最好由钛、铝、镍及金之合金形成,及该闸极16最好由钛、铂、铬、镍、钛及钨之合金以及硅化铂形成。在一实施例该接触包含一镍-硅及钛之合金,这是由个别沉淀这些材料层然后将之退火而形成。因此合金系统无铝,故防止该退火温度超过铝熔点(660℃)时不要之铝沾污。
作为时该漏极接触14以特定电位偏压(对n信道装置为正漏极电位)及该源极接地。这造成电流经该信道由该漏极流至该源极。该电流之流动由调节该信道电流及提供增益之供至该闸极16之频率电位及该偏压控制。
本发明亦适用于GaN/AlGaN基础HEMT。图2所示之HEMT 30和FET 10相似亦有一源极接触13、一漏极接触14及一肖特基闸极16。其亦有一AlXGa1-XN半导体阻挡层32在一高电阻非导电GaN层34上。和图1相似,此二层在一氮化铝缓冲层12及一基体11上形成。
但在此实施例该层32带隙较该GaN层34宽,而此能带隙之不连续性使自由电荷由该较宽带隙转至该较低带隙材料。一电荷在此二层之接口累积及产生一二维电子气(2DEG)36,使电流在该源极及漏极接触13及14间流通。该2DEG有极高电子移动性使该HEMT在高频之跨导很高。供至该闸极16之电压静电性控制该闸极正下2DEG之电子数,因此控制总电子流。
该新FET 10及HEMT 30亦包含一介电材料层22及44在其个别阻挡层18及38表面该阻挡层之进入区上。该介电层最好为氮化硅(SiXNY),以硅做为该施主电子之来源。为有最佳效果,该层22及44应符合以下4个条件。第一应有一掺杂剂提供高施主电子源。对氮化硅,该层之Si比例应很高。申请人虽不希望受任何作用理论限制,但目前认为该层之电子会填充表面捕捉使之电中性,及在作用时不会捕获阻挡层电子。
第二,该掺杂剂能级应较该捕捉能级高,而为有最佳效果该能量应较该阻挡层导带边缘能级高。因认为这会降低电子由闸极金属成为该施主状态之可能,并防止该能级捕捉及去捕捉。若该掺杂剂能级略低于该阻挡层能级,该层亦可作用,但其能量越高越好。
第三,该装置表面之损坏应很少或没有,且形成该介电层不应增加该表面损坏。因认为表面损坏可产生更多表面捕捉。第四,该阻挡层表面及该薄膜间键结在应力下应稳定。若该键结不稳定,该层在实际装置作用下可能因电场、电压或温度增加引起之应力而失效。
图3显示该新HEMT 30由图2点52垂直经该装置肖特基闸16、阻挡层38、2DEG 42及GaN层34之能带图50。该图50显示平衡状态、无偏压及无电流流经该阻挡层之HEMT。其显示该HEMT阻挡层54、GaN层56及2DEG 58带能。其和无介电涂膜44之HEMT能带图相似。该肖特基闸极58覆盖其下之阻挡层,阻隔该介电层电子到达其下之阻挡层。
图4显示该HEMT 30(再次于平衡状态)由图2之点62垂直经其介电层44、阻挡层38、2DEG 42及GaN层34之另一能带图60。该图再次显示该HEMT阻挡层63、GaN层64及2DEG 65带能,且其显示该介电层带能66。在该阻挡层进入区通常有表面捕捉69会捕捉电子而降低频率特性。此图显示该介电层带能66之施主电子源68能阶较该捕捉69高。该电子68移至该阻挡层及填充该表面捕捉69,使之成为电中性及降低其在作用时捕获电子之能力。
图5显示该HEMT(平衡状态)由图2之点72水平沿该介电层44及该阻挡层38间接面之第三能带图70。其由该闸极36开始延续到该闸极及漏极间区域。在该闸极并无介电层及该带能72维持常数。在该闸极外侧之阻挡层进入区有来自该介电层之浅施主电子74填充表面捕捉76,使之成为电中性。当该捕捉填充时靠近该闸极边缘之带能下降,然后在该进入区78变平。
图6显示有及无该介电层之新HEMT输出特性80。该闸极扫描由2.0伏闸电压开始,接着以1伏为级产生该组曲线。该有及无介电层之HEMT之DC高功率输出特性82均相同(以粗线显示)。但当AC闸极驱动供至无该介电层之装置时,该输出响应严重劣化84(正常线)。具该介电层之HEMT之AC输出特性86(虚线)几乎和其DC输出特性82相同,提供高功率AC输出。
图7所示之图90说明在AC及DC驱动下(IAC/IDC)漏极电流率(Vds=6V)对该介电层92厚度,及功率密度(f=8GHz,Vds=20V)对氮化硅介电层94厚度。当该层厚度由0_增至约1500_之较佳厚度,该AC功率密度94亦增加。该图在该较佳厚度附近显示一点96,在此该AC功率等于该DC功率密度及该漏极电流率等于1。当厚度小于1500_时,该AC功率密度下降及该电流率小于1。此差异认为是因较薄层无足够比例之施主电子将所有信道捕捉中和而造成。这使一定比例之电荷捕捉在作用时捕获电子。但若该层太厚将使该装置表面有太多电容。在1500_时有足够比例之施主电子而该厚度之再行增加不会改良该装置之性能特性。
新制造方法如上述,该介电层在其FET及HEMT表面应有在应力下稳定之强键结。在该HEMT原位生长时可使用各种沉淀该层之方法,包含但不限于溅射、PECVD、MOCVD。
将一层108于具亦稳定强键结之FET及HEMT上沉淀之较佳方法是经由溅射。图8显示一可用于将材料沉淀于基体上之简化溅射室100。作用时将一半导体装置101置于一阳极102。该室103然后抽空及如氩之钝气104经由该阀105流出以维持背景压力。该阴极106由于该基体/装置上沉淀之材料制成。利用该电极间之高压107将该钝气离子化及在该阴极106该正离子110超出。当正离子撞击阴极106,其和该阴极原子112碰撞使之有足够能量射出。该溅射阴极原子112移动,最后覆盖该阳极102及其上之半导体装置101。其它之溅射单元可能较复杂及精细,但其作用之基本物理架构大致相同。利用较复杂之溅射系统可将一组材料及介电层溅射及沉淀。
图9显示制造具多施主电子氮化硅介电层之晶体管之新方法。该第一步骤122是形成该装置。该装置最好为GaN/AlGaN FET或HEMT,及其利用如金属-有机化学气相沉淀(MOCVD)之处理于一半导体芯片上形成。该芯片然后在步骤124清理,以该较佳清理处理将之以NH4OH∶H2O(1∶4)清洗约10至60秒。该芯片然后放入具硅来源之一溅射室126。
在下一步骤128,利用溅射将该SiXNY介电层于该芯片上沉淀。该较佳溅射处理包含将该室汲低至约3×10-7Torr低压之特定步骤。利用流量20-100sccm及压力5-10mTorr之来源气体,该电浆然后以200-300W之RF功率激活约2分钟。这将轰击该阴极之硅,清理其表面。然后变更该溅射状况使该氩气流量10-12sccm,该氮气流量8-10sccm,该室压2.5-5mTorr及该RF功率200-300W。维持此状况2分钟以溅射该Si阴极。该溅射硅和该氮反应及所得氮化硅在该芯片上沉淀。
在溅射后下一步骤130关掉该氮气及打开该氩气以20-100sccm流2分钟清理该Si表面。然后关掉所有气体及电力以及使该室冷却5分钟及通风。然后可自该溅射室移去该装置。在该装置蚀刻接触与栅极之窗口。该处理之其它步骤可包含于该装置表面沉淀该接触与栅极以及附着引线134。在将该介电层在该溅射室沉淀前,可替代将该接触与栅极于该装置上沉淀。然后可蚀刻该接触与栅极上之介电层以连接引线。
在以T闸极替代传统闸极之实施例可能很难完全覆盖该晶体管表面。这是因为在该T顶阻隔溅射材料到达该T-闸极底部附近区域而可能发生之荫蔽造成。为能完全覆盖,在溅射沉淀中该晶体管可斜角置入及旋转。
在所有沉淀方法尤其是溅射时环境中一定要无氢。氢原子可扩散到该半导体材料中而中和掺杂剂。这可使该掺杂剂不作用而在该材料之生长状态变成绝缘或微掺杂。这可对该FET或HEMT造成严重性能问题。
本发明虽参照其特定较佳架构详细描述,但可有其它架构。故所附申请专利范围之精神及范围不应受本申请书所述之较佳架构限制。
权利要求
1.一种场效晶体管(FET),包含一高电阻非导电层(20);一阻挡层(18),于该非导电层(20)上;个别源极、漏极和栅极接触(13,14,16)与该阻挡层(18)接触,以该接触(13,14,16)将该阻挡层(18)部份表面暴露;以及一电子源层(22)于该接触(13,14,16)间阻挡层(18)表面上形成,该电子源层(22)具高比例之施主电子(68)。
2.如权利要求1所述的场效晶体管,其特征在于,该阻挡层(18)具正电荷表面捕捉(69)及该施主电子(68)将该捕捉(69)中和。
3.如权利要求2所述的场效晶体管,其特征在于,该施主电子(68)之能阶较该捕捉(69)高。
4.如权利要求1所述的场效晶体管,其特征在于,该电子源层(22)为一介电材料层。
5.如权利要求1所述的场效晶体管,其特征在于,该电子源层(22)和该阻挡层(18)在电场、电压或温度增加所产生应力下具有一稳定键结。
6.如权利要求1所述的场效晶体管,其特征在于,该阻挡层(22)表面实质上无损坏。
7.如权利要求1所述的场效晶体管,其特征在于,该阻挡层(22)的形成导致该阻挡层(18)的表面基本无损坏。
8.如权利要求1所述的场效晶体管,其特征在于,该阻挡层(22)包含氮化硅。
9.如权利要求1所述的场效晶体管,其特征在于,其另包含一蓝宝石或碳化硅基体(11),该基体(11)和该非导电层(20)相邻,和该阻挡层(18)相对。
10.如权利要求9所述的场效晶体管,其特征在于,该基体(11)由氮化硅的4H多型(polytype)形成。
11.如权利要求9所述的场效晶体管,其特征在于,其另包含一缓冲层(12)在该非导电层(20)及该基体(11)间。
12.如权利要求9所述的场效晶体管,其特征在于,该缓冲层(12)由AlXGa1-XN制成,X在0及1间。
13.如权利要求1所述的场效晶体管,其特征在于,该非导电层(20)及该阻挡层(18)由三族氮化物半导体材料制成。
14.如权利要求1所述的场效晶体管,其特征在于,该阻挡层(18)由AlXGa1-XN制成。
15.如权利要求1所述的场效晶体管,其特征在于,该阻挡层(18)由AlGaN制成且该非导电层(20)由GaN制成。
16.如权利要求1所述的场效晶体管,其特征在于,该源极及漏极接触(13,14)包含一钛、铝及镍之合金。
17.如权利要求1所述的场效晶体管,其特征在于,该闸极16选自由钛、铂、铬、镍、钛及钨之合金以及硅化铂组成的组合。
18.如权利要求1所述的场效晶体管,其特征在于,该阻挡层(38)之能带隙较该高电阻层(34)高,该场效晶体管另包含一二维电子气(2DEG)(42)在该阻挡层(38)及该高电阻层(34)间。
19.一种高电子移动晶体管(HEMT),包含一高电阻非导电半导体层(34);一阻挡层(38)在该高电阻层(34)上,该阻挡层(38)之带隙较该高电阻层(34)高;一二维电子气(42)在该阻挡层(38)及该高电阻层(34)间;个别源极、漏极与栅极接触(13,14,16)和该阻挡层(38)接触,该接触(13,14,16)将该阻挡层(38)部份表面暴露;以及一电子源层(44)于该接触(13,14,16)间之阻挡层(38)表面形成,该电子源层(44)之施主电子(68)比例很高。
20.如权利要求19所述的高电子移动晶体管,其特征在于,该阻挡层(38)具正电荷表面捕捉(69),该施主电子(68)将该捕捉(69)中和。
21.如权利要求20所述的高电子移动晶体管,其特征在于,该施主电子(68)之能阶较该捕捉(69)高。
22.如权利要求19所述的高电子移动晶体管,其特征在于,该电子源层(44)为一介电层。
23.如权利要求19所述的高电子移动晶体管,其特征在于,该电子源层(44)和该阻挡层(38)在电场、电压或温度增加所产生应力下具有一稳定键结。
24.如权利要求19所述的高电子移动晶体管,其特征在于,该阻挡层(38)的表面基本无损坏。
25.如权利要求19所述的高电子移动晶体管,其特征在于,该电子源层(44)包含氮化硅。
26.如权利要求19所述的高电子移动晶体管,其特征在于,其另包含一蓝宝石或碳化硅基体(11),该基体(11)和该高电阻层(34)相邻,和该阻挡层(38)相对。
27.如权利要求25所述的场效晶体管,其特征在于,其另包含一缓冲层(12)在该高电阻层(34)及该基体(11)间。
28.如权利要求19所述的高电子移动晶体管,其特征在于,该高电阻层(34)和该阻挡层(38)由三族氮化物半导体材料制成。
29.如权利要求19所述的高电子移动晶体管,其特征在于,该源极及漏极接触(13,14,16)包含一钛、铝及镍之合金。
30.如权利要求19所述的高电子移动晶体管,其特征在于,该闸极16选自由钛、铂、铬、镍、钛及钨之合金以及硅化铂组成的组合。
31.一种表面具一电子源层(108)之晶体管(101)之制造方法,包含以下步骤将该晶体管置入一溅射室(126);于该溅射室(128)对该晶体管溅射该电子源层(108);将该溅射室(130)冷却及通风;自该溅射室(130)移去该晶体管。
32.如权利要求31所述的方法,其特征在于,该电子源层(108)为一具有高比例施主电子(68)之介电层。
33.如权利要求31所述的方法,其特征在于,其另包含在将该晶体管置入一溅射室(126)之前形成该晶体管(122)并清理该晶体管(124)的步骤。
34.如权利要求33所述的方法,其特征在于,该晶体管(101)藉由金属-有机化学气相沉淀(MOCVD)生长。
35.如权利要求33所述的方法,其特征在于,该晶体管(101)以NH4OH∶H2O(1∶4)清洗该晶体管约10至60秒。
36.如权利要求31所述的方法,其特征在于,其另包含打开该电子源层(132)之窗口以接触自该溅射室(130)移去后之该晶体管(101)的步骤。
37.如权利要求36所述的方法,其特征在于,该窗口藉由蚀刻(132)在该电子源层中打开。
38.如权利要求31所述的方法,其特征在于,该晶体管(101)为一场效晶体管或一高电子移动晶体管。
39.如权利要求31所述的方法,其特征在于,该电子源层(108)为氮化硅且藉由以下步骤将该层(108)沉淀于该晶体管(101)上抽空该室(103)至一预定压力,用一来源气体轰击一硅源(106)以清理其表面,改变该室条件以溅射硅(106),然后可使被溅射的硅与氮反应以在该晶体管(101)上沉淀一硅氮层(108)。
40.如权利要求31所述的方法,其特征在于,该电子源层(108)的形成导致该晶体管(101)的表面基本无损坏。
41.如权利要求31所述的方法,其特征在于,该晶体管(101)在基本无氢的环境下形成。
全文摘要
本发明揭示新三族氮化物基础场效晶体管(10)及高电子移动晶体管(30),其高频响应特性提升。该较佳晶体管(10,30)由GaN/AlGaN制成及其阻挡层(18,38)表面有一介电层(22,44)。该介电层(22,44)有高比例之施主电子(68)将该阻挡层(18,38)之捕捉(69)中和,使该捕捉(69)无法减缓该晶体管(10,30)之高频响应。亦揭示一制造该晶体管(10,30)之新方法,该新方法利用溅射沉淀该介电层(18,38)。
文档编号H01L21/338GK1419713SQ01804529
公开日2003年5月21日 申请日期2001年2月1日 优先权日2000年2月4日
发明者吴益逢, 詹奈棋, 李马卡西, 苏建 申请人:美商克立光学公司, 美国加利福尼亚大学董事会
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1