采用栅控电荷存储的成像的制作方法

文档序号:6845606阅读:120来源:国知局
专利名称:采用栅控电荷存储的成像的制作方法
技术领域
本发明涉及半导体装置,具体涉及一种具有高效率电荷转移和较低电荷损失的改进像素单元。
背景技术
目前,与电荷耦合装置(CCD)图像传感器相比,互补金属氧化物半导体(CMOS)图像传感器作为低成本的成像装置得到了越来越广泛的使用。图1的框图示出了典型的单芯片CMOS图像传感器199。如下所述的像素阵列190包括配置成预定数目的列和行的多个像素200。
一般,阵列190中的像素行被逐行读出。从而,通过行选择线同时选择并读出阵列190的行中的所有像素,且选定的行中各像素将代表所接收的光的信号提供给用于其所在列的读出线。在阵列190中,各列也都有选择线,通过响应所述列选择线有选择地读出各列的像素。
响应行地址解码器192,像素阵列190中的行选择线被行驱动器191有选择地激活。响应列地址解码器197,列驱动器193有选择地激活所述列选择线。所述像素阵列由定时与控制电路195操作,而后者控制地址解码器192、197,为像素信号的读出选择恰当的行和列选择线。
所述列读出线上的信号通常包括用于各像素的像素复位信号(Vrst)和像素图像信号(Vsig)。响应列驱动器193,采样和保持电路(S/H)196将这两种信号读入。差动放大器(AMP)194为各像素产生了差动信号(Vrst-Vsig),并由模数转换器(ADC)198对各像素的差动信号进行放大和数字化。然后,模数转换器198将所述数字化的像素信号提供给图像处理器189,后者能在提供定义图像的数字信号之前执行适当的图像处理。
已经开发了用于图像传感器的、取代机械快门的电子快门。该电子快门通过控制像素单元的积分时间来控制所述像素单元上累积的光生电荷数。当成像运动景物时,或是当图像传感器本身移动时,以及为得到优质的图像需要缩短积分时间时,这种特性尤其有用。
通常,具有电子快门的像素单元包括快门晶体管和通常为pn结型的电容器的存储装置。所述存储装置存储了代表由像素单元中的光转换装置产生的电荷的电压。所述快门晶体管控制何时和需要多长时间将电荷传送到所述存储装置,因此,它控制了所述像素单元的积分时间。
存在两种典型的用于电子快门的运行模式卷帘式和全局式。当电子快门用作卷帘式快门时,每一次阵列中有一行像素对光生电荷进行积分,且每次读出其中一行像素。当电子快门作为全局快门时,阵列中的所有像素同时对光生电荷进行积分,且每次读出其中一行像素。
相比行快门开闭,全局快门开闭更有优势。实际上,全局操作能提供成像景物的“快照”。因此,全局操作增加了成像景物的精度,并提供了均匀的曝光时间和图像内容。
另一方面,由于像素阵列中的像素单元是逐行读出的,因而,与较早读出的行中的像素单元相比,最后读出的行中的像素单元需在它们的存储装置中存储更长时间的光生电荷。而传统使用的存储装置可能随时间损失电荷,且需存储光生电荷的时间越长,损失的电荷越多。因此,对在最后读出的行中的像素单元而言,电荷损失尤其成为问题。当像素单元丢失电荷时,所得图像可能具有较差的质量,或者该图像可能发生失真。
此外,在传统的像素单元中,当将光生电荷从光转换装置转移到读出电路时,在电荷的通道中可能存在势垒。这样的势垒可能会阻止一部分光生电荷到达读出电路,从而降低了像素单元的电荷转移效率,并且也降低了所得图像的质量。因此,需要有电荷转移效率得到提高且电荷损失最小的电子快门的像素单元。

发明内容
本发明的实施例提供了经改进的像素单元,该像素单元增加了电荷转移效率,并降低了电荷损失。该像素单元包括用于产生电荷的光转换装置和由控制栅进行控制的、用于存储光生电荷的栅控电荷存储区。所述电荷存储区与一晶体管的栅极相邻。该晶体管的栅极与所述光转换装置相邻,并且,它和所述控制栅一起将光生电荷从所述光转换装置转移到所述电荷存储区。


图1是传统的图像传感器的框图;图2A是本发明一实施例的像素单元的俯视图;图2B是沿图2A中的线BB’得到的所述像素单元的截面图;图3是示例定时图,它用于本发明一实施例的图像传感器;图4A是示意图,示出了在图2的像素单元的某一动作阶段光生电荷的位置;图4B是示意图,示出了在图2的像素单元的某一动作阶段光生电荷的位置;图4C是示意图,示出了在图2的像素单元的某一动作阶段光生电荷的位置;图5A是图2的像素单元在初始制造阶段的截面图;图5B是图2的像素单元在中间制造阶段的截面图;图5C是图2的像素单元在中间制造阶段的截面图;图5D是图2的像素单元在中间制造阶段的截面图;图5E是图2的像素单元在中间制造阶段的截面图;
图5F是图2的像素单元在中间制造阶段的截面图;图5G是图2的像素单元在中间制造阶段的截面图;图5H是图2的像素单元在中间制造阶段的截面图;图5I是图2的像素单元在中间制造阶段的截面图;图5J是图2的像素单元在中间制造阶段的截面图;图5K是图2的像素单元在中间制造阶段的截面图;图6是本发明一实施例的处理系统的示意图。
具体实施例方式
在以下的详细说明中,引用了构成所述说明的一部分的、并示出了实施本发明的具体实施例的附图。在所述附图中,相同的附图标记表示基本类似的部件。用足够详细的方式说明了这些实施例,以使得本领域技术人员能实施本发明,并且应理解,也可以采用其他实施例,且在不背离本发明的精神和范围的情况下,可对公开实施例进行结构、逻辑和电气上的改变。
术语“晶圆”和“基片”应理解成包括硅、绝缘体基硅(SOI)或蓝宝石基硅(SOS)技术、经过掺杂或未经掺杂的半导体、由半导体基底支撑的外延层和其他半导体结构。此外,当在以下说明中提及“晶圆”或“基片”时,已经利用之前的工艺步骤在所述的基底半导体或基础中形成了区或结。另外,所述半导体可以不以硅为基底,而是以硅锗、锗或砷化镓为基底。
术语“像素”意指像素单元,该单元包含用于将电磁辐射转换成电信号的光电传感器和晶体管。为说明方便起见,在图和此处的说明中示出了代表性的像素,并且通常图像传感器中的所有像素的制造是以类似的方式同时进行的。
参阅附图,图2A是本发明一示范实施例的像素单元300的俯视图,而图2B是沿线BB’得到的像素单元300的截面图。作为示例,图中示出像素单元300是五晶体管(5T)像素单元300,但是本发明不限于含有具体数目的晶体管的像素单元,且可能存在含有其他数目晶体管的实施例。
钉扎光电二极管320是用于累积光生电荷的光转换装置。与钉扎光电二极管320相邻的是用于为像素单元300确定积分时间和用于将电荷从钉扎光电二极管320转移到电荷存储区的快门晶体管的栅极341。作为示例,快门晶体管的栅极341是全局快门晶体管栅极,该栅极在图像传感器中同时作为其他像素的快门栅极工作,以使所有像素具有相等和并行的积分时间。然而,本发明不限于全局快门开闭技术,也可以采用其他快门开闭技术。
在示出的本发明的示范实施例中,有一种单个CCD台的存储装置CCD台。通常CCD台是氧化物金属半导体(MOS)电容器。一般,可将MOS电容器描述成由金属或其他导电材料以及由绝缘材料分隔的半导体材料形成的电容器。通常,所述导电材料用作MOS电容器的栅极。
图中示出所述CCD台为具有CCD栅极380的埋入沟道CCD台330,图中,该栅极与快门栅极341和传输栅极343部分重叠。CCD栅极380控制CCD台330,并且和所述全局快门栅极一起帮助将电荷转移到CCD台330。CCD台330存储电荷,直到该电荷被转移到读出节点被读出为止,所述读出节点最好是浮置扩散区305。在读出之前,电荷通过CCD栅极380和传输栅极343转移到浮置扩散区305。
CCD台330为像素单元300提供了高于传统像素单元的电荷转移效率。如业内所知,CCD能够提供几乎全部的电荷转移。因此,当将电荷从钉扎光电二极管320转移到浮置扩散区305时,几乎没有电荷损失,从而像素单元300具有改善的电荷转移效率。此外,CCD台330减小了电荷存储在CCD台330时随时间的电荷损失。例如,在基片301的某一表面附近,当电子与空穴复合时,会损失电子携带的电荷。因为CCD台是埋入沟道装置,电荷被维持在基片301的表面以下,从而使复合和电荷损失成为最小。
浮置扩散区305电连接到具有栅极345的复位晶体管和源极跟随器晶体管的栅极347。将所述复位晶体管的源/漏区307连接到一个固定电压源Vdd。在浮置扩散区305接收来自CCD台330的光生电荷之前,所述复位晶体管将浮置扩散区305复位成固定电压Vdd。所述源极跟随器晶体管在其栅极347处接收来自浮置扩散区305的电信号。所述源极跟随器晶体管也连接到具有栅极349的行选择晶体管,所述栅极用于响应行选择线上的信号将来自所述源极跟随器晶体管的信号输出到列读出线。
图3是示例定时图,它表示了本发明一实施例的像素300的动作情况(图2A-2B)。图4A-4C示出处于像素单元300的各个动作阶段的光生电荷444的位置。如图2A所示,栅极341接收全局快门(GS)信号,CCD栅极380接收电荷耦合装置(CCD)信号,栅极343接收传输(TX)信号,栅极345接收复位(RST)信号,栅极349接收行(ROW)信号。可以通过对控制这些信号的定时与控制电路195进行适当的修改,用图1中的电路来提供所有这些信号。电源电压Vdd和用于栅极347与用于读出的其他连接在连接点303处实现接入。
在图3所示的信号出现之前,如图4A所示,响应外部入射光,钉扎光电二极管320采集光生电荷444。在某一积分时间以后,使全局(GS)快门信号跳变到高电平,这导致快门晶体管的栅极341开通,并将光生电荷444从钉扎光电二极管320转移到CCD台330。同样在这时,使CCD信号跳变到高电平,以开通CCD栅极380。如图4B所示,所述CCD信号保持高电平,从而CCD栅极380保持开通,以便将电荷444存储在CCD台330中。
当电荷444由CCD台330进行存储时,RST信号跳变到高电平,使复位晶体管的栅极345开通,以将浮置扩散区305复位到Vdd。同样在此时,ROW信号开通了行选择晶体管的栅极439。将浮置扩散区305上的复位电压施加于源极跟随器的栅极,以提供基于所述复位电压的电流,该电流经过所述行选择晶体管,并到达列选择线。由读出电路(未示出)将该电流变换成复位电压Vrst和读出。当读出完成时,RST和ROW信号转变成低电平。
接下来,TX信号跳变为高电平,且所述CCD信号保持为高电平,以将光生电荷444从CCD台330转移到浮置扩散区305。如图4C所示,一旦电荷444转移到浮置扩散区305,TX和CCD信号便变为低电平。
同样,此时ROW信号又一次开通了行选择晶体管的栅极349。将浮置扩散区305上的光生电荷444加到源极跟随器的栅极上,以控制流过行选择晶体管的电流。以类似的方式将该电流变换成电压Vsig并读出。当指示来自浮置扩散区305的光生电荷444的信号被读出时,ROW信号变为低电平。
以下,参阅图5A至5K,对像素300的制造过程进行了说明。除那些在逻辑上需要以前操作之结果的操作外,此处所述的任何操作不需要特定的次序。从而,尽管将以下的操作以一般的次序进行说明,但是,所述次序仅是示范性的,可以被改变。
图5A示出了处于制造的初始阶段的像素单元300。图中,基片301由第一导电类型的材料制成,在本示范实施例中,所述类型为p型。在基片301中形成了隔离区302,且该隔离区中填充了电介质材料。所述电介质材料可以是氧化物材料,如SiO或SiO2之类的硅氧化物;氧氮化物;氮化硅之类的含氮材料;金刚砂;高温聚合物;或其他合适的电介质材料。如图5A中所示,隔离区302可以是浅槽隔离(STI)区,且所述电介质材料最好是高密度等离子体(HDP)氧化物,该氧化物具有很强的有效填充窄槽的能力。
如图5B所示,在基片301上生成或淀积了二氧化硅的第一隔离层340a。层340a可以是用于之后形成的晶体管栅极的栅极氧化层。第一隔离层340a可具有约为50埃()的厚度。接着,在氧化物层340a上形成导电材料层340b。导电材料层340b将用作之后形成的晶体管的栅电极。导电层340b可以是多晶硅层,可以对该层进行掺杂,使之成为第二种导电类型的层,如n型层,且该层具有约1000埃()的厚度。在多晶硅层340b上淀积了第二绝缘层340c。第二绝缘层340c可以由氧化物(SiO2)、氮化物(氮化硅)、氮氧化物(氮氧化硅)、ON(氧化层-氮化层)、NO(氮化层-氧化层)或ONO(氧化层-氮化层-氧化层)形成。第二绝缘层340c可具有约1000的厚度。
除别的方法外,可以用化学气相淀积(CVD)或等离子体气相淀积(PECVD)之类的传统淀积方法来形成层340a、340b、340c。然后,对层340a、340b和340c形成图案并进行蚀刻,以形成图5C中所示的多层栅堆结构341、343和345。栅堆341是用于全局快门晶体管的栅极结构,栅堆343是用于传输晶体管的栅极结构,栅堆345是用于复位晶体管的栅极结构。
本发明不限于上述栅极341、343和345的结构。如业内所知,在需要时,可以加入额外的层,或者可以改变栅极341、343和345。例如,可以在栅极340b和第二绝缘层340c之间形成硅化物层(未示出)。该硅化物层可以包含于栅极341、343和345之中,或包含于图像传感器电路中的所有晶体管栅极结构之中,它可以是硅化钛、硅化钨、硅化钴、硅化钼或硅化钽。该额外的导电层也可以是阻挡层/折射金属,如TiN/W或W/Nx/W,或者完全由WNx形成。
如图5D所示,p-阱304置入基片301中。在基片301中,从快门栅极341下的某点到处于正对着传输栅极343的复位栅极345的一侧的STI区302下的某点形成p-阱304。可以用已知的方法形成p-阱304。例如,可以为基片301上的光刻胶层(未示出)形成图案,所述光刻胶在将形成p-阱304的区域中具有一个开口。可将硼之类的p型掺杂剂通过所述光刻胶中的开口注入到所述基片之中。在图中,所形成的p-阱具有比基片301的与之相邻的部分更高的p型掺杂剂浓度。
如图5E所示,分别为钉扎光电二极管320和CCD台330在基片301中注入第二种导电类型的掺杂区320a和330a。在图中,钉扎光电二极管区320a和CCD台的区域330a是经轻度掺杂的n型区域。可以用业内已知的方法形成钉扎光电二极管和CCD台的区域320a和330a。例如,可以在基片301上为在基片301的表面上形成具有开口的光刻胶层(未示出)的图案,并在基片301的表面上形成钉扎光电二极管和CCD台的区域320a和330a。将磷、砷或锑之类的n型掺杂剂通过所述开口注入到基片301中。可以使用多重离子注入来调整区域320a和330a的轮廓。如果需要,可以进行有角度的离子注入来形成钉扎光电二极管和CCD台的区域320a和330a,即所述离子注入相对于基片301的表面以不同于90度的角度进行。
钉扎光电二极管区域320a处于快门栅极341的另一侧,与CCD台330a相对,并基本与快门栅极341的边缘对准,这样便形成了用于收集光生电荷的光敏电荷累积区。CCD台区域330a处于快门栅极341的边缘和传输栅极343的边缘之间,并基本与这两个边缘对准,这便形成了用于存储光生电荷的存储区。
如图5F所示,用已知技术进行了轻掺杂漏(LDD)离子注入,以提供LDD区域305a和307a。在传输栅极343和复位栅极345之间置入LDD区域305a,该区域基本上与传输栅极343和复位栅极345的各自边缘对准。LDD区域307a也基本与复位栅极345的一个边缘对准,但它是在靠近与传输栅极343相对的复位栅极345的一侧置入的。作为示例,LDD区域305a和307a是轻掺杂的n型区域。
图5G示出了层342的形成,而随后这将在栅极341、343和345的侧壁上形成侧壁隔层。图中,层342是氧化层,但是它也可以是任何合适的电介质材料,如二氧化硅、氮化硅、氮氧化物、ON、NO、ONO或TEOS,用业内已知的方法形成。层342可具有约为700的厚度。
图5H中示出了分别置入用于钉扎光电二极管320和CCD台330的掺杂表面层320b和330b的情形。掺杂表面层320b和330b在掺杂后变成了第一导电类型的层,作为示例,所述导电类型为p型。经过掺杂的表面层320b和330b可以是重掺杂的p+表面层。可以用硼、铟或任何其他合适的p型掺杂剂来形成p+表面层320b和330b。
可以采用公知的技术来形成p+表面层320b和330b。例如,可以用将p型离子通过光刻胶层中的开口注入的方法来形成层320b和330b。另外,可采用气体源等离子体掺杂工艺,或通过将p型掺杂剂从淀积在将形成层320b和330b的区域中的原位(in-situ)掺杂层或掺杂的氧化层扩散到基片301中,来形成层320b和330b。
如图5I所示,进行某一干蚀刻步骤来蚀刻氧化层342,且层342的剩余部分形成栅极341、343和345侧壁上的侧壁隔层342。
如图5J所示,通过已知方法,在基片301和栅极341、343和345上淀积绝缘层381。绝缘层381可具有约100的厚度。图中,绝缘层381是氮化硅层(Si3N4),但也可以使用其他合适的电介质材料。
采用已知的方法,在Si3N4层381上淀积导电层382。导电层382可具有约为1000的厚度。在图中,导电层381是p型的多晶硅层,但也可以使用其他合适的电介质材料。如图5K所示,对层381和382形成图案并进行蚀刻,以形成CCD栅极380。
可用已知方法置入源/漏区305和307,以实现图3B中所示的结构。以第二导电型区的形式形成了源/漏区域305和307,作为示例,所述类型为n型。可用任何合适的n型掺杂剂,如磷、砷或锑来形成源/漏区305和307。在传输栅极343和复位栅极345之间形成了源/漏区域305,且在靠近与传输栅极343相对的复位栅极345的一侧形成源/漏区域307。
可以用传统加工方法来完成像素单元300。例如,可以形成绝缘、屏蔽和金属化层,以将栅极导线和其他接线连接到像素单元300。同样,也可以在整个表面上覆盖二氧化硅、BSG、PSG或BPSG之类材料的钝化层(未示出),将该钝化层进行CMP抛光和蚀刻,以提供接触孔,然后,将这些孔进行金属化,以提供接触件。也可以用导体和绝缘体材料的传统的层来将所述结构互连,并将像素单元300连接到外围电路。
尽管就pnp型的光电二极管的形成对以上实施例作了说明,但本发明却不限于这些实施例。也可以将本发明用于其他类型的光电二极管和从基片的npn区域形成的光电二极管。如果形成了npn型的光电二极管,则所有结构的掺杂剂和导电类型也会发生相应的改变,其中,传输和快门栅极成为PMOS晶体管的一部分,而不是上述的实施例中的NMOS晶体管的一部分。
尽管就五晶体管(5T)像素单元对本发明进行了说明,但也可以将本发明集成到其他具有不同晶体管数量的CMOS像素单元设计之中。在不成为限制的前提下,这样的设计可以包括六晶体管(6T)像素单元。6T像素单元与5T像素单元的不同之处在于加入了抗光晕(anti-blooming)晶体管之类的晶体管。
根据本发明的一个实施例,与图3-5K有关的上述一个或多个像素300可以是像素单元阵列的一部分。这样的阵列可以是与以上参照图1描述的图像传感器类似的图像传感器的一部分。
图6示出了典型的基于处理器的系统677,该系统包括具有像素单元阵列的图像传感器699,在所述阵列中,以与图3-5K有关的上述方式形成一个或多个像素单元。基于处理器的系统677是具有可包括图像传感器的数字电路的系统的一个实例。在不构成限制的前提下,这样的系统可以包括计算机系统、照相机系统、扫描仪、机器视觉、车辆导航、视频电话、监视系统、自动对焦系统、恒星跟踪系统、运动检测系统、图像稳定系统和数据压缩系统。
举例来说,基于处理器的系统677是一种计算机系统,它一般包括微处理器之类的、通过总线673与输入/输出(I/O)装置675通信的中央处理单元(CPU)670。基于处理器的系统677也包括随机存取存储器(RAM)676,并可包括同样通过总线673与CPU770通信的、软盘驱动器671和光盘ROM驱动器672之类的外围装置。在单个集成电路或在不同于以下所述的处理器的芯片上,可以将图像传感器699与具有或不具有存储装置的处理器组合在一起,所述处理器可以是CPU、数字信号处理器或微处理器。
还应注意到,以上的说明和附图是示范性的和说明性的优选实施例,这些实施例实现了本发明的目标、特征和优点。本文无意将本发明局限于示出的实施例。应当将任何落在以下权利要求的精神和范围之内的对于本发明的修改视为本发明之一部分。
权利要求
1.一种像素单元,包括产生电荷的光电转换装置;由控制栅控制的、存储光生电荷的栅控电荷存储区;以及其栅极在所述光电转换装置和所述电荷存储区之间的第一晶体管,用以将光生电荷从所述光电转换装置转移到所述电荷存储区。
2.权利要求1所述的像素单元,其中,所述电荷存储区是埋沟MOS电容器的一部分。
3.权利要求1所述的像素单元,其中,所述电荷存储区在所述基片的表面以下。
4.权利要求1所述的像素单元,其中,所述电荷存储区包括第二导电型掺杂区;以及在所述第二导电型掺杂区上并与之接触的第一导电型的掺杂表面层,所述控制栅在所述掺杂表面层上。
5.权利要求1所述的像素单元,其中,所述控制栅包括用第一导电型的掺杂剂掺杂的多晶硅。
6.权利要求1所述的像素单元,其中,所述第一晶体管是为像素单元确定积分时间的快门晶体管。
7.权利要求1所述的像素单元,还包括读出节点;以及其栅极在所述电荷存储区和所述读出节点之间的第二晶体管。
8.权利要求7所述的像素单元,其中,所述读出节点是浮置扩散区。
9.权利要求7所述的像素单元,其中,所述控制栅至少部分地与所述第一和第二晶体管的栅极重叠。
10.权利要求1所述的像素单元,其中,所述光电转换装置是钉扎光电二极管。
11.一种像素单元,包括产生电荷的光电转换装置;由控制栅控制的、存储光生电荷的栅控电荷存储区,其中,所述电荷存储区包含第二导电型的掺杂区和在所述第二导电型的掺杂区上并与之接触的第一导电型的掺杂表面层,且其中所述控制栅在所述掺杂表面层上;以及其栅极在所述光电转换装置和所述电荷存储区之间的第一晶体管,用以将光生电荷从所述光电转换装置转移到所述电荷存储区。
12.权利要求11所述的像素单元,其中,所述电荷存储区是埋沟金属氧化物半导体(MOS)电容器的一部分。
13.权利要求11所述的像素单元,还包括读出节点;以及其栅极在所述电荷存储区与所述读出节点之间的第二晶体管。
14.权利要求13所述的像素单元,其中,所述控制栅部分地与所述第一和第二晶体管的栅极重叠。
15.一种图像传感器,包括基片;在所述基片上形成的像素单元阵列,其中各像素单元包含产生电荷的光电转换装置;由控制栅控制的、存储光生电荷的栅控电荷存储区;以及其栅极在所述光电转换装置和所述电荷存储区之间的第一晶体管,用以将光生电荷从所述光电转换装置转移到所述电荷存储区。
16.权利要求15所述的图像传感器,其中,所述电荷存储区是埋沟金属氧化物半导体(MOS)电容器的一部分。
17.权利要求15所述的图像传感器,其中,所述电荷存储区包括第二导电型的掺杂区;以及在所述第二导电型的掺杂区上并与之接触的第一导电型的掺杂表面层,所述控制栅在所述掺杂表面层上。
18.权利要求15所述的图像传感器,其中,所述控制栅包括掺杂成第一导电型的多晶硅。
19.权利要求15所述的图像传感器,其中,所述第一晶体管是为所述像素单元确定积分时间的快门晶体管。
20.权利要求15所述的图像传感器,还包括读出节点;以及在所述电荷存储区和所述读出节点之间的第二晶体管的第二晶体管栅极。
21.权利要求20所述的图像传感器,其中,所述控制栅至少部分地与所述第一和第二晶体管重叠。
22.一种处理器系统,包括(i)处理器;以及(ii)连接到所述处理器的图像传感器,所述图像传感器包含基片;在所述基片上形成的像素,所述像素包含产生电荷的光电转换装置;由控制栅控制的、存储光生电荷的栅控电荷存储区;以及其栅极在所述光电转换装置和所述电荷存储区之间的第一晶体管,用以将光生电荷从所述光电转换装置转移到所述电荷存储区。
23.一种集成电路,包括基片;在所述基片表面的像素单元阵列,其中,至少一个所述像素单元包含产生电荷的光电转换装置和由控制栅控制的、存储光生电荷的栅控电荷存储区;以及其栅极在所述光电转换装置和所述电荷存储区之间的第一晶体管,用以将光生电荷从所述光电转换装置转移到所述电荷存储区;连接到所述阵列的电路,其中,所述电路包括连接到所述控制栅的导线,所述导线将信号提供给所述控制栅。
24.一种用于形成像素单元的方法,该方法包括形成产生电荷的光电转换装置;形成存储光生电荷的栅控电荷存储区;形成控制所述电荷存储区的控制栅;以及形成第一晶体管,其栅极在所述光电转换装置和所述电荷存储区之间,用以将光生电荷从所述光电转换装置转移到所述电荷存储区。
25.权利要求24所述的方法,其中,形成所述电荷存储区和控制栅的操作,包含形成埋沟金属氧化物半导体(MOS)电容器。
26.权利要求24所述的方法,其中,形成所述电荷存储区的操作,包含在所述基片的表面下形成所述电荷存储区。
27.权利要求24所述的方法,其中,形成所述电荷存储区的操作包括形成第二导电型的掺杂区;以及形成在所述第二导电型的掺杂区上并与之接触的第一导电型的掺杂表面层,其中形成所述控制栅的操作包含在所述掺杂表面层上形成所述控制栅。
28.权利要求24所述的方法,其中,形成所述控制栅的操作包含形成用第一导电型的掺杂剂掺杂的多晶硅层。
29.权利要求24所述的方法,其中,形成所述控制栅的操作包含形成为所述像素单元确定积分时间用的快门晶体管。
30.权利要求24所述的方法,还包括形成读出节点;以及形成在所述电荷存储区和所述读出节点之间的第二晶体管的第二晶体管栅极。
31.权利要求30所述的方法,其中,形成所述读出节点的操作包含形成浮置扩散区。
32.权利要求30所述的方法,其中,形成所述控制栅的操作包含形成至少部分地与所述第一和第二晶体管栅极重叠的所述控制栅。
33.权利要求24所述的方法,其中,形成所述光电转换装置的操作包含形成钉扎光电二极管。
34.一种形成像素单元的方法,该方法包括形成产生电荷的光电转换装置;形成与所述光电转换装置隔开的第二导电型的掺杂区;在所述第二导电型的掺杂区上形成第一导电型的掺杂表面层;在所述光电转换装置和所述第二导电型的掺杂区之间形成第一晶体管的栅极;以及在所述掺杂表面层上形成栅电极。
35.权利要求34所述的方法,还包括形成读出节点;以及在所述第二导电型的掺杂区与所述读出节点之间形成第二晶体管的栅极。
36.权利要求35所述的方法,其中,在所述掺杂表面层上形成所述栅电极的操作包含形成与所述第一和第二晶体管栅极重叠的栅电极。
37.一种操作像素单元的方法,该方法包括在积分周期中响应光而产生电荷;通过操作第一晶体管的栅极并操作控制电荷存储区的控制栅将光生电荷转移到所述栅控电荷存储区;以及将所述光生电荷存储在所述电荷存储区中,直到操作所述控制栅来读出电荷的时间。
38.权利要求37所述的方法,其中,存储所述光生电荷的操作包含将所述光生电荷存储在基片的表面之下。
39.权利要求37所述的方法,还包括操作第一晶体管栅极来为所述像素单元确定积分时间的长度。
40.权利要求37所述的方法,还包括操作所述控制栅并操作第二晶体管的栅极来将所述光生电荷从所述电荷存储区转移到读出节点。
41.权利要求40所述的方法,其中,将所述光生电荷转移到所述读出节点的操作包含将所述光生电荷转移到浮置扩散区。
42.权利要求40所述的方法,还包括将所述读出节点上的电压施加到读出电路来读出所述光生电荷。
43.一种操作图像传感器的方法,该方法包括在积分时间内,在多个像素单元中同时响应入射光而产生电荷;操作快门晶体管的栅极并操作控制电荷存储区的控制栅来同时在各像素单元内将光生电荷转移到栅控电荷存储区;将所述光生电荷存储在所述电荷存储区中,直到操作所述控制栅来读出电荷的时刻;在读出第一像素单元的时刻,通过操作相关的第一晶体管的栅极将光生电荷从第一电荷存储区转移到第一读出节点;对所述第一读出节点的值进行采样;在读出第二像素单元的时刻,操作相关的第二晶体管的栅极将光生电荷从第二电荷存储区转移到第二读出节点;对所述第二读出节点的值进行采样;处理这些值而得到图像。
44.权利要求43所述的方法,其中,所述产生电荷的操作包含同时在阵列的所有像素单元中产生电荷。
45.权利要求44所述的方法,其中,将所述光生电荷转移到多个存储区的操作包含同时将所述光生电荷转移到阵列的所有像素单元内的电荷存储区。
全文摘要
一种像素单元,其中包括用于产生电荷的光电转换装置和由控制栅控制的、存储光生电荷的栅控电荷存储区。所述电荷存储区可以是单个的具有埋入沟道的CCD台,以实现高效的电荷转移和较低的电荷损失。所述电荷存储区与某一晶体管的栅极相邻。所述晶体管的栅极又与所述光转换装置相邻,它和所述控制栅一起将光生电荷从所述光转换装置转移到所述电荷存储区。
文档编号H01L27/148GK1871709SQ200480030758
公开日2006年11月29日 申请日期2004年8月18日 优先权日2003年8月22日
发明者洪性权 申请人:微米技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1