电力半导体装置的制作方法

文档序号:6847012阅读:99来源:国知局
专利名称:电力半导体装置的制作方法
技术领域
本发明涉及电力半导体装置。
背景技术
以往的一般的电力半导体装置的结构如图13所示。
在金属制的基板2上,配置有绝缘基板4,该绝缘基板4是在陶瓷的正反面对电路图形进行金属电镀而形成的,在该绝缘基板4上,搭载有IGBT/MOSFET等的电力用转换半导体元件6及续流二极管8。电力用转换半导体元件6和续流二极管8,与内置有外部端子的壳体(嵌入式壳体)18相连接(经由外部端子)。IGBT等的电力用转换半导体元件6,是以上面(正面)为发射极面、下面(反面)为集电极面的形式进行配置的,续流二极管8是以上面(正面)为正极面、下面(反面)为负极面的形式进行配置的。整体的电路,使用绝缘基板4上的电路图和电线20构成,并与壳体18相连接。在用于保护这些元件及电路的壳体18内部注入有凝胶(或者树脂,凝胶及树脂)36并以盖进行覆盖。
如此,在电力用半导体装置中,电力用转换半导体元件6的陶瓷面的连接,用电线20来进行。因此,产生了如下的问题。
第一,由于该电线20较细所以电流(的量)有限。实际上,通过加粗电线20和增加电线根数以在主电路中确保电流容量。但是,这就需要用于实现以上方法的电线结合的空间。因此,在进行元件及装置的小型化的过程中该方法自然是有限的。第二,由于电线20较细,所以电路电阻变大。这个问题虽然也可以通过加粗电线20、增加电线根数来缓解,但是与上述同样自然是有限的。第三,在电力用转换半导体元件6上的电线接合面上集中有电流,导致热量局部化。虽然通过分散元件上的电线接合面能够缓解热集中,但是还没有达到完全分散的程度。第四,产生半导体装置短路时的选通脉冲振动。在电力用半导体装置中,在每个电力用转换半导体元件6的发射元件上接合有电线20,各个元件彼此经由电线20的接合端的绝缘基板4上的电路图形进行连结。由此,在各个元件上产生不平衡,在半导体装置短路时发生选通脉冲振动,有时发生装置的破坏或者错误动作。虽然可以说通过直接电线彼此连结各个元件,能够解决该问题,但是由于电线结合的次数和用于进行结合的面积增加,所以仍然与上述第一问题具有同样的局限性。第五,需要有进行电线接合的空间。
以上是关于电线20的主要问题点。此外,还有发热的问题。在以往的半导体装置中,在基板反面涂敷有油脂,并由螺钉固定在散热片上进行散热。这种情况下,具有只能利用单侧进行散热的问题。
此外,在专利文献1中,公开了在上下具有带电路图形的IGBT模块中,主电极的连接为经由多个凸出部(バンプ)而进行的技术。在专利文献2中,公开了类似导电体小片的结构的技术。在专利文献3中,公开了在装置上设置多个凸出部的例子。在专利文献4中,公开了弹簧连结2片基板的技术。在专利文献5中,公开了在封装母板的连接中,在凸出部中埋入球、金属球的技术。在专利文献6、专利文献7中,公开了上下2片导引框架使用的IPM。
专利文献1特开平10-56131号公报专利文献2特开平8-8395号公报专利文献3特开平10-233509号公报专利文献4特开平6-302734号公报专利文献5特开平8-17972号公报专利文献6特开2002-16215号公报专利文献7特开2002-76254号公报发明内容本发明的目的是,在电力用半导体装置中,提高主电路的电流容量、降低电路电阻,另外,在元件上分散热量、抑制由于分割发射元件而引起的选通脉冲振动。
本发明是为了达到上述目的而进行的。本发明的最佳实施方式的电力用半导体装置,是具有电力用转换半导体元件和与该电力用转换半导体元件反向并列连接的续流二极管的电力用半导体装置。在该电力用半导体装置中,其特征在于,在形成于第1基板的正主面的电路图形上粘接搭载有上述电力用转换半导体元件的背面电极及上述续流二极管的背面电极,同时,将形成于第2基板的上述对置主面上的电路图形,经由软焊接的连接导体分别连接到上述电力用转换半导体元件的表面电极及上述续流二极管的表面电极,上述第2基板以上述电力用转换半导体元件的表面电极及上述续流二极管的表面电极对置的形式进行设置。
通过利用本发明,能够大幅地提高主电路的电流容量、能够降低电路电阻。另外,能够有效地在元件上进行散热、抑制由于分割发射元件而引起的选通脉冲振动,能够实现装置整体的小型化。此外,也能够从电力用半导体装置的上下两个面进行放热。


图1是本发明的第1实施方式的电力用半导体装置。
图2是本发明的第2实施方式的电力用半导体装置。
图3是本发明的第3实施方式的电力用半导体装置。
图4是本发明的第4实施方式的电力用半导体装置。
图5是本发明的第5实施方式的电力用半导体装置。
图6是在第1基板和第2基板之间填充凝胶状的绝缘耐热性填充剂的模式图。
图7是本发明的第6实施方式的电力用半导体装置。
图8是本发明的第6实施方式的电力用半导体装置。
图9是本发明的第7实施方式的电力用半导体装置。
图10是本发明的第7实施方式的电力用半导体装置。
图11是本发明的第8实施方式的电力用半导体装置。
图12是本发明的第8实施方式的电力用半导体装置。
图13是以往的一般的电力用半导体装置的结构。
具体实施例方式
下面,参照图纸说明本发明的最佳实施方式。
第1实施方式图1是本发明的第1实施方式的电力用半导体装置。(1)为以下说明的第1基板的上面图;(2)为以下说明的第2基板的下面图;(3)为侧视剖面图。在该电力用半导体装置中,在第1基板24上搭载有电力用转换半导体元件6及续流二极管8。在此,电力用转换半导体元件6的发射极面及续流二极管8的正极面,经由连接导体22(图中为球)与作为带有电路图形的绝缘基板的第2基板26相连接。电力用转换半导体元件6为IGBT/MOSFET等的半导体。
如图1(3)所示,在第1基板24的下方粘接有作为散热器部的散热器32。该散热器32,也可以粘接于第2基板的上方一面。如图1(3)所示,在由于直接绝缘基板露出外部而导致强度出现问题的情况下,可以将基板安装在下方一面上,或者对一部分涂敷涂层,也可以以壳体进行覆盖。
连接导体22和各个部件的连接,可以通过软焊接、超声波接合,或者压接等进行。在第1实施方式中,将各个部件全部载置在第1基板24上,由此,能够避开生产上的困难,提高生产率。另外,连接导体22,在组装后的状态中具有可挠性。这是用于吸收加在连接导体22上的应力。
在第1基板24和第2基板26之间,填充有凝胶状的绝缘耐热性填充剂36(为了容易理解,在图中不使用剖面线)。此时,如图6所示,用粘接剂、间隔部件34等将3个边进行封闭,从开口部进行注入。在注入时,不只是从开口部,也可以用注射器等从3个边的底边进行。
在第1实施方式中具有以下的优点。一般的,导体的电流容量与其剖面积成正比,电阻与其剖面积成反比。在增加电路的电流容量、降低电阻时,可以增加导体的剖面积。但是,在电力用半导体装置中,由于半导体元件的发射极面的面积有限,所以增加电线整体的剖面积(一根的剖面积×根数)也是有限的。而且,在用电线进行连接时,用于进行连接操作的死空间是不可缺少的。在此,如果利用如第1实施方式的连接导体22,则这样的死空间是不需要的。即,使材料相同,在比较用电线进行连接的情况和用连接导体进行连接的情况时,后者实质上能获得2倍以上的剖面积。
此外,对置的第1基板24和第2基板26,由于以短距离进行连接,所以该部分的电阻、热阻变小。在此,容许到何种程度的短距离,依赖于2个基板间的绝缘必要性,考虑到由于填充有绝缘填充剂,所以在额定电压为3.3kV的情况下,可以容许到2mm左右。
对于电线,通常,为了加工方便,使用Al(铝)。另一方面,在第1实施方式的连接导体22中,由于没有必要考虑那样的加工上的方便性,所以使用(比铝具有更好的导电性、热传导率)Cu。
如以上,在第1实施方式中,通过经由连接导体连接带有电路图形的绝缘基板,能够实现主电路的电容量的大幅上升及电阻的降低。此外,与发射元件相连接的实际面积较大,由此能够以短距离连接电路图形,所以能够实现提高半导体元件上的散热、抑制由于分割发射元件而引起的选通脉冲振动。此外,由于减少用于在电路图形上连接电线的空间,所以能够减少装置整体的表面面积。关于高度,由于在原来的电力用半导体装置中电线高度是必需的,所以即使利用第1实施方式也不能增大。
此外,通过在上、下两面安装散热器,能够提高散热效果。
第2实施方式图2是本发明的第2实施方式的电力用半导体装置。实施方式2的电力用半导体装置,与第1实施方式大致相同。因此,同一部分使用同一符号并省略其说明,主要对差别进行说明。与图1相同,(1)是第1基板的俯视图,(2)是第2基板的仰视图,(3)是侧面剖面图。
在实施方式2的电力用半导体装置中,不是利用连接导体,而是将具有连接用突出端38的带电路图形的绝缘基板作为第2基板26进行使用。连接用突出端38,由导体构成,并与第1基板24上的电力用转换半导体元件6的发射极面及续流二极管8的正极面相连接。
在第2实施方式中具有以下的优点。在第1实施方式1中,有必要将连接导体连接于半导体元件和带有电路图形的绝缘基板的两方上。因此,工序较多,可以推测有时候多少会有些困难。在第2实施方式中,通过使用具有突出端的带有电路图形的绝缘基板,能够简化工序、提高装置的可靠性。
第3实施方式图3是本发明的第3实施方式的电力用半导体装置。第3实施方式的电力用半导体装置与第1实施方式及第2实施方式的装置大致相同。因此,同一部分使用同一符号并省略说明,主要对差别进行说明。与图1、图2相同,(1)是第1基板的俯视图,(2)是第2基板的仰视图,(3)是侧面剖面图。
在图3的第3实施方式的电力用半导体装置中,利用了第2实施方式的电力用半导体装置的具有连接用突起、带有电路图形的绝缘基板(第2基板26),且,还利用了连接导体22。即,通过电路图形的导体的突出端38和连接导体22,连接第1基板24上的电力用转换半导体元件6的发射极面及续流二极管8的正极面,和作为第2基板26的带有电路图形的绝缘基板的电路图形。
如第3实施方式,通过同时利用连接用突出端和连接导体,在对置的第1导体24和第2导体26的连接中,能够分别独立地调整两者的距离和连接所需的面积。因此,能够进行考虑到电流量、热量、应力等的最佳设计。
第4实施方式图4是本发明的第4实施方式的电力用半导体装置。第4实施方式的电力用半导体装置与第1实施方式至第3实施方式的装置大致相同。因此,同一部分使用同一符号并省略说明,主要对差别进行说明。与图1相同,(1)是第1基板的俯视图,(2)是第2基板的仰视图,(3)是侧面剖面图。
图4的第4实施方式的电力用半导体装置,是在第1实施方式至第3实施方式的电力用半导体装置中,在第2基板26的一部分上制造导通正反面的部分和反面(外侧面)电路图形。在设置于该反面侧主面上的电路图形上,搭载有用于驱动控制电力用转换半导体元件6的控制用电路40。
通过如此操作,能够不需另一个印刷基板等地直接搭载驱动控制部。因此,能够减少部件数量,提高生产率。此外,通过将驱动控制部放置在电力用转换半导体元件6的旁边,能够减小不平衡,能够进行更适当的控制。
第5实施方式图5是本发明的第5实施方式的电力用半导体装置。第5实施方式的电力用半导体装置与第1实施方式至第4实施方式的装置大致相同。因此,同一部分使用同一符号并省略说明,主要对差别进行说明。与图1相同,(1)是第1基板的俯视图,(2)是第2基板的仰视图,(3)是侧面剖面图。
图5的第5实施方式的电力用半导体装置,是在第1实施方式至第4实施方式的电力用半导体装置中,至少第1基板24是陶瓷绝缘基板,且,在该陶瓷绝缘基板的反面粘接有分割为多个的散热器32。
通过如此操作,不仅能够提高散热性的效率,由于将散热器分割为多个,能够分散应力、防止陶瓷基板的热碎裂。
另外,可以使分割的散热器和第1基板24一体化。通过如此操作,能够提高生产效率,能够避免由于间隙、裂纹等导致的连接部的热阻的上升。
第6实施方式图7及图8是本发明的第6实施方式的电力用半导体装置。与图1至图5大致相同,(1)为(在下面进行说明)第1导引框架的俯视图,(2)为(在下面进行说明)第2导引框架的仰视图,(3)为侧视剖面图。
在该电力用半导体装置中,也具有电力用转换半导体元件6,和与该电力用半导体元件6逆平行地连接的续流二极管8,但是,两者不在绝缘基板上,而是搭载于导引框架(第1导引框架28)上。即,在第1导引框架28的正主面接合有电力用转换半导体元件6的背面电极和续流二极管8的背面电极。同时,使与电力用转换半导体元件6的表面电极和续流二极管8的表面电极对置的第2导引框架30的对置主面的一部分突出,使该突出端38与电力用转换半导体元件6的表面电极和续流二极管8的表面电极相接触。该整体通过树脂进行连续自动送进成型。
第6实施方式的电力用半导体装置,与第1实施方式的装置相比,虽然绝缘容许量降低,但是由于使用低价且容易加工的导引框架,所以能够提供低价且生产效率高的电力用半导体装置。此外,由于用导引框架制造外部端子,所以能够减少部件数量,提高生产率。
图7的电力用半导体装置,将连接突出端38相对于一个元件做成多个,避开元件表面的选通脉冲配线。进而,通过划分为多个来实现缓和应力。图8的电力用半导体装置,其连接端38做成平板(ベタ板)以此增加连接面积。由此,能够避免元件上的电流的集中,还能够提高散热效率。
第7实施方式图9是本发明的第7实施方式的电力用半导体装置。第7实施方式的电力半导体装置,与第6实施方式的装置大致相同。因此,同一部分使用同一符号并省略说明,主要对差别进行说明。与图7及图8大致相同,(1)是第1基板的俯视图,(2)是第2基板的仰视图,(3)是侧面剖面图。
在第7实施方式中,第1导引框架28和第2导引框架30中的任何一个为平板状。此外,在第2导引框架30的对置平面的规定位置软焊接有多个连接导体22,将这些多个连接导体对应于电力用转换半导体元件6的表面电极和续流二极管8的表面电极并进行软焊接。即,不是连接突出端,而是连接导体22进行上下连接。
第7实施方式的电力用半导体装置,与第6实施方式的装置相比,虽然部件数量增多,但是由于能够增加连接部分的形状、材料的选择,所以能够降低电路的电阻、提高可靠性。
在第7实施方式的电力用半导体装置中,如图10所示,也可以通过设置于与第1导引框架28对置的第2导引框架30的对置主面的相反侧的相反侧正主面,来搭载用于驱动控制电力用转换半导体元件6的控制用电路40。
此外,可以用多层印刷基板,或者通孔基板等代替第2导引框架,在其上搭载用于驱动控制电力用转换半导体元件6的控制用电路。
通过这样地搭载控制用电路40,能够不需要另外的印刷基板等地直接搭载驱动控制部,能够减少部件数量、提高生产率。进而,通过将驱动控制部置于电力用转换半导体元件的旁边,能够减小感应、进行适当的控制。
第8实施方式图11及图12是本发明的第8实施方式的电力用半导体元件。在图11中,(1)为侧面剖面图,(2)为第3导引框架的仰视图,(3)为第2导引框架的俯视图,(4)为第1导引框架的俯视图。在图12中,(1)为侧面剖面图,(2)为第4导引框架的仰视图,(3)为第3导引框架的俯视图,(4)为第4导引框架的仰视图,(5)为第1导引框架的俯视图。
图11、图12的电力用半导体装置,是应用第1至第7实施方式的装置,引导框架(或者绝缘基板)不是设置有2片,而是设置有3片以上。
在通常的电力用半导体装置中,由于若增加所搭载的元件只有向平面方向延展,所以平面面积增大该部分的大小。在本实施方式中,由于配置于立体方向,所以能够大幅地减少平面面积。虽然可以考虑增加该部分的高度,但是由于在以往的技术中,为了连接电线需要相当的高度,所以与其相比较也没有很大地增加。
此外,不单是平面面积和电阻变小,当本实施方式使用变换器时,能够以3片形成1个臂,不必另设共通电位部。另外,通过贴合能够实现降低感应系数,以此能有效地抑制波动。
特别是在图11的装置中,由于主电流通路对置,所以能够实现降低感应系数。另外,特别是在图12的装置中,元件设置在散热部的附近,因此能够有效地进行散热。
权利要求
1.一种电力用半导体装置,具有电力用转换半导体元件和与该电力用转换半导体元件反向并列连接的续流二极管,其特征在于,在形成于第1基板的正主面的电路图形上粘接搭载有上述电力用转换半导体元件的背面电极及上述续流二极管的背面电极,同时,第2基板以与上述电力用转换半导体元件的表面电极及上述续流二极管的表面电极对置的形式进行设置,将形成于上述第2基板的上述对置主面上的电路图形,经由软焊接的连接导体分别连接到上述电力用转换半导体元件的表面电极及上述续流二极管的表面电极。
2.一种电力用半导体装置,具有电力用转换半导体元件和与该电力用转换半导体元件反向并列连接的续流二极管,其特征在于,在形成于第1基板的正主面的电路图形上粘接搭载有上述电力用转换半导体元件的背面电极及上述续流二极管的背面电极,同时,第2基板以与上述电力用转换半导体元件的表面电极及上述续流二极管的表面电极对置的形式进行设置,使形成于上述第2基板的上述对置主面上的电路图形部分地突出,将该突出端分别软焊接到上述电力用转换半导体元件的表面电极及上述续流二极管的表面电极上。
3.如权利要求1所述的电力用半导体装置,其特征在于,在第2基板的与第1基板相对置的对置主面的反面侧设置有反面侧主面,在该反面侧主面上搭载有用于驱动控制上述电力用转换半导体元件的控制用IC。
4.如权利要求1所述的电力用半导体装置,其特征在于,至少第1基板是陶瓷绝缘基板,在该陶瓷绝缘基板的反面粘接有分割为多个的散热器。
5.如权利要求1所述的电力用半导体装置,其特征在于,至少第1基板是陶瓷绝缘基板,在该陶瓷绝缘基板的反面形成有具有散热器功能的形状。
6.如权利要求1所述的电力用半导体装置,其特征在于,在将外部导出导线的一端软焊接在基板上的情况下,在形成于第1基板的正主面的电路图形上进行所有这些软焊接。
7.如权利要求1所述的电力用半导体装置,其特征在于,在第1基板和第2基板之间填充有绝缘耐热性填充材料。
8.如权利要求7所述的电力用半导体装置,其特征在于,绝缘耐热性填充材料是压入热硬化性树脂而成的。
9.如权利要求7所述的电力用半导体装置,其特征在于,绝缘耐热性填充材料呈凝胶状
10.如权利要求7所述的电力用半导体装置,其特征在于,在第1基板和第2基板的外周缘的附近,沿着该外周缘以呈コ字形状设置有带状的第1间隔部件,并与上述第1基板和第2基板相粘接,从上述コ字形状的开口部填充凝胶状的耐热性填充材料,然后,用与配置于上述开口部并粘接于上述第1基板及第2基板的第2间隔部件密封上述绝缘耐热性填充材料。
11.如权利要求1所述的电力用半导体装置,其特征在于,连结导体在组装状态下具有可挠性。
12.一种电力用半导体装置,具有电力用转换半导体元件和与该电力用转换半导体元件反向并列连接的续流二极管,其特征在于,在第1导引框架的正主面接合有上述电力用转换半导体元件的背面电极和上述续流二极管的背面电极,同时,使与上述电力用转换半导体元件的表面电极和上述续流二极管的表面电极对置的第2导引框架的对置主面的一部分突出形成为突出端,使该突出端或者软焊接于上述第2导引框架的对置主面上规定位置的多个连接导体,与上述电力用转换半导体元件的表面电极和上述续流二极管的表面电极相对应并连接,或者进行软焊接连接。
13.如权利要求12所述的电力用半导体装置,其特征在于,在第2导引框架的与第1导引框架相对置的对置主面的反面侧设置有反面侧主面,在该反面侧主面上,搭载有用于驱动控制上述电力用转换半导体元件的控制用IC。
14.如权利要求13所述的电力用半导体装置,其特征在于,用多层印刷基板,或者通孔基板代替第2导引框架,搭载用于进行驱动控制的控制用IC。
15.如权利要求1至12中的任何一个所述的电力用半导体装置,其特征在于,基板或者导引框架为3片以上。
全文摘要
本发明的目的是,在电力用半导体装置中,提高主电路的电流容量、降低电路电阻,在元件上分散热量、抑制由于分割发射元件而引起的选通脉冲振动。在具有电力用转换半导体元件和与该电力用转换半导体元件反向并列连接的续流二极管的电力用半导体装置中,其特征在于,在形成于第1基板的正主面的电路图形上粘接搭载有上述电力用转换半导体元件的背面电极及上述续流二极管的背面电极,同时,将形成于第2基板的上述对置主面上的电路图形,经由软焊接的连接导体分别连接到上述电力用转换半导体元件的表面电极及上述续流二极管的表面电极,上述第2基板以上述电力用转换半导体元件的表面电极及上述续流二极管的表面电极对置的形式进行设置。
文档编号H01L25/00GK1638119SQ20051000372
公开日2005年7月13日 申请日期2005年1月6日 优先权日2004年1月7日
发明者近藤信, 新井规由 申请人:三菱电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1